Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 711c3b2
  • /
  • src
  • /
  • technical
  • /
  • radial.md
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:7c35231972fd58ce6f280dc3aff2f2436494b22e
directory badge Iframe embedding
swh:1:dir:7696d39678e6db4ba664281c8ef17262a2d18a13
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
radial.md
```@meta
CurrentModule = DataEnvelopmentAnalysis
```

# Radial Models

## Radial Input Oriented Model

Based on the data  matrix $(X,Y)$, we calculate the input oriented efficiency of each observation *o* by solving $n$ times the following linear programming problem -- known as the Charnes, Cooper, and Rhodes (1978), **CCR**, model:
```math
\begin{aligned}
  & \underset{\theta ,\mathbf{\lambda }}{\mathop{\min }}\,\quad \quad \quad \;\ \theta  \\
  & \text{subject}\ \text{to}  \\
  & \quad \quad \quad \quad \quad \ X\mathbf{\lambda } \le \theta {{\mathbf{x}}_{o}} \\
  & \quad \quad \quad \quad \quad  \;Y\mathbf{\lambda }\ \ge {{\mathbf{y}}_{o}}  \\
  & \quad \quad \quad \quad \quad \ \mathbf{\lambda }\ge \mathbf{0}. 
\end{aligned}
```

The measurement of technical efficiency assuming variable returns to scale, **VRS**, as introduced by *Banker, Charnes and Cooper (1984)* -- known as the Banker, Charnes and Cooper, **BCC**, model -- adds the following condition:
```math
\sum\nolimits_{j=1}^{n}\lambda_j=1
```

In this example we compute the radial input oriented DEA model under constant returns to scale:
```@example radial
using DataEnvelopmentAnalysis

X = [5 13; 16 12; 16 26; 17 15; 18 14; 23 6; 25 10; 27 22; 37 14; 42 25; 5 17];

Y = [12; 14; 25; 26; 8; 9; 27; 30; 31; 26; 12];

dea(X, Y, orient = :Input, rts = :CRS)
```

To compute the variable returns to scale model, we simply set the `rts` parameter to `:VRS`:
```@example radial
dea(X, Y, orient = :Input, rts = :VRS)
```

Estimated efficiency scores are returned with the `efficiency` function:
```@example radial
deaiovrs = dea(X, Y, orient = :Input, rts = :VRS);
nothing # hide
```

```@example radial
efficiency(deaiovrs)
```

The optimal peers, ``λ``, are returned with the `peers` function and are returned as a `DEAPeers` object:
```@example radial
peers(deaiovrs)
```

Input and output slacks are returned with the `slacks` function:
```@example radial
slacks(deaiovrs, :X)
```

```@example radial
slacks(deaiovrs, :Y)
```

Input and output optimal targets are returned with the `targets` function:
```@example radial
targets(deaiovrs, :X)
```

```@example radial
targets(deaiovrs, :Y)
```

## Radial Output Oriented Model

It is possible to calculate the output oriented technical efficiency of each observation by solving the following linear program:
```math
\begin{aligned}
 & \underset{\phi ,\mathbf{\lambda }}{\mathop{\max }}\,\quad \quad \quad \quad \phi  \\
 & \text{subject}\ \text{to} \\
 & \quad \quad \quad \quad \quad \ X\lambda\le {{\mathbf{x}}_{o}} \\
 & \quad \quad \quad \quad \quad \ Y\mathbf{\lambda }\ \ge \phi {{\mathbf{y}}_{o}} \\
 & \quad \quad \quad \quad \quad \ \mathbf{\lambda }\ge \mathbf{0}.\  & \quad 
\end{aligned}
```

with the following condition when assuming variable returns to scale:
```math
\sum\nolimits_{j=1}^{n}\lambda_j=1
```
In this example we compute the radial output oriented DEA model under variable returns to scale:
```@example radial
dea(X, Y, orient = :Output, rts = :VRS)
```

## Radial Model in Multiplier Form

The dual to the input oriented and output oriented radial DEA models in envelopment form presented above is the multiplier form.

This example computes the radial input-oriented DEA model in multiplier form under variable returns to scale:
```@example radial
deaiovrsm = deam(X, Y, rts = :VRS)
```

Input and output virtual multipliers (shadow prices) are returned with the `multipliers` function:
```@example radial
multipliers(deaiovrsm, :X)
```

```@example radial
multipliers(deaiovrsm, :Y)
```

The value measuring the returns to scale is returned with the `rts` function:
```@example radial
rts(deaiovrsm)
```

### dea Function Documentation

```@docs
dea
deam
```


Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top