Example of using R functions related to emplik (empirical likelihood) package

```
Example 1. Find the upper and lower confidence limit of
    a Wilks confidence interval related to the Kaplan-Meier estimator
    We can use the function el.cen.EM from the emplik package to
accomplish this.
    In fact el.cen.EM is designed to test the hypothesis (via likelihood
ratio test)
```

 Ho: \int \(g(t) d F(t)=m u ; \quad\) vs. Ha: \int \(g(t) d F(t) \quad!=\)
 mu
where $g(t)$ is a user supplied function. Depending on the $g(t)$ we
supply,
this hypothesis can be the test about the Kaplan-Meier mean [when g
(t) $=t$],
or about the survival probability at time to [when $g(t)=I[t<=t 0]$
]
or many others.
Let us see a real example: we use the myeloma data set that comes
with emplik package
data (myeloma)
survtimes <- myeloma[,1]
censtatus <- myeloma[,2]
We shall test and construct confidence interval for $F(10)$, so
define
myfun1 <- function(t) \{ as.numeric(t <= 10) \}
Now a test based on the empirical likelihood ratio for Ho: F
$(10)=0.2$
el.cen.EM(fun=myfun1, $x=s u r v t i m e s, d=c e n s t a t u s, ~ m u=0.2)$
among the output, you see a Pval (that is the P-value) of 0.3103897
so the conlusion is "not to reject the null hypothesis of $\mathrm{F}(10)=0.2$ ".
If you want the (NPMLE) estimate of $F(10)$, look in the output for
"funMLE"
You will see a MLE of 0.2526136 (this is just the Kaplan-Meier at $t=$
10)

There is another function el.cen.EM2 in the emplik package which is very similar. The function el.cen.EM is designed for a single parameter, and el.cen.EM2 can handle multiple parameters.
el.cen.EM may be a bit faster, while el.cen.EM2 may be a bit more

```
robust.
    For the subtle differences, please see the help pages in R.
    Now we can further find the 95% confidence interval for F(10). For
this purpose
    we need to define a function that just returns the - 2LLR. The first
input of this
    function must be the value to be tested.
myloglikR1 <- function(mu0, x, d) {
    myfun1 <- function(t) {as.numeric(t<=10)}
    el.cen.EM(fun=myfun1, x=x, d=d, mu=mu0) $"-2LLR"
}
    The real search for the lower(upper) confidence bound is done by
the
    function findL (findU)
findL(fun=myloglikR1, MLE=0.25, x=survtimes, d=censtatus)
[1] 0.1566809230 0.0000000001 3.8399999183
findU(fun=myloglikR1, MLE=0.25, x=survtimes, d=censtatus)
[1] 0.3684037790 0.0000000001 3.8399999664
    There are 3 output values, the first one is the lower(upper)
confidence bound,
    the second/third is the final step value and the final -2LLR value.
So the 95%
    confidence interval for F(10) is [0.156680923, 0.368403779]
            If you want the 90% confidence interval instead, do this
findL(fun=myloglikR1, MLE=0.25, x=survtimes, d=censtatus, level=
2.705543)
findU(fun=myloglikR1, MLE=0.25, x=survtimes, d=censtatus, level=
2.705543)
```

Finally, the functions findL and findU is here: (not inside the emplik package yet)

```
findU <- function(step=0.1, initStep=0, fun, MLE=0, level=3.84, ...) {
value <- 0
Ubeta <- MLE + initStep
for( i in 1:8 ) {
    while(value < level) {
        Ubeta <- Ubeta + step
        value <- fun(Ubeta, ... )
    }
    Ubeta <- Ubeta - step
```

```
    step <- step/10
    value <- fun(Ubeta, ... )
}
return( c(Ubeta, step, value) )
}
> findL
function(step=0.1, initStep=0, fun, MLE=0, level=3.84, ...) {
#### This function try to find the 1 dim confidence interval
#### (the lower confidence limit only)
#### the fun should be the -2loglik function with 1 parameter
#### (the other parameters needs to be maxed over)
#### The initStep is provided to save some initial steps, i.e. if you
know
#### approximate where the confidence bound is, (how far it is from the
MLE)
#### then you can start search from there, instead of starting from MLE.
#### You should always use a lower bound for the initStep (a
conservative value)
#### as the search is from inside the confidence interval outwards.
value <- 0
Lbeta <- MLE - initStep
for(i in 1:8 ) {
while(value < level) {
Lbeta <- Lbeta - step
value <- fun(Lbeta, ... )
}
Lbeta <- Lbeta + step
step <- step/10
value <- fun(Lbeta, ... )
}
return( c(Lbeta, step, value) )
}
```

