Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/open-mmlab/Amphion
09 September 2024, 06:46:44 UTC
  • Code
  • Branches (2)
  • Releases (3)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/main
    • refs/heads/revert-154-FACodec-readme
    • v0.1.1-alpha
    • v0.1.0-alpha
    • v0.1.0
  • b63c3da
  • /
  • config
  • /
  • diffusion.json
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
  • release
origin badgecontent badge Iframe embedding
swh:1:cnt:7ef72f39d3dd578afc35d086a3d19fc892bbefda
origin badgedirectory badge Iframe embedding
swh:1:dir:c14ff69eb07bfbd6a8405cdd582d0b653265520b
origin badgerevision badge
swh:1:rev:9682d0c8ec07ee75b4edd0a174dff3c79a5fb4d8
origin badgesnapshot badge
swh:1:snp:bef780d851faeac80aef6db569e51e66f505bf34
origin badgerelease badge
swh:1:rel:0cc84bee87958d4b475cd3d1e073f86cf61ded84

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
  • release
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 9682d0c8ec07ee75b4edd0a174dff3c79a5fb4d8 authored by Xueyao Zhang on 28 November 2023, 09:53:39 UTC
Amphion Alpha Release (#2)
Tip revision: 9682d0c
diffusion.json
{
    // FIXME: THESE ARE LEGACY
    "base_config": "config/base.json",
    "model_type": "diffusion",
    "task_type": "svc",
    "use_custom_dataset": false,
    "preprocess": {
        // data augmentations
        "use_pitch_shift": false,
        "use_formant_shift": false,
        "use_time_stretch": false,
        "use_equalizer": false,
        // acoustic features
        "extract_mel": true,
        "mel_min_max_norm": true,
        "extract_pitch": true,
        "pitch_extractor": "parselmouth",
        "extract_uv": true,
        "extract_energy": true,
        // content features
        "extract_whisper_feature": false,
        "whisper_sample_rate": 16000,
        "extract_contentvec_feature": false,
        "contentvec_sample_rate": 16000,
        "extract_wenet_feature": false,
        "wenet_sample_rate": 16000,
        "extract_mert_feature": false,
        "mert_sample_rate": 16000,
        // Default config for whisper
        "whisper_frameshift": 0.01,
        "whisper_downsample_rate": 2,
        // Default config for content vector
        "contentvec_frameshift": 0.02,
        // Default config for mert
        "mert_model": "m-a-p/MERT-v1-330M",
        "mert_feature_layer": -1,
        "mert_hop_size": 320,
        // 24k
        "mert_frameshit": 0.01333,
        // 10ms
        "wenet_frameshift": 0.01,
        // wenetspeech is 4, gigaspeech is 6
        "wenet_downsample_rate": 4,
        // Default config
        "n_mel": 100,
        "win_size": 1024,
        // todo
        "hop_size": 256,
        "sample_rate": 24000,
        "n_fft": 1024,
        // todo
        "fmin": 0,
        "fmax": 12000,
        // todo
        "f0_min": 50,
        // ~C2
        "f0_max": 1100,
        //1100,    // ~C6(1100), ~G5(800)
        "pitch_bin": 256,
        "pitch_max": 1100.0,
        "pitch_min": 50.0,
        "is_label": true,
        "is_mu_law": true,
        "bits": 8,
        "mel_min_max_stats_dir": "mel_min_max_stats",
        "whisper_dir": "whisper",
        "contentvec_dir": "contentvec",
        "wenet_dir": "wenet",
        "mert_dir": "mert",
        // Extract content features using dataloader
        "pin_memory": true,
        "num_workers": 8,
        "content_feature_batch_size": 16,
        // Features used for model training
        "use_mel": true,
        "use_min_max_norm_mel": true,
        "use_frame_pitch": true,
        "use_uv": true,
        "use_frame_energy": true,
        "use_log_scale_pitch": false,
        "use_log_scale_energy": false,
        "use_spkid": true,
        // Meta file
        "train_file": "train.json",
        "valid_file": "test.json",
        "spk2id": "singers.json",
        "utt2spk": "utt2singer"
    },
    "model": {
        "condition_encoder": {
            "merge_mode": "add",
            "input_melody_dim": 1,
            "use_log_f0": true,
            "n_bins_melody": 256,
            //# Quantization (0 for not quantization)
            "output_melody_dim": 384,
            "input_loudness_dim": 1,
            "use_log_loudness": true,
            "n_bins_loudness": 256,
            "output_loudness_dim": 384,
            "use_whisper": false,
            "use_contentvec": false,
            "use_wenet": false,
            "use_mert": false,
            "whisper_dim": 1024,
            "contentvec_dim": 256,
            "mert_dim": 256,
            "wenet_dim": 512,
            "content_encoder_dim": 384,
            "output_singer_dim": 384,
            "singer_table_size": 512,
            "output_content_dim": 384,
            "use_spkid": true
        },
        // FIXME: FOLLOWING ARE NEW!!
