
Determinant maximisation algorithm for the configuration

model for correlation matrices

Sadamori Kojaku and Naoki Masuda

Department of Engineering Mathematics,

Merchant Venturers Building, University of Bristol,

Woodland Road, Clifton, Bristol BS8 1UB, United Kingdom

I. DETERMINANT MAXIMISATION ALGORITHM

Consider an N ×N covariance matrix, denoted by Σ, of the following form:

Σ = 1
L
XX>, (1)

where X = (xij) is an N × L real matrix and > represents the transposition. One can

interpret the ith row of X, i.e., [xi1, xi2, . . . , xiL], as the ith time series of length L in

discrete time. Alternatively, xij may be the ith feature observed for the jth item. Given an

input covariance matrix Σorg, we aim to find the probability distribution of X, denoted by

P (X), which defines a probability distribution of covariance matrix Σcon through Eq. (1),

such that the entropy

−
∫
P (X) lnP (X)dX (2)

is maximised under constraints. We impose that the generated covariance matrix Σcon

preserves the expectation of the diagonal elements of Σorg, i.e.,

∫
Σcon

ii P (X)dX = Σorg
ii (1 ≤ i ≤ N), (3)

and the expectation of the row sum (equivalently, the column sum) of the off-diagonal

elements of Σorg, i.e.,

N∑
j=1;j 6=i

∫
Σcon

ij P (X)dX =
N∑

j=1;j 6=i

Σorg
ij (1 ≤ i ≤ N). (4)

In Ref. [1], we showed that the maximum-entropy distribution of X takes form

P (X) =
L∏

l=1

1√
(2π)N |Σ|

exp
[
−1

2x
>
` Σ−1x`

]
, (5)

2

where x` is the `th column of matrix X, i.e., x` = [x1`, x2`, . . . , xN`]>. Substituting Eq. (6)

into Eq. (2) yields

−
∫
P (X) lnP (X)dX =

L∑
`=1

[∫ (1
2x

T
` Σ−1x`

)
P (X)dX +

∫
ln
(√

(2π)N |Σ|
)
P (X)dX

]

=
L∑

`=1

[∫
Tr
(1

2Σ−1xT
` x`

)
P (X)dX + ln

(√
(2π)N |Σ|

) ∫
P (X)dX

]

=
L∑

`=1

[
Tr
(1

2Σ−1Σ
)

+ N

2 ln(2π) + 1
2 ln |Σ|

]

= NL

2 + NL

2 ln(2π) + L

2 ln |Σ|. (6)

The first and the second terms on the right-hand side of Eq. (6) are constant. Therefore,

one can transform the maximisation of Eq. (2) subject to Eqs. (3) and (4) into the following

determinant maximisation problem:

max
Σ

ln |Σ|, (7)

subject to constraints

Σii = Σorg
ii (1 ≤ i ≤ N), (8)

N∑
j=1;j 6=i

Σij =
N∑

j=1;j 6=i

Σorg
ij (1 ≤ i ≤ N), (9)

where we have used the relationship
∫

ΣijP (X)dX = Σij to rewrite the constraints. In

Ref. [1], we found that Σ has a specific form as parameterised in Eq. (7) in Ref. [1]

and numerically solved for the parameters αi and βi (1 ≤ i ≤ N) by a steepest descent

algorithm (Eqs. (11) and (12) in Ref. [1]). In contrast, here we do not use the parameterised

Σ.

The objective function, ln |Σ|, is a concave function with respect to Σ [2]. The feasible

region (i.e., set of Σ satisfying the constraints) is a convex set because it is the intersection

of the set of positive semidefinite matrices and hyperplanes. Therefore, this determinant

maximisation problem is a convex optimisation problem, in which one can efficiently

find the global optimum using a numerical solver. We refer to the algorithm that solves

the maximisation problem as the DMCC algorithm (DMCC stands for the Determinant

Maximisation algorithm for the Configuration model for Correlation marices).

II. COMPUTATION TIME

We compare the CPU time of the original algorithm [1] and the DMCC algorithm.

We implemented the original algorithm in MATLAB and Python. We implemented the

3

TABLE I: Average CPU time of the different algorithms on the five empirical correlation

matrices.

Data N

Average CPU Time (s)

Original Original DMCC

(MATLAB) (Python) (Python)

Motivation 30 11 33 13

fMRI1 264 29, 391 14, 889 858

fMRI2 264 36, 990 18, 482 800

Japan 264 26, 183 13, 368 1, 644

US 325 56, 359 27, 332 2, 919

DMCC algorithm in Python, in which we solved the determinant maximisation problem

using a splitting conic solver [3]. All the codes are on GitHub [4]. We applied the three

different algorithms to the empirical correlation matrices used in Ref. [1]. We used Intel

Xeon E5-2680 v4 processor with 28 logical cores and 4GB memory. The implemented

algorithms use some cores in parallel. We compute the CPU time of each algorithm as the

sum of the CPU time over all cores. The different algorithms and runs found the same

optimal solution up to the numerical error. For each data, we run each algorithm 30 times.

Then, we averaged the CPU time over 30 runs.

Table I shows the average CPU time of the different algorithms. For all data except

Motivation, the Python implementation of the original algorithm took less CPU time than

its MATLAB counterpart. The DMCC algorithm required by far the least CPU time

for all data except Motivation. It consumed approximately between 4% and 40% of the

CPU time of the Python implementation of the original algorithm. In addition, unlike the

original algorithm, the DMCC algorithm does not require a learning rate parameter (ε in

Eqs. (11) and (12) in Ref. [1]) that needs some tuning.

[1] N. Masuda, S. Kojaku, and Y. Sano, Phys. Rev. E 98, 012312 (2018).

[2] L. Vandenberghe, S. Boyd, and S. Wu, SIAM J. Mat. Anal. Appl. 19, 499 (1998).

[3] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, J. Opt. Theo. Appl. 169, 1042 (2016).

[4] MATLAB and Python codes. Available at https://github.com/naokimas/config_corr/.

	Determinant maximisation algorithm for the configuration model for correlation matrices
	Determinant maximisation algorithm
	Computation time
	References

