ModifiedButterflySubdivision.h
#pragma once
// Adapted from OpenMesh
#include "SurfaceMeshModel.h"
#define get_point(x) (points[x])
/** Modified Butterfly subdivision algorithm
*
* Implementation of the modified butterfly scheme of Denis Zorin, Peter Schr—der and Wim Sweldens,
* ``Interpolating subdivision for meshes with arbitrary topology,'' in Proceedings
* of SIGGRAPH 1996, ACM SIGGRAPH, 1996, pp. 189-192.
*/
class ModifiedButterfly{
public:
typedef double real_t;
typedef Surface_mesh mesh_t;
typedef std::vector< std::vector<real_t> > weights_t;
typedef std::vector<real_t> weight_t;
public:
ModifiedButterfly()
{ init_weights(); }
public:
const char *name() const { return "Uniform Spectral"; }
/// Pre-compute weights
void init_weights(size_t _max_valence=50)
{
weights.resize(_max_valence);
//special case: K==3, K==4
weights[3].resize(4);
weights[3][0] = real_t(5.0)/12;
weights[3][1] = real_t(-1.0)/12;
weights[3][2] = real_t(-1.0)/12;
weights[3][3] = real_t(3.0)/4;
weights[4].resize(5);
weights[4][0] = real_t(3.0)/8;
weights[4][1] = 0;
weights[4][2] = real_t(-1.0)/8;
weights[4][3] = 0;
weights[4][4] = real_t(3.0)/4;
for(unsigned int K = 5; K<_max_valence; ++K)
{
weights[K].resize(K+1);
// s(j) = ( 1/4 + cos(2*pi*j/K) + 1/2 * cos(4*pi*j/K) )/K
real_t invK = 1.0/real_t(K);
real_t sum = 0;
for(unsigned int j=0; j<K; ++j)
{
weights[K][j] = (0.25 + cos(2.0*M_PI*j*invK) + 0.5*cos(4.0*M_PI*j*invK))*invK;
sum += weights[K][j];
}
weights[K][K] = (real_t)1.0 - sum;
}
}
protected:
bool prepare( mesh_t& _m )
{
points = _m.vertex_property<Point>("v:point");
vp_pos_ = _m.vertex_property<Point>("v:point2");
ep_pos_ = _m.edge_property<Point>("e:point");
return true;
}
bool cleanup( mesh_t& _m )
{
_m.remove_vertex_property(vp_pos_);
_m.remove_edge_property(ep_pos_);
return true;
}
public:
bool subdivide( Surface_mesh& _m, size_t _n )
{
prepare(_m);
///TODO:Implement fixed positions
mesh_t::Face_iterator fit, f_end;
mesh_t::Edge_iterator eit, e_end;
mesh_t::Vertex_iterator vit;
// Do _n subdivisions
for (size_t i=0; i < _n; ++i)
{
// This is an interpolating scheme, old vertices remain the same.
mesh_t::Vertex_iterator initialVerticesEnd = _m.vertices_end();
for ( vit = _m.vertices_begin(); vit != initialVerticesEnd; ++vit)
vp_pos_[vit] = get_point(vit);
// Compute position for new vertices and store them in the edge property
for (eit=_m.edges_begin(); eit != _m.edges_end(); ++eit)
compute_midpoint( _m, eit );
// Split each edge at midpoint and store precomputed positions (stored in
// edge property ep_pos_) in the vertex property vp_pos_;
// Attention! Creating new edges, hence make sure the loop ends correctly.
e_end = _m.edges_end();
for (eit=_m.edges_begin(); eit != e_end; ++eit)
split_edge(_m, eit );
// Commit changes in topology and reconstitute consistency
// Attention! Creating new faces, hence make sure the loop ends correctly.
f_end = _m.faces_end();
for (fit = _m.faces_begin(); fit != f_end; ++fit)
split_face(_m, fit );
// Commit changes in geometry
for ( vit = /*initialVerticesEnd;*/_m.vertices_begin();
vit != _m.vertices_end(); ++vit)
points[vit] = vp_pos_[vit];
}
return cleanup(_m);
}
private: // topological modifiers
void split_face(mesh_t& _m, const mesh_t::Face& _fh)
{
mesh_t::Halfedge
heh1(_m.halfedge(_fh)),
heh2(_m.next_halfedge(_m.next_halfedge(heh1))),
heh3(_m.next_halfedge(_m.next_halfedge(heh2)));
// Cutting off every corner of the 6_gon
corner_cutting( _m, heh1 );
corner_cutting( _m, heh2 );
corner_cutting( _m, heh3 );
}
void corner_cutting(mesh_t& _m, const mesh_t::Halfedge& _he)
{
// Define Halfedge Handles
mesh_t::Halfedge
heh1(_he),
heh5(heh1),
heh6(_m.next_halfedge(heh1));
// Cycle around the polygon to find correct Halfedge
for (; _m.next_halfedge(_m.next_halfedge(heh5)) != heh1;
heh5 = _m.next_halfedge(heh5)){}
mesh_t::Vertex
vh1 = _m.to_vertex(heh1),
vh2 = _m.to_vertex(heh5);
mesh_t::Halfedge
heh2(_m.next_halfedge(heh5)),
heh3(_m.new_edge( vh1, vh2)),
heh4(_m.opposite_halfedge(heh3));
/* Intermediate result
*
* *
* 5 /|\
* /_ \
* vh2> * *
* /|\3 |\
* /_ \|4 \
* *----\*----\*
* 1 ^ 6
* vh1 (adjust_outgoing halfedge!)
