\name{gexppg} \alias{dgexppg} \alias{pgexppg} \alias{qgexppg} \alias{rgexppg} \alias{mpsgexppg} \alias{qqgexppg} \title{geometric exponential Poisson G distribution} \description{Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the geometric exponential Poisson \code{G} distribution. General form for the probability density function (pdf) of the geometric exponential Poisson \code{G} distribution due to Nadarajah et al. (2013) is given by \deqn{f(x,{\Theta}) = \frac{{a(1 - b)\,g(x-\mu,\theta )\left( {1 - {e^{ - a}}} \right){e^{ - a + a\,G(x-\mu,\theta )}}}}{{{{\left( {1 - {e^{ - a}} - b + b{e^{ - a + a\,G(x-\mu,\theta )}}} \right)}^2}}},} where \eqn{\theta} is the baseline family parameter vector. Also, a>0, 0