In the above example, the Wald confidence interval can at least be computed
easily, with the Greenwood formula to estimate the variance. The next
example
then is almost impossible to get a wald confidence interval. But the
Wilks
confidence interval is as easy as in example one.
Example 2. Find the upper and lower confidence limit of the residual
median, where
the estimator is based on the Kaplan-Meier estimator.
[residual median? or median residual?]
First the definition: The residual median at a given time to is the
number

```
"theta" that solve the equation
1-F(t0 + theta )
The estimator of theta can be obtained by (a) replace F by the Kaplan-
Meier
in the above and (b) solve for theta.
Notice the variance of the estimator of theta is very complicated, and
even
if you get a theoretical expression for it, it is of not much use, due
to the
fact that it involves density function, a quantity hard to estimate.
To use the Wilks method, we shall re-cast the problem into a testing
hypothesis
problem.
    Notice that a theta solves the above equation iff it solves
    \int g_{theta} (t) dF(t) = 0.5
    where g_{theta} (t) = I[t <= t0+theta] - 0.5*I[t <= t0]
    (simple algebraic manipulations)
and recall this hypothesis can be handled by the el.cen.EM function.
R-code:
library(survival)
data(cancer)
library(emplik)
cancertimes <- cancer$time
cancerstatus <- cancer$status -1
This estimates the median and mean residual time at
t0=365.25 days
MMRtime(x=cancertimes, d=cancerstatus, age=365.25)
$MeanResidual
[1] 275.9997
$MedianResidual
[1] 258.75
    Now the test that theta = 258
mygfun22 <- function(s, age, Mdage) {as.numeric(s<=(age+Mdage))-0.5
*as.numeric(s<=age)}
```

```
el.cen.EM(x=cancertimes, d=cancerstatus, fun=mygfun22, mu=0.5, age=
365.25, Mdage=258)$"-2LLR"
    If we are lazy, we can just repeat the last line but
change 258 to
                    something else, until you get "-2LLR" as close to as
possible (but not
                            exceed 3.84) to find the 95% confidence interval. Or do it
automatically
                    as follows.
    To find the upper and lower confidence limit by
findL/findU, we
    need to write a function that returns the "-2LLR" and the
first
    input variable is the value to be tested.
myloglikR2 <- function(mu0, x, d) {
    mygfun22 <- function(s, age=365.25, Mdage=mu0) {as.numeric(s<=
(age+Mdage))-0.5*as.numeric(s<=age)}
    el.cen.EM(x=x, d=d, fun=mygfun22, mu=0.5)$"-2LLR"
}
    Finally, we may do this (but it took too long...slow search
algorithm
    the default search step is too small.)
    takes too long: findL(fun=myloglikR2, MLE=258, x=time, d=status,
level=2.705543)
    Better to do this (with bigger steps, search is a bit faster)
findL(step=5,fun=myloglikR2, MLE=258, x=time, d=status, level=2.705543)
[1] 184.75000000 0.00000005 2.50369332
findU(step=5,fun=myloglikR2, MLE=258, x=time, d=status, level=2.705543)
[1] 321.75000000 0.00000005 2.42779336
    So, The 90% confidence interval is [ 184.750, 321.750 ].
    If the step is too large, the hypothesis to be tested may be out
of
    the range for el.cen.EM to handle and may stop computing or too
slow.
            (here use el.cen.EM2 may be more robust)
    Notice the final level reached is 2.503 or 2.427 and somewhat away
from 2.7055.
    THis is normal, since this is a discrete case when testing the
median.
    (or any quantiles)
```

