Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/uberparagon/mgn
22 June 2021, 16:13:34 UTC
  • Code
  • Branches (5)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/1.1.2
    • refs/tags/v1.0.4
    • refs/tags/v1.0.5
    • refs/tags/v1.0.9
    No releases to show
  • 7ea090b
  • /
  • topintersections
  • /
  • tau.py
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:7ec01e0bc8e13694ac5d4e8404248a8969791990
origin badgedirectory badge Iframe embedding
swh:1:dir:6bc2f2f9e0667a2f644085a197339facf5121bdc
origin badgerevision badge
swh:1:rev:e53d6a5602585974452a7124c2a50829371e24ce
origin badgesnapshot badge
swh:1:snp:6e9d4128140ea9fc091a9d1ff362de9d8be50de2

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: e53d6a5602585974452a7124c2a50829371e24ce authored by Drew Johnson on 08 September 2017, 23:12:19 UTC
fixed readme links
Tip revision: e53d6a5
tau.py
"""
Computes the Witten tau function, i.e. the top intersections of psi classes.

Uses the genus recursion of Liu and Xu from [LX07].
"""

try:
    from sage.all import *
    from numpy import zeros, array, vectorize, hstack
    #from checkin import *
    from remember import *
except ImportError:
    pass

def ee(k,n):
    """
    Returns the k-th n-dimensional "basis vector". 
    """
    v = zeros(n, dtype = Integer)
    v[k] = 1
    return v

#@breadth_first_tree
def tau_no_g(a):
    """
    Like tau, but computes the genus that makes it non-zero, if possible.
    """
    h = 3 + sum([(i-1)*ai for i,ai in enumerate(a)])
    if h % 3 != 0:
        return 0
    else:
        return tau(h/3, a)
        
#@breadth_first_tree
#@remember
#stored_values = dict()

master_table = dict() 

@remember_convert_args(lambda g,a: (g, tuple(a)), master_table) #shares the master_table with intersect_monomial_with_data
def tau(g,a):
    """
    INPUT:
     - g -- The genus.
     - a -- A vector.  The first entry is the number of psi classes with exponent 0, the second in the number with exponent 1, etc.
     
     Uses the recursion of Liu and Xu [LX07].
    """
    
    n = sum(a)
    deg = sum([ai*i for i, ai in enumerate(a)])
    if deg != 3*g-3+n:
        return 0
    if g == 0:
        return multinomial(get_exp_list(a))
    if g == 1 and deg == 1:
        return Rational((1,24))
    if n > 0:
        if a[1] !=0: #dialoton
            return (2*g - 3 + n) * tau(g,a - ee(1,len(a)))
        if a[0] !=0: #string
            return sum( [(ai) * tau(g,a - ee(0, len(a)) + ee(i, len(a)) - ee(i+1,len(a))) for i, ai in enumerate(a[1:]) if ai != 0 ] )


    d = Integer(a.nonzero()[0][0])
    last_index = a.nonzero()[0][-1]
    a1 = array(hstack( (a[0:(last_index+1)],array([0])))) 
    k = len(a1)
    
    a1 -= ee(d, k)    

    ans = Rational((2*d + 3,12)) * tau(g-1, 4*ee(0, k) + ee(d + 1, k) + a1) \
        - Rational((2*g + n -1,6)) * tau(g-1, 3*ee(0,len(a)) + a) \
        + sum(( (binomial_product(a1,b)) * \
            (
                  (2*d + 3) *
                  tau_no_g(2*ee(0,k) + ee(d+1, k) + b) *
                  tau_no_g(2*ee(0,k) + a1 - b) 
                - (2*g + n - 1) *
                  tau_no_g(ee(0,k) + ee(d,k) + b) *
                  tau_no_g(2*ee(0,k) + a1 - b)
            ) for b in splittings(a1)))
            
    return Rational((1,(2*g+n-1)*(2*g+n-2)))*ans

    
def binomial_product(v1,v2):
    """
    See implementation.
    """
    #return prod([binomial(a,b) for a,b in zip(v1, v2)])
    #had to change after update broke it
    return prod([binomial(int(a),int(b)) for a,b in zip(v1, v2)])
    
def splittings(a):
    """
    Important for tau.
    """
    #return [array(c) for c in CartesianProduct(*[range(i+1) for i in a])]
    #sage update broke this
    return [array(c) for c in cartesian_product([range(i+1) for i in a])]
    
def get_exp_list(a):
    """
    Turns a Witten tau list into my traditional list of the exponents of the psis.
    """
    l = []
    for i, ai in enumerate(a):
        l +=[i]*ai
    return l
    
def psi_intersect(g, n, a):
    """
    Here ``a`` is a traditional (to me) list of the exponents of the psis.  This will convert it into a Witten tau list and call the tau function, and return the answer.
    """
    if 3*g - 3 + n != sum(a):
        return 0
     
    d = from_exp_list_to_tau(g,n,a)
     
    return tau(g, array(d, dtype = Integer))
    
def from_exp_list_to_tau(g,n,a):
    """
    Converts a list of psi exponents into a Witten tau list.
    """
    d = [0] * (max(a) +1)
    for ai in a:
        d[ai] += 1
    d[0] = n - len([ai for ai in a if ai != 0])
    return d


    
    
    

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API