Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 2bcaf0f
  • /
  • src
  • /
  • cox_ph.cpp
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:7ebaca2b333dc6d129a36785cdab8c736c95f849
directory badge Iframe embedding
swh:1:dir:bae9250549db521cf6323ba0dfdace3c2d492ae1
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
cox_ph.cpp
#include <RcppArmadillo.h>
#include "c_optim.h"

namespace rstpm2 {

  using namespace Rcpp;
  using namespace arma;

  // assume right censored values in ascending order of time

  RcppExport SEXP test_cox_tvc2(SEXP args) {
  
    List largs = as<List>(args);
    vec time   = as<vec>(largs["time"]); // length n
    vec event  = as<vec>(largs["event"]); // length n
    mat X      = as<mat>(largs["X"]); // design matrix, n*c
    vec beta   = as<vec>(largs["beta"]); // length c+1
    int k      = as<int>(largs["k"]); // column to use for tvc
    int n      = time.size();
    int c      = X.n_cols;
    double llike = 0.0, lsum;
    vec eta;
    vec eta0 = X * beta(span(0,c-1));
    for (int i=0; i<n; ++i) {
      if (event(i) == 1 && (i==0 || time(i) != time(i-1))) {
	eta = eta0(span(i,n-1)) + beta(c)*log(time(i))*X(span(i,n-1),k);
        lsum = log(sum(exp(eta)));
        for (int j=i; j<n && time(j)==time(i) && event(j)==1; ++j) {
          llike += eta(j-i) - lsum;
        }
      }
    }
    return wrap(llike);
  }

  // Breslow estimator of the baseline cumulative hazard;
  // assumes right censored values in ascending order of time
  RcppExport SEXP test_cox_tvc2_H0(SEXP args) {
  
    List largs = as<List>(args);
    vec time   = as<vec>(largs["time"]); // length n
    vec event  = as<vec>(largs["event"]); // length n
    mat X      = as<mat>(largs["X"]); // design matrix, n*c
    vec beta   = as<vec>(largs["beta"]); // length c+1
    int k      = as<int>(largs["k"]); // column to use for tvc
    int n      = time.size();
    int c      = X.n_cols;
    double logHk, lsum;
    std::vector<double> H, etimes;
    vec eta;
    vec eta0 = X * beta(span(0,c-1));
    for (int i=0; i<n; ++i) {
      if (event(i) == 1 && (i==0 || time(i) != time(i-1))) {
	eta = eta0(span(i,n-1)) + beta(c)*log(time(i))*X(span(i,n-1),k);
	logHk = 0.0;
        lsum = sum(exp(eta));
        for (int j=i; j<n && time(j)==time(i) && event(j)==1; ++j) {
          logHk += 1 - lsum;
        }
	etimes.push_back(time(i));
	H.push_back(exp(logHk));
      }
    }
    return List::create(_("H")=wrap(H),_("times")=wrap(etimes));
  }


  // // Breslow estimator of the cumulative hazard for a given set of covariates;
  // // assumes right censored values in ascending order of time
  // RcppExport SEXP test_cox_tvc2_Hx0(SEXP args) {
  //   List largs = as<List>(args);
  //   vec time   = as<vec>(largs["time"]); // length n
  //   vec event  = as<vec>(largs["event"]); // length n
  //   mat X      = as<mat>(largs["X"]); // design matrix, n*c
  //   vec x0      = as<vec>(largs["x0"]); // design row for specific covariate pattern, length c
  //   vec beta   = as<vec>(largs["beta"]); // length c+1
  //   int k      = as<int>(largs["k"]); // column to use for tvc
  //   int n      = time.size();
  //   int c      = X.n_cols;
  //   double logHk, lsum;
  //   std::vector<double> H, etimes;
  //   vec eta;
  //   vec eta1 = X * beta(span(0,c-1));
  //   double eta0;
  //   for (int i=0; i<n; ++i) {
  //     if (event(i) == 1 && (i==0 || time(i) != time(i-1))) {
  // 	eta = eta1(span(i,n-1)) + beta(c)*log(time(i))*X(span(i,n-1),k);
  // 	eta0 = x0 * beta(span(0,c-1)) + beta(c)*log(time(i))*x0(k);
  // 	logHk = 0.0;
  //       lsum = sum(exp(eta));
  //       for (int j=i; j<n && time(j)==time(i) && event(j)==1; ++j) {
  //         logHk += eta0 - lsum;
  //       }
  // 	etimes.push_back(time(i));
  // 	H.push_back(exp(logHk));
  //     }
  //   }
  //   return List::create(_("H")=wrap(H),_("times")=wrap(etimes));
  // }

