\name{importance} \alias{importance} \encoding{utf-8} \title{Relative variable importance} \description{ Sum of \sQuote{Akaike weights} over all models including the explanatory variable. } \usage{ importance(x) } \arguments{ \item{x}{Either a list of fitted model objects, or a \code{"model.selection"} or \code{"averaging"} object. } } \value{ a numeric vector of relative importance values, named as the predictor variables. } \author{Kamil Barto\enc{ń}{n}} \seealso{ \code{\link{Weights}} \code{\link{dredge}}, \code{\link{model.avg}}, \code{\link{mod.sel}} } \examples{ # Generate some models data(Cement) fm1 <- lm(y ~ ., data = Cement) ms1 <- dredge(fm1) # Importance can be calculated/extracted from various objects: importance(ms1) \dontrun{ importance(subset(mod.sel(ms1), delta <= 4)) importance(model.avg(ms1, subset = delta <= 4)) importance(subset(ms1, delta <= 4)) importance(get.models(ms1, delta <= 4)) } # Re-evaluate the importances according to BIC # note that re-ranking involves fitting the models again # 'nobs' is not used here for backwards compatibility lognobs <- log(length(resid(fm1))) importance(subset(mod.sel(ms1, rank = AIC, rank.args = list(k = lognobs)), cumsum(weight) <= .95)) # This gives a different result than previous command, because 'subset' is # applied to the original selection table that is ranked with 'AICc' importance(model.avg(ms1, rank = AIC, rank.args = list(k = lognobs), subset = cumsum(weight) <= .95)) } \keyword{models}