Example 3:

The folowing is another example of how the code findL and findU works with parametric MLE: (the parametric regression of survreg() and getting the confidence interval for the slope in the regression)

```
> findL(fun=loglikfun, MLE=-1.255066, y=myel$dur, d=myel$status, x1=myel
$treat, x2=myel$renal)
[1] -2.7499611050 0.0000000001 3.8399999981
So, the lower 95% confidence bound is -2.74996
```

The two functions involved: findL is general (as above), loglikfun is
data specific.
The MLE value can be obtained by first run a survreg, and getting the
estimate,
it is not critical, any value near -1.255 will work.
> loglikfun
function(beta, $y, d, x 1, x 2)$ \{
loglikmax <- survreg(Surv(y,d)~ x1 + x2) \$loglik[2]
loglikH0 <- survreg(Surv(y,d)~ offset (beta*x1)+ x2) \$loglik[2]
return ($-2 *(\log l i k H 0-\operatorname{loglikmax}) ~)$
\}
Assumeing of course the data frame myel is already loaded there.

```
    Now getting the interval for both regression slopes:
> findU(fun=loglikfun2, MLE=-4.18, level=2.7, y=myel$dur, d=myel$status,
x1=myel$treat, x2=myel$renal)
[1] -3.1652483440 0.0000000001 2.6999999991
> findL(fun=loglikfun2, MLE=-4.18, level=2.7, y=myel$dur, d=myel$status,
x1=myel$treat, x2=myel$renal)
[1] -5.2571687790 0.0000000001 2.6999999965
>
> findU(fun=loglikfun, MLE=-1.2, level=2.7, y=myel$dur, d=myel$status,
x1=myel$treat, x2=myel$renal)
[1] -0.2800085190 0.0000000001 2.6999999965
> findL(fun=loglikfun, MLE=-1.2, level=2.7, y=myel$dur, d=myel$status,
```

```
x1=myel$treat, x2=myel$renal)
[1] -2.4572724310 0.0000000001 2.6999999991
>
> loglikfun
function(beta0, y, d, x1, x2) {
loglikmax <- survreg(Surv(y,d)~ x1 + x2)$loglik[2]
loglikH0 <- survreg(Surv(y,d)~ offset(beta0*x1)+ x2)$loglik[2]
return( -2*(loglikH0 - loglikmax) )
}
>
> loglikfun2
function(beta0, y, d, x1, x2) {
loglikmax <- survreg(Surv(y,d)~ x1 + x2)$loglik[2]
loglikH0 <- survreg(Surv(y,d)~ x1 + offset(beta0*x2))$loglik[2]
return( -2*(loglikH0 - loglikmax) )
}
>
```