  RcppExport SEXP test_cox_tvc2_grad(SEXP args) {
  
    List largs = as<List>(args);
    vec time   = as<vec>(largs["time"]); // length n
    vec event  = as<vec>(largs["event"]); // length n
    mat X      = as<mat>(largs["X"]); // one covariate, length n
    vec beta   = as<vec>(largs["beta"]); // length 2
    int k      = as<int>(largs["k"]); // column to use for tvc
    int n      = time.size();
    int c      = X.n_cols;
    vec grad(beta.size(),fill::zeros);
    vec lsum(beta.size(),fill::zeros);
    vec eta0 = X * beta(span(0,c-1));
    vec risk;
    mat Xrisk;
    for (int i=0; i<n; ++i) {
      if (event(i) == 1 && (i==0 || time(i) != time(i-1))) {
	risk = exp(eta0(span(i,n-1)) + beta(c)*log(time(i))*X(span(i,n-1),k));
        Xrisk = X(span(i,n-1), span::all);
        Xrisk.each_col() %= risk;
        lsum(span(0,c-1)) = sum(Xrisk, 0).t() / sum(risk);
        lsum(c) = sum(log(time(i))*Xrisk(span::all,k))/sum(risk);
        for (int j=i; j<n && time(j)==time(i) && event(j)==1; ++j) {
	  grad(span(0,c-1)) += X(j,span::all).t() - lsum(span(0,c-1));
	  grad(c) += X(j,k)*log(time(i)) - lsum(c);
        }
      }
    }
    return wrap(grad);
  }

  struct Tvc {
    int n;
    vec time, event, x, beta;
  };


  double test_cox_tvc3_negll(int n, double * beta, void * e) {
  
    Tvc * data = (Tvc *) e;

    double llike = 0.0;
  
    vec eta;

    for (int i=0; i < data->n; ++i) {
      if (data->event(i) == 1) {
	eta = beta[0]*data->x(span(i,data->n-1)) + 
	  beta[1]*log(data->time(i)) * data->x(span(i,data->n-1));
	llike += eta(0) - log(sum(exp(eta)));
      }
    }
    return -llike;
  }

  void test_cox_tvc3_negll_gr(int ncoef, double * beta, double * gr, void * e) {
  
    Tvc * data = (Tvc *) e;
  
    vec risk, subx;

    gr[0] = gr[1] = 0.0;
    
    for (int i=0; i<data->n; ++i) {
      if (data->event(i) == 1) {
	subx = data->x(span(i,data->n-1));
	risk = exp(beta[0]*subx + beta[1]*log(data->time(i)) * subx);
	gr[0] -= data->x(i) - sum(subx % risk)/sum(risk);
	gr[1] -= data->x(i)*log(data->time(i)) - sum(log(data->time(i)) * subx % risk)/sum(risk);
      }
    }
  }

  RcppExport SEXP test_cox_tvc3(SEXP args) {
  
    List largs = as<List>(args);
    vec time   = as<vec>(largs["time"]); // length n
    vec event  = as<vec>(largs["event"]); // length n
    vec x      = as<vec>(largs["x"]); // one covariate, length n
    NumericVector beta   = clone(as<NumericVector>(largs["beta"])); // length 2
    int n      = time.size();

    Tvc data = {n, time, event, x, beta};

    BFGS bfgs;
    bfgs.optim(test_cox_tvc3_negll,test_cox_tvc3_negll_gr,beta, (void *) &data);

    return wrap(List::create(_("coef")=bfgs.coef,
			     _("negll")=bfgs.Fmin,
			     _("hessian")=bfgs.hessian));

  }

} // namespace

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API