*/
// Old and new Face
mesh_t::Face fh_old(_m.face(heh6));
mesh_t::Face fh_new(_m.new_face());
// Re-Set Handles around old Face
_m.set_next_halfedge(heh4, heh6);
_m.set_next_halfedge(heh5, heh4);
_m.set_face(heh4, fh_old);
_m.set_face(heh5, fh_old);
_m.set_face(heh6, fh_old);
_m.set_halfedge(fh_old, heh4);
// Re-Set Handles around new Face
_m.set_next_halfedge(heh1, heh3);
_m.set_next_halfedge(heh3, heh2);
_m.set_face(heh1, fh_new);
_m.set_face(heh2, fh_new);
_m.set_face(heh3, fh_new);
_m.set_halfedge(fh_new, heh1);
}
void split_edge(mesh_t& _m, const mesh_t::Edge& _eh)
{
mesh_t::Halfedge heh = _m.halfedge(_eh, 0), opp_heh = _m.halfedge(_eh, 1);
mesh_t::Halfedge new_heh, opp_new_heh, t_heh;
mesh_t::Vertex vh;
mesh_t::Vertex vh1(_m.to_vertex(heh));
Point zero(0,0,0);
// new vertex
vh = _m.add_vertex( zero );
// memorize position, will be set later
vp_pos_[vh] = ep_pos_[_eh];
// Re-link mesh entities
if (_m.is_boundary(_eh))
{
for (t_heh = heh;
_m.next_halfedge(t_heh) != opp_heh;
t_heh = _m.opposite_halfedge(_m.next_halfedge(t_heh))){}
}
else
{
for (t_heh = _m.next_halfedge(opp_heh);
_m.next_halfedge(t_heh) != opp_heh;
t_heh = _m.next_halfedge(t_heh) ){}
}
new_heh = _m.new_edge(vh, vh1);
opp_new_heh = _m.opposite_halfedge(new_heh);
_m.set_vertex( heh, vh );
_m.set_next_halfedge(t_heh, opp_new_heh);
_m.set_next_halfedge(new_heh, _m.next_halfedge(heh));
_m.set_next_halfedge(heh, new_heh);
_m.set_next_halfedge(opp_new_heh, opp_heh);
if (_m.face(opp_heh).is_valid())
{
_m.set_face(opp_new_heh, _m.face(opp_heh));
_m.set_halfedge(_m.face(opp_new_heh), opp_new_heh);
}
_m.set_face( new_heh, _m.face(heh) );
_m.set_halfedge( vh, new_heh);
_m.set_halfedge( _m.face(heh), heh );
_m.set_halfedge( vh1, opp_new_heh );
// Never forget this, when playing with the topology
_m.adjust_outgoing_halfedge( vh );
_m.adjust_outgoing_halfedge( vh1 );
}
private: // geometry helper
void compute_midpoint(mesh_t& _m, const mesh_t::Edge& _eh)
{
mesh_t::Halfedge heh, opp_heh;
heh = _m.halfedge( _eh, 0);
opp_heh = _m.halfedge( _eh, 1);
Point pos(0,0,0);
mesh_t::Vertex a_0(_m.to_vertex(heh));
mesh_t::Vertex a_1(_m.to_vertex(opp_heh));
// boundary edge: 4-point scheme
if (_m.is_boundary(_eh) )
{
pos = get_point(a_0);
pos += get_point(a_1);
pos *= 9.0/16;
Point tpos;
if(_m.is_boundary(heh))
{
tpos = get_point(_m.to_vertex(_m.next_halfedge(heh)));
tpos += get_point(_m.to_vertex(_m.opposite_halfedge(_m.prev_halfedge(heh))));
}
else
{
assert(_m.is_boundary(opp_heh));
tpos = get_point(_m.to_vertex(_m.next_halfedge(opp_heh)));
tpos += get_point(_m.to_vertex(_m.opposite_halfedge(_m.prev_halfedge(opp_heh))));
}
tpos *= -1.0/16;
pos += tpos;
}
else
{
int valence_a_0 = _m.valence(a_0);
int valence_a_1 = _m.valence(a_1);
assert(valence_a_0>2);
assert(valence_a_1>2);
if( (valence_a_0==6 && valence_a_1==6) || (_m.is_boundary(a_0) && valence_a_1==6) || (_m.is_boundary(a_1) && valence_a_0==6) || (_m.is_boundary(a_0) && _m.is_boundary(a_1)) )// use 8-point scheme
{
real_t alpha = real_t(1.0/2);
real_t beta = real_t(1.0/8);
real_t gamma = real_t(-1.0/16);
//get points
mesh_t::Vertex b_0, b_1, c_0, c_1, c_2, c_3;