Example 4. Test the equality of two medians with right censored data.
The emplik package contains a function ROCnp() that can be used to test
the equality of two medians from two independent samples.
library (survival)
times1 <- cancer\$time[cancer\$sex==1]
status1 <- cancer\$status[cancer\$sex==1] -1
times2 <- cancer\$time[cancer\$sex==2]
status2 <- cancer\$status[cancer\$sex==2] -1
ROCnp (t1=times1, d1=status1, t2=times2, d2=status2, b0=0.5, t0=0.5)
\$`-2LLR`
[1] 11.02725
\$cstar
[1] 312.105
which lead us to reject the null hypothesis of equal median ($-2 L L R$
larger than 3.84)
If we want to construct a confidence interval for the RATIO of the
two medians, we need to work harder. (no existing code) But the idea is
similar:
Let us test the hypothesis that $\mathrm{m} 1 / \mathrm{m} 2=0.6$ where m 1 is the median
for male

```
and m2 is the median for female. This is same as testing
    m1 = 0.6*m2 = a for some a, or m1=a, 0.6*m2=a; or m1=a, m2=a/0.6
.
We shall modify the code of ROCnp to accomplish this.
myROCnp(t1, d1, t2, d2, b0=0.5, t0=0.5)
> myROCnp
function (t1, d1, t2, d2, b0, t0)
{
    if (length(b0) != 1)
        stop("check length of b0")
    if (length(t0) != 1)
        stop("check length of t0")
    if (b0 >= 1 | b0 <= 0)
        stop("check the value of bo")
    if (t0 >= 1 | to <= 0)
        stop("check the value of t0")
    tempnp2 <- WKM(x = t2, d = d2)
    place2 <- sum(tempnp2$surv >= t0)
    c2 <- tempnp2$times[place2]
    tempnp1 <- WKM(x = t1, d = d1)
    place1 <- sum(tempnp1$surv > b0)
    c1 <- tempnp1$times[place1]
    if (c2 <= c1)
    c1 <- tempnp1$times[place1 + 1]
    llr <- function(const, t1, d1, t2, d2, b0, t0) {
    npllik1 <- el.cen.EM2(x = t1, d = d1, fun = function(x,
                theta) {
                as.numeric(x <= theta)
            }, mu = 1 - b0, theta = const)$"-2LLR"
            npllik2 <- el.cen.EM2(x = t2, d = d2, fun = function(x,
                theta) {
                as.numeric(x <= theta/0.6) #### here is the
ratio
            }, mu = 1 - t0, theta = const)$"-2LLR"
            return(npllik1 + npllik2)
    }
    temp <- optimize(f = llr, lower = min(c2, c1), upper = max(c2,
            c1), t1 = t1, d1 = d1, t2 = t2, d2 = d2, b0 = b0, t0 = t0)
    cstar <- temp$minimum
    val <- temp$objective
    list(`-2LLR` = val, cstar = cstar)
}
Due to the discreteness of median, the optimize( ) function may not always
find the min. An exhaust search can be done: [slower but always find the min]
```

```
ROCnp2 <- function (t1, d1, t2, d2, b0, t0)
{
    if (length(b0) != 1)
        stop("check length of b0")
    if (length(t0) != 1)
        stop("check length of t0")
    if (b0 >= 1 | b0 <= 0)
        stop("check the value of b0")
    if (t0 >= 1 | t0 <= 0)
    stop("check the value of t0")
    tempnp2 <- WKM(x = t2, d = d2)
    place2 <- sum(tempnp2$surv >= t0)
    c2 <- tempnp2$times[place2]
    tempnp1 <- WKM(x = t1, d = d1)
    place1 <- sum(tempnp1$surv > b0)
    c1 <- tempnp1$times[place1]
    if (c2 <= c1)
        {c1 <- tempnp1$times[place1 + 2]
        c2 <- tempnp2$times[place2 - 1] }
    llr <- function(const, t1, d1, t2, d2, b0, t0) {
        npllik1 <- el.cen.EM(x = t1, d = d1, fun = function(x,
                theta) {
                as.numeric(x <= theta)
            }, mu = 1 - b0, theta = const)$"-2LLR"
            npllik2 <- el.cen.EM(x = t2, d = d2, fun = function(x,
                theta) {
                as.numeric(x <= theta)
            }, mu = 1 - to, theta = const)$"-2LLR"
            return(npllik1 + npllik2)
    }
    lower <- min(c1, c2)
    upper <- max(c1, c2)
    timesALL <- c(tempnp2$times, tempnp1$times)
    midpts <- timesALL[(timesALL>lower) & (timesALL<upper)]
    midpts <- sort(midpts)
    midpts <- (midpts[-1] + midpts[-length(midpts)])/2
    k <- length(midpts)
    val2 <- rep(-9, k)
    for(i in 1:k) val2[i] <- llr(const=midpts[i], t1=t1, d1=d1, t2=t2,
d2=d2, b 0=b0, t0=t0)
    val <- min(val2)
    cstar <- midpts[ which(val2==val) ]
    list(`-2LLR` = val, cstar = cstar)
}
```

