# This file is a part of Julia. License is MIT: https://julialang.org/license module PermutedDimsArrays import Base: permutedims, permutedims! export PermutedDimsArray # Some day we will want storage-order-aware iteration, so put perm in the parameters struct PermutedDimsArray{T,N,perm,iperm,AA<:AbstractArray} <: AbstractArray{T,N} parent::AA function PermutedDimsArray{T,N,perm,iperm,AA}(data::AA) where {T,N,perm,iperm,AA<:AbstractArray} (isa(perm, NTuple{N,Int}) && isa(iperm, NTuple{N,Int})) || error("perm and iperm must both be NTuple{$N,Int}") isperm(perm) || throw(ArgumentError(string(perm, " is not a valid permutation of dimensions 1:", N))) all(map(d->iperm[perm[d]]==d, 1:N)) || throw(ArgumentError(string(perm, " and ", iperm, " must be inverses"))) new(data) end end """ PermutedDimsArray(A, perm) -> B Given an AbstractArray `A`, create a view `B` such that the dimensions appear to be permuted. Similar to `permutedims`, except that no copying occurs (`B` shares storage with `A`). See also [`permutedims`](@ref), [`invperm`](@ref). # Examples ```jldoctest julia> A = rand(3,5,4); julia> B = PermutedDimsArray(A, (3,1,2)); julia> size(B) (4, 3, 5) julia> B[3,1,2] == A[1,2,3] true ``` """ function PermutedDimsArray(data::AbstractArray{T,N}, perm) where {T,N} length(perm) == N || throw(ArgumentError(string(perm, " is not a valid permutation of dimensions 1:", N))) iperm = invperm(perm) PermutedDimsArray{T,N,(perm...,),(iperm...,),typeof(data)}(data) end Base.parent(A::PermutedDimsArray) = A.parent Base.size(A::PermutedDimsArray{T,N,perm}) where {T,N,perm} = genperm(size(parent(A)), perm) Base.axes(A::PermutedDimsArray{T,N,perm}) where {T,N,perm} = genperm(axes(parent(A)), perm) Base.has_offset_axes(A::PermutedDimsArray) = Base.has_offset_axes(A.parent) Base.similar(A::PermutedDimsArray, T::Type, dims::Base.Dims) = similar(parent(A), T, dims) Base.unsafe_convert(::Type{Ptr{T}}, A::PermutedDimsArray{T}) where {T} = Base.unsafe_convert(Ptr{T}, parent(A)) # It's OK to return a pointer to the first element, and indeed quite # useful for wrapping C routines that require a different storage # order than used by Julia. But for an array with unconventional # storage order, a linear offset is ambiguous---is it a memory offset # or a linear index? Base.pointer(A::PermutedDimsArray, i::Integer) = throw(ArgumentError("pointer(A, i) is deliberately unsupported for PermutedDimsArray")) function Base.strides(A::PermutedDimsArray{T,N,perm}) where {T,N,perm} s = strides(parent(A)) ntuple(d->s[perm[d]], Val(N)) end Base.elsize(::Type{<:PermutedDimsArray{<:Any, <:Any, <:Any, <:Any, P}}) where {P} = Base.elsize(P) @inline function Base.getindex(A::PermutedDimsArray{T,N,perm,iperm}, I::Vararg{Int,N}) where {T,N,perm,iperm} @boundscheck checkbounds(A, I...) @inbounds val = getindex(A.parent, genperm(I, iperm)...) val end @inline function Base.setindex!(A::PermutedDimsArray{T,N,perm,iperm}, val, I::Vararg{Int,N}) where {T,N,perm,iperm} @boundscheck checkbounds(A, I...) @inbounds setindex!(A.parent, val, genperm(I, iperm)...) val end @inline genperm(I::NTuple{N,Any}, perm::Dims{N}) where {N} = ntuple(d -> I[perm[d]], Val(N)) @inline genperm(I, perm::AbstractVector{Int}) = genperm(I, (perm...,)) """ permutedims(A::AbstractArray, perm) Permute the dimensions of array `A`. `perm` is a vector or a tuple of length `ndims(A)` specifying the permutation. See also [`permutedims!`](@ref), [`PermutedDimsArray`](@ref), [`transpose`](@ref), [`invperm`](@ref). # Examples ```jldoctest julia> A = reshape(Vector(1:8), (2,2,2)) 2×2×2 Array{Int64, 3}: [:, :, 1] = 1 3 2 4 [:, :, 2] = 5 7 6 8 julia> perm = (3, 1, 2); # put the last dimension first julia> B = permutedims(A, perm) 2×2×2 Array{Int64, 3}: [:, :, 1] = 1 2 5 6 [:, :, 2] = 3 4 7 8 julia> A == permutedims(B, invperm(perm)) # the inverse permutation true ``` For each dimension `i` of `B = permutedims(A, perm)`, its corresponding dimension of `A` will be `perm[i]`. This means the equality `size(B, i) == size(A, perm[i])` holds. ```jldoctest julia> A = randn(5, 7, 11, 13); julia> perm = [4, 1, 3, 2]; julia> B = permutedims(A, perm); julia> size(B) (13, 5, 11, 7) julia> size(A)[perm] == ans true ``` """ function permutedims(A::AbstractArray, perm) dest = similar(A, genperm(axes(A), perm)) permutedims!(dest, A, perm) end """ permutedims(m::AbstractMatrix) Permute the dimensions of the matrix `m`, by flipping the elements across the diagonal of the matrix. Differs from `LinearAlgebra`'s [`transpose`](@ref) in that the operation is not recursive