Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 04cba2a
  • /
  • examples
  • /
  • degeneracy_maps.m
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:7ef35e670c0b5aa6f534f9909943e3beb918998b
directory badge Iframe embedding
swh:1:dir:c560249b57a1ffca6b32b609af9c1253be92a774
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
degeneracy_maps.m
AttachSpec("mdmagma.spec");

X := MDX1(22,GF(3));
Y := MDX1(11,GF(3));

// we compute the two degeneracy maps X -> Y explicitly and verify
// that the resulting quadratic form should be 3y^2+3x^2-4xy

E := EllipticCurve(X`_E);
P := (E ! [0,0]);
xy := TateNormalForm_xy(E,2*P);
f := map< Curve(X) -> Curve(Y) | xy cat [1] >;
Degree(f);
assert Degree(f1) eq 3;


KX := BaseRing(E);
R<x> := PolynomialRing(KX);
E1,phi := IsogenyFromKernel(E,x-(11*P)[1]);
P1 := phi(P);
xy1 := TateNormalForm_xy(E1,2*P1);
f1 := map< Curve(X) -> Curve(Y) | xy1 cat [1] >;
assert Degree(f1) eq 3;

YE, psi := EllipticCurve(Curve(Y));

g := f*psi;
g1 := f1*psi;

FFX := FunctionField(Curve(X));

Pg := [Evaluate(DefiningEquations(g)[i],[FFX.1,FFX.2,1]) : i in [1..3]];
Pg1 := [Evaluate(DefiningEquations(g1)[i],[FFX.1,FFX.2,1]) : i in [1..3]];

Q := (YE(FFX) ! Pg) + (YE(FFX) ! Pg1);

h := map< Curve(X) -> YE | Eltseq(Q) >;

assert Degree(h) eq 2;

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API