Raw File
MachineRegisterInfo.cpp
//===-- lib/Codegen/MachineRegisterInfo.cpp -------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MachineRegisterInfo class.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;

MachineRegisterInfo::MachineRegisterInfo(const TargetRegisterInfo &TRI)
  : TRI(&TRI), IsSSA(true), TracksLiveness(true) {
  VRegInfo.reserve(256);
  RegAllocHints.reserve(256);
  UsedPhysRegs.resize(TRI.getNumRegs());
  UsedPhysRegMask.resize(TRI.getNumRegs());

  // Create the physreg use/def lists.
  PhysRegUseDefLists = new MachineOperand*[TRI.getNumRegs()];
  memset(PhysRegUseDefLists, 0, sizeof(MachineOperand*)*TRI.getNumRegs());
}

MachineRegisterInfo::~MachineRegisterInfo() {
#ifndef NDEBUG
  clearVirtRegs();
  for (unsigned i = 0, e = UsedPhysRegs.size(); i != e; ++i)
    assert(!PhysRegUseDefLists[i] &&
           "PhysRegUseDefLists has entries after all instructions are deleted");
#endif
  delete [] PhysRegUseDefLists;
}

/// setRegClass - Set the register class of the specified virtual register.
///
void
MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) {
  VRegInfo[Reg].first = RC;
}

const TargetRegisterClass *
MachineRegisterInfo::constrainRegClass(unsigned Reg,
                                       const TargetRegisterClass *RC,
                                       unsigned MinNumRegs) {
  const TargetRegisterClass *OldRC = getRegClass(Reg);
  if (OldRC == RC)
    return RC;
  const TargetRegisterClass *NewRC = TRI->getCommonSubClass(OldRC, RC);
  if (!NewRC || NewRC == OldRC)
    return NewRC;
  if (NewRC->getNumRegs() < MinNumRegs)
    return 0;
  setRegClass(Reg, NewRC);
  return NewRC;
}

bool
MachineRegisterInfo::recomputeRegClass(unsigned Reg, const TargetMachine &TM) {
  const TargetInstrInfo *TII = TM.getInstrInfo();
  const TargetRegisterClass *OldRC = getRegClass(Reg);
  const TargetRegisterClass *NewRC = TRI->getLargestLegalSuperClass(OldRC);

  // Stop early if there is no room to grow.
  if (NewRC == OldRC)
    return false;

  // Accumulate constraints from all uses.
  for (reg_nodbg_iterator I = reg_nodbg_begin(Reg), E = reg_nodbg_end(); I != E;
       ++I) {
    const TargetRegisterClass *OpRC =
      I->getRegClassConstraint(I.getOperandNo(), TII, TRI);
    if (unsigned SubIdx = I.getOperand().getSubReg()) {
      if (OpRC)
        NewRC = TRI->getMatchingSuperRegClass(NewRC, OpRC, SubIdx);
      else
        NewRC = TRI->getSubClassWithSubReg(NewRC, SubIdx);
    } else if (OpRC)
      NewRC = TRI->getCommonSubClass(NewRC, OpRC);
    if (!NewRC || NewRC == OldRC)
      return false;
  }
  setRegClass(Reg, NewRC);
  return true;
}

/// createVirtualRegister - Create and return a new virtual register in the
/// function with the specified register class.
///
unsigned
MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){
  assert(RegClass && "Cannot create register without RegClass!");
  assert(RegClass->isAllocatable() &&
         "Virtual register RegClass must be allocatable.");

  // New virtual register number.
  unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs());

  // Add a reg, but keep track of whether the vector reallocated or not.
  const unsigned FirstVirtReg = TargetRegisterInfo::index2VirtReg(0);
  void *ArrayBase = getNumVirtRegs() == 0 ? 0 : &VRegInfo[FirstVirtReg];
  VRegInfo.grow(Reg);
  VRegInfo[Reg].first = RegClass;
  RegAllocHints.grow(Reg);

  if (ArrayBase && &VRegInfo[FirstVirtReg] != ArrayBase)
    // The vector reallocated, handle this now.
    HandleVRegListReallocation();
  return Reg;
}

/// clearVirtRegs - Remove all virtual registers (after physreg assignment).
void MachineRegisterInfo::clearVirtRegs() {
#ifndef NDEBUG
  for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i)
    assert(VRegInfo[TargetRegisterInfo::index2VirtReg(i)].second == 0 &&
           "Vreg use list non-empty still?");
#endif
  VRegInfo.clear();
}

/// HandleVRegListReallocation - We just added a virtual register to the
/// VRegInfo info list and it reallocated.  Update the use/def lists info
/// pointers.
void MachineRegisterInfo::HandleVRegListReallocation() {
  // The back pointers for the vreg lists point into the previous vector.
  // Update them to point to their correct slots.
  for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    MachineOperand *List = VRegInfo[Reg].second;
    if (!List) continue;
    // Update the back-pointer to be accurate once more.
    List->Contents.Reg.Prev = &VRegInfo[Reg].second;
  }
}

