library(preprocessCore) setwd("/Users/zhaox12/Dropbox (NYU Langone Health)/Xin_backup/Teresa_lab/project/10.protein/11.12-For paper/Manuscript_2021/figure_2021/potential_analysis/211011.heatmap.fig3/") data1<-read.delim("/Users/zhaox12/Dropbox (NYU Langone Health)/Xin_backup/Teresa_lab/project/10.protein/11.12-For paper/Manuscript_2021/figure_2021/potential_analysis/211011.heatmap.fig3/comprehensive.table.211011.txt", sep="\t",header = T) rownames(data1)<-data1$item data2<-data1[,c("Pan.DNA.RNA.Corr","CCLE.DNA.RNA.Corr","NCI60.DNA.RNA.Corr","hCEC.all.DNA.RNA.Corr", "Pan.RNA.Pro.Corr","Normal.RNA.Pro.Corr","GTEx.RNA.Pro.Corr", "CCLE.RNA.Pro.Corr" , "NCI60.RNA.Pro.Corr", "hCEC.all.RNA.Pro.Corr" )] colnames(data2)[1]<-"CPTAC.DNA.RNA.Corr" colnames(data2)[5]<-"CPTAC.RNA.Pro.Corr" #colnames(data2)[6]<-"Wang, et al.Normal.RNA.Pro.Corr" #data3<-normalize.quantiles(as.matrix(data2),copy=TRUE) data3<-as.data.frame(scale(data2)) data3$median.dna.rna<-apply(data3[,1:4],1,mean) data3$median.rna.pro<-apply(data3[,5:10],1,mean) data3$delta<-data3$median.dna.rna-data3$median.rna.pro #rownames(data3)<-rownames(data2) #colnames(data3)<-colnames(data2) #data3<-scale(data2) data3[data3>1]<-1 data3[data3<(-1)]<-(-1) #data4<-data3[order( -data3[,5]),] data3<-data3[order( data3[,13]),] data4<-data3[,-c(11:13)] library(circlize) library(ComplexHeatmap) library(ggcorrplot) library(colorspace) ht_opt(RESET = TRUE) ht_opt(heatmap_column_names_gp = gpar(fontface = "italic",fontsize=8), heatmap_row_names_gp= gpar(fontsize = 8), legend_border = "black", heatmap_border = TRUE, annotation_border = TRUE ) hcl_palettes(plot = T) col_fun = diverging_hcl("Blue-Red2",n=5) mat<-as.matrix(data4) ha<-Heatmap(mat,name = "Z-score", col = col_fun, cluster_columns = FALSE, show_row_dend = F, rect_gp = gpar(col= "white"), show_column_names = T,cluster_rows = F,) mat_cor<-as.matrix(data2[,-11:-13]) mat1<-round(cor(mat_cor), 1) col_fun1 = diverging_hcl("Green-Orange",n=5) ha1<-Heatmap(mat1,name = "Corr", col = col_fun1, cluster_columns = FALSE, show_row_dend = FALSE, rect_gp = gpar(col= "white"), show_column_names = F,cluster_rows = F,clustering_distance_rows = "pearson", clustering_method_rows = "complete") ht_list = ha1 %v% ha draw(ht_list) pdf(paste0("combine.TD_dna_rna_211014.pdf"),width = 6,height=10) draw(ht_list) dev.off()