mesh_t::Halfedge t_he;
t_he = _m.next_halfedge(_m.opposite_halfedge(heh));
b_0 = _m.to_vertex(t_he);
if(!_m.is_boundary(_m.opposite_halfedge(t_he)))
{
t_he = _m.next_halfedge(_m.opposite_halfedge(t_he));
c_0 = _m.to_vertex(t_he);
}
t_he = _m.opposite_halfedge(_m.prev_halfedge(heh));
b_1 = _m.to_vertex(t_he);
if(!_m.is_boundary(t_he))
{
t_he = _m.opposite_halfedge(_m.prev_halfedge(t_he));
c_1 = _m.to_vertex(t_he);
}
t_he = _m.next_halfedge(_m.opposite_halfedge(opp_heh));
assert(b_1.idx()==_m.to_vertex(t_he).idx());
if(!_m.is_boundary(_m.opposite_halfedge(t_he)))
{
t_he = _m.next_halfedge(_m.opposite_halfedge(t_he));
c_2 = _m.to_vertex(t_he);
}
t_he = _m.opposite_halfedge(_m.prev_halfedge(opp_heh));
assert(b_0==_m.to_vertex(t_he));
if(!_m.is_boundary(t_he))
{
t_he = _m.opposite_halfedge(_m.prev_halfedge(t_he));
c_3 = _m.to_vertex(t_he);
}
//compute position.
//a0,a1,b0,b1 must exist.
assert(a_0.is_valid());
assert(a_1.is_valid());
assert(b_0.is_valid());
assert(b_1.is_valid());
//The other vertices may be created from symmetry is they are on the other side of the boundary.
pos = get_point(a_0);
pos += get_point(a_1);
pos *= alpha;
Point tpos ( get_point(b_0) );
tpos += get_point(b_1);
tpos *= beta;
pos += tpos;
Point pc_0, pc_1, pc_2, pc_3;
if(c_0.is_valid())
pc_0 = get_point(c_0);
else //create the point by symmetry
{
pc_0 = get_point(a_1) + get_point(b_0) - get_point(a_0);
}
if(c_1.is_valid())
pc_1 = get_point(c_1);
else //create the point by symmetry
{
pc_1 = get_point(a_1) + get_point(b_1) - get_point(a_0);
}
if(c_2.is_valid())
pc_2 = get_point(c_2);
else //create the point by symmetry
{
pc_2 = get_point(a_0) + get_point(b_1) - get_point(a_1);
}
if(c_3.is_valid())
pc_3 = get_point(c_3);
else //create the point by symmetry
{
pc_3 = get_point(a_0) + get_point(b_0) - get_point(a_1);
}
tpos = pc_0;
tpos += pc_1;
tpos += pc_2;
tpos += pc_3;
tpos *= gamma;
pos += tpos;
}
else //at least one endpoint is [irregular and not in boundary]
{
double normFactor = 0.0;
if(valence_a_0!=6 && !_m.is_boundary(a_0))
{
assert((int)weights[valence_a_0].size()==valence_a_0+1);
mesh_t::Halfedge t_he = opp_heh;
for(int i = 0; i < valence_a_0 ; t_he=_m.next_halfedge(_m.opposite_halfedge(t_he)), ++i)
{
pos += weights[valence_a_0][i] * get_point(_m.to_vertex(t_he));
}
assert(t_he==opp_heh);
//add irregular vertex:
pos += weights[valence_a_0][valence_a_0] * get_point(a_0);
++normFactor;
}
if(valence_a_1!=6 && !_m.is_boundary(a_1))
{
assert((int)weights[valence_a_1].size()==valence_a_1+1);
mesh_t::Halfedge t_he = heh;
for(int i = 0; i < valence_a_1 ; t_he=_m.next_halfedge(_m.opposite_halfedge(t_he)), ++i)
{
pos += weights[valence_a_1][i] * get_point(_m.to_vertex(t_he));
}
assert(t_he==heh);
//add irregular vertex:
pos += weights[valence_a_1][valence_a_1] * get_point(a_1);
++normFactor;
}
assert(normFactor>0.1); //normFactor should be 1 or 2
//if both vertices are irregular, average positions:
pos /= normFactor;
}
}
ep_pos_ [_eh] = pos;
}
private: // data
Surface_mesh::Vertex_property<Point> vp_pos_;
Surface_mesh::Edge_property<Point> ep_pos_;
Surface_mesh::Vertex_property<Point> points;
weights_t weights;
};