##### swh:1:snp:4e3e7077647a709f15b8c1b32ce7100175d0580b
Tip revision: 1bb217a
tensor_basics.rst
Tensor basics
=============

Creating a tensor
-----------------
A tensor is nothing more than a multi-dimensional array.

Let's take for this example the tensor :math:\tilde X defined by its frontal slices:

.. math::

X_1 =
\left[
\begin{matrix}
0  & 2  & 4  & 6\\
8  & 10 & 12 & 14\\
16 & 18 & 20 & 22
\end{matrix}
\right]

\text{and}

X_2 =
\left[
\begin{matrix}
1  & 3  & 5  & 7\\
9  & 11 & 13 & 15\\
17 & 19 & 21 & 23
\end{matrix}
\right]

In Python, this array can be expressed as a numpy array::

>>> import numpy as np
>>> X = np.arange(24).reshape((3, 4, 2))

You can view the frontal slices by fixing the last axis::

>>> X[..., 0]
array([[ 0,  2,  4,  6],
[ 8, 10, 12, 14],
[16, 18, 20, 22]])

>>> X[..., 1]
array([[ 1,  3,  5,  7],
[ 9, 11, 13, 15],
[17, 19, 21, 23]])

Unfolding
---------
Also called **matrization**, **unfolding** a tensor is done by reading the element in a given way as to obtain a matrix instead of a tensor.

For a tensor of size :math:(I_1, I_2, \cdots, I_n), the k-mode unfolding of this tensor will be of size :math:(I_k, I_1 \times \cdots \times I_{k-1} \times I_{k+1} \cdots \times I_n).

.. important::
In tensorly we use an unfolding different from the classical one as defined in [1]_ for better performance.

Given a tensor :math:\tilde X \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}, the
mode-n unfolding of :math:\tilde X is a matrix :math:\mathbf{X}_{[n]} \in \mathbb{R}^{I_n, I_M},
with :math:M = \prod_{\substack{k=1,\\k \neq n}}^N I_k and is defined by
the mapping from element :math:(i_1, i_2, \cdots, i_N) to :math:(i_n, j), with

.. math::
j = \sum_{\substack{k=1,\\k \neq n}}^N i_k \times \prod_{m=k+1}^N I_m.

.. warning::

Traditionally, mode-1 unfolding denotes the unfolding along the first dimension.
However, to be consistent with the Python indexing that always starts at zero,
in tensorly, unfolding also starts at zero!

Therefore unfold(tensor, 0) will unfold said tensor along its first dimension!

For instance, using the :math:\tilde X previously defined, the 0-mode unfolding of :math:\tilde X:

.. math::

\tilde X_{[0]} =
\left[ \begin{matrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\\
8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\\
16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\\
\end{matrix} \right]

The 1-mode unfolding is given by:

.. math::

\tilde X_{[1]} =
\left[ \begin{matrix}
0 & 1 & 8 & 9 & 16 & 17\\
2 & 3 & 10 & 11 & 18 & 19\\
4 & 5 & 12 & 13 & 20 & 21\\
6 & 7 & 14 & 15 & 22 & 23\\
\end{matrix} \right]

Finally, the 2-mode unfolding is the unfolding along the last axis:

.. math::

\tilde X_{[2]} =
\left[ \begin{matrix}
0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22\\
1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19 & 21 & 23\\
\end{matrix} \right]

In tensorly:

.. code-block:: python

>>> unfold(X, 0) # mode-1 unfolding
array([[ 0,  1,  2,  3,  4,  5,  6,  7],
[ 8,  9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23]])

>>> unfold(X, 1) # mode-2 unfolding
array([[ 0,  1,  8,  9, 16, 17],
[ 2,  3, 10, 11, 18, 19],
[ 4,  5, 12, 13, 20, 21],
[ 6,  7, 14, 15, 22, 23]])

>>> unfold(X, 2) # mode-3 unfolding
array([[ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22],
[ 1,  3,  5,  7,  9, 11, 13, 15, 17, 19, 21, 23]])

Folding
-------
You can **fold** an unfolded tensor back from matrix to full tensor using the :func:tensorly.base.fold function.

.. code-block:: python

>>> from tensorly import fold
>>> unfolding = unfold(X, 1)
>>> original_shape = X.shape
>>> fold(unfolding, 1, original_shape)
array([[[ 0,  1],
[ 2,  3],
[ 4,  5],
[ 6,  7]],

[[ 8,  9],
[10, 11],
[12, 13],
[14, 15]],

[[16, 17],
[18, 19],
[20, 21],
[22, 23]]])

References
----------
.. [1] T.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.