        "diffusion": {
            "scheduler": "ddpm",
            "scheduler_settings": {
                "num_train_timesteps": 1000,
                "beta_start": 1.0e-4,
                "beta_end": 0.02,
                "beta_schedule": "linear"
            },
            // Diffusion steps encoder
            "step_encoder": {
                "dim_raw_embedding": 128,
                "dim_hidden_layer": 512,
                "activation": "SiLU",
                "num_layer": 2,
                "max_period": 10000
            },
            // Diffusion decoder
            "model_type": "bidilconv",
            // bidilconv, unet2d, TODO: unet1d
            "bidilconv": {
                "base_channel": 384,
                "n_res_block": 20,
                "conv_kernel_size": 3,
                "dilation_cycle_length": 4,
                // specially, 1 means no dilation
                "conditioner_size": 384
            },
            "unet2d": {
                "in_channels": 1,
                "out_channels": 1,
                "down_block_types": [
                    "CrossAttnDownBlock2D",
                    "CrossAttnDownBlock2D",
                    "CrossAttnDownBlock2D",
                    "DownBlock2D"
                ],
                "mid_block_type": "UNetMidBlock2DCrossAttn",
                "up_block_types": [
                    "UpBlock2D",
                    "CrossAttnUpBlock2D",
                    "CrossAttnUpBlock2D",
                    "CrossAttnUpBlock2D"
                ],
                "only_cross_attention": false
            }
        }
    },
    // FIXME: FOLLOWING ARE NEW!!
    "train": {
        // Basic settings
        "batch_size": 64,
        "gradient_accumulation_step": 1,
        "max_epoch": -1,
        // -1 means no limit
        "save_checkpoint_stride": [
            5,
            20
        ],
        // unit is epoch
        "keep_last": [
            3,
            -1
        ],
        // -1 means infinite, if one number will broadcast
        "run_eval": [
            false,
            true
        ],
        // if one number will broadcast
        // Fix the random seed
        "random_seed": 10086,
        // Batchsampler
        "sampler": {
            "holistic_shuffle": true,
            "drop_last": true
        },
        // Dataloader
        "dataloader": {
            "num_worker": 32,
            "pin_memory": true
        },
        // Trackers
        "tracker": [
            "tensorboard"
            // "wandb",
            // "cometml",
            // "mlflow",
        ],
        // Optimizer
        "optimizer": "AdamW",
        "adamw": {
            "lr": 4.0e-4
            // nn model lr
        },
        // LR Scheduler
        "scheduler": "ReduceLROnPlateau",
        "reducelronplateau": {
            "factor": 0.8,
            "patience": 10,
            // unit is epoch
            "min_lr": 1.0e-4
        }
    },
    "inference": {
        "diffusion": {
            "scheduler": "pndm",
            "scheduler_settings": {
                "num_inference_timesteps": 1000
            }
        }
    }
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API