A similar but easier problem: test the equality of the survival
probabilities
at a given time t0; based on two independent samples.
The problem is cont. and well behaved. The minimum is easy to find.
Since the code is similar to RoCnp, I call it RoCnp3 [lack of a better

```
name??]
```

```
ROCnp3 <- function (t1, d1, t2, d2, t0)
{
    tempnp2 <- WKM(x = t2, d = d2)
    place2 <- sum(tempnp2$times <= t0)
    c2 <- tempnp2$surv[place2]
    tempnp1 <- WKM(x = t1, d = d1)
    place1 <- sum(tempnp1$times <= t0)
    c1 <- tempnp1$surv[place1]
    llr <- function(const, t1, d1, t2, d2, t0) {
        npllik1 <- el.cen.EM(x = t1, d = d1, fun = function(x) {
                as.numeric(x <= t0)
            }, mu = const)$"-2LLR"
                npllik2 <- el.cen.EM(x = t2, d = d2, fun = function(x) {
                    as.numeric(x <= t0)
                }, mu = const)$"-2LLR"
                return(npllik1 + npllik2)
            }
            lower <- min(1-c1, 1-c2)
            upper <- max(1-c1, 1-c2)
    temp <- optimize(f=llr, lower=lower, upper=upper, t1=t1, d1=d1, t2=t2,
d2=d2, t0=t0)
    cstar <- temp$minimum
    val <- temp$objective
        list(`-2LLR` = val, cstar = cstar, Prob1=1-c1, Prob2=1-c2)
}
```

The code runs like this: first I assume we took the cancer data set from
package survival. take the male and female as two samples. The resulting
-2LLR should be compared to chisq($d f=1$) so we reject the Ho of equal prob
at $t 0=200$ days
> ROCnp3(t1=times1, d1=status1, t2=times2, d2=status2, t0=200) \$`-2LLR`
[1] 8.913334
\$cstar
[1] 0.3200662
\$Prob1
[1] 0.3926928
\$Prob2
[1] 0.2054065

Some thoughts when testing the ratio of two probabilities or medians.

```
If the actual ratio is further away from 1 then the value being tested
(as in Ho), then we may search within the two prob/medians.
Since we have to push the two together to make them equal or having the
ratio stipulated in Ho.
( i.e. if the two MLE's has ratio 0.5, and we are testing if the ratio
is equal to 0.6 Or if the two MLE's has ratio 1.4 and we are testing Ho
ratio = 1.2)
We know where to search the common value.
When the value tested (in Ho) is further away from 1 compared to the
ratio of MLE's, then we must search out side the interval formed by
two MLE's. How much outside, will depends on the actual value to be
tested.
If we are testing ratio equal to 2, then we should search from
value a and value b, where a = larger of MLE/2, b= smaller of MLE x2.
etc.
A final note: When define median, it may be better to use a "smoothed"
indicator
function.
Due to discreteness nature of the Kaplan-Meier estimator. The median
may be non-unique. (even after the smoothing)
Here is the indicator function and 2 smoothed version of it.
myfun6 <- function(x, theta) {as.numeric(x <= theta)}
myfun7 <- function(x, theta=0, eps=0.2) {
if(eps <= 0) stop("eps must > 0")
u <- (x-theta)/eps
return( pmax(0, pmin(1-u, 1)) )
}
myfun5 <- function(x, theta=0, eps=0.1) {
if(eps <= 0) stop("eps must > 0")
u <- (x-theta)*sqrt(5)/eps
INDE <- (u < sqrt(5)) & (u > -sqrt(5))
u[u >= sqrt(5)] <- 0
u[u <= -sqrt(5)] <- 1
y <- 0.5 - (u - (u)^3/15)*3/(4*sqrt(5))
u[ INDE ] <- y[ INDE ]
return(u)
}
```