/// replaceRegWith - Replace all instances of FromReg with ToReg in the
/// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
/// except that it also changes any definitions of the register as well.
void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) {
  assert(FromReg != ToReg && "Cannot replace a reg with itself");

  // TODO: This could be more efficient by bulk changing the operands.
  for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) {
    MachineOperand &O = I.getOperand();
    ++I;
    O.setReg(ToReg);
  }
}


/// getVRegDef - Return the machine instr that defines the specified virtual
/// register or null if none is found.  This assumes that the code is in SSA
/// form, so there should only be one definition.
MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const {
  // Since we are in SSA form, we can use the first definition.
  def_iterator I = def_begin(Reg);
  return !I.atEnd() ? &*I : 0;
}

bool MachineRegisterInfo::hasOneUse(unsigned RegNo) const {
  use_iterator UI = use_begin(RegNo);
  if (UI == use_end())
    return false;
  return ++UI == use_end();
}

bool MachineRegisterInfo::hasOneNonDBGUse(unsigned RegNo) const {
  use_nodbg_iterator UI = use_nodbg_begin(RegNo);
  if (UI == use_nodbg_end())
    return false;
  return ++UI == use_nodbg_end();
}

/// clearKillFlags - Iterate over all the uses of the given register and
/// clear the kill flag from the MachineOperand. This function is used by
/// optimization passes which extend register lifetimes and need only
/// preserve conservative kill flag information.
void MachineRegisterInfo::clearKillFlags(unsigned Reg) const {
  for (use_iterator UI = use_begin(Reg), UE = use_end(); UI != UE; ++UI)
    UI.getOperand().setIsKill(false);
}

bool MachineRegisterInfo::isLiveIn(unsigned Reg) const {
  for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
    if (I->first == Reg || I->second == Reg)
      return true;
  return false;
}

bool MachineRegisterInfo::isLiveOut(unsigned Reg) const {
  for (liveout_iterator I = liveout_begin(), E = liveout_end(); I != E; ++I)
    if (*I == Reg)
      return true;
  return false;
}

/// getLiveInPhysReg - If VReg is a live-in virtual register, return the
/// corresponding live-in physical register.
unsigned MachineRegisterInfo::getLiveInPhysReg(unsigned VReg) const {
  for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
    if (I->second == VReg)
      return I->first;
  return 0;
}

/// getLiveInVirtReg - If PReg is a live-in physical register, return the
/// corresponding live-in physical register.
unsigned MachineRegisterInfo::getLiveInVirtReg(unsigned PReg) const {
  for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
    if (I->first == PReg)
      return I->second;
  return 0;
}

/// EmitLiveInCopies - Emit copies to initialize livein virtual registers
/// into the given entry block.
void
MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB,
                                      const TargetRegisterInfo &TRI,
                                      const TargetInstrInfo &TII) {
  // Emit the copies into the top of the block.
  for (unsigned i = 0, e = LiveIns.size(); i != e; ++i)
    if (LiveIns[i].second) {
      if (use_empty(LiveIns[i].second)) {
        // The livein has no uses. Drop it.
        //
        // It would be preferable to have isel avoid creating live-in
        // records for unused arguments in the first place, but it's
        // complicated by the debug info code for arguments.
        LiveIns.erase(LiveIns.begin() + i);
        --i; --e;
      } else {
        // Emit a copy.
        BuildMI(*EntryMBB, EntryMBB->begin(), DebugLoc(),
                TII.get(TargetOpcode::COPY), LiveIns[i].second)
          .addReg(LiveIns[i].first);

        // Add the register to the entry block live-in set.
        EntryMBB->addLiveIn(LiveIns[i].first);
      }
    } else {
      // Add the register to the entry block live-in set.
      EntryMBB->addLiveIn(LiveIns[i].first);
    }
}

#ifndef NDEBUG
void MachineRegisterInfo::dumpUses(unsigned Reg) const {
  for (use_iterator I = use_begin(Reg), E = use_end(); I != E; ++I)
    I.getOperand().getParent()->dump();
}
#endif

void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) {
  ReservedRegs = TRI->getReservedRegs(MF);
}

bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg,
                                            const MachineFunction &MF) const {
  assert(TargetRegisterInfo::isPhysicalRegister(PhysReg));

  // Check if any overlapping register is modified.
  for (const uint16_t *R = TRI->getOverlaps(PhysReg); *R; ++R)
    if (!def_empty(*R))
      return false;

  // Check if any overlapping register is allocatable so it may be used later.
  if (AllocatableRegs.empty())
    AllocatableRegs = TRI->getAllocatableSet(MF);
  for (const uint16_t *R = TRI->getOverlaps(PhysReg); *R; ++R)
    if (AllocatableRegs.test(*R))
      return false;
  return true;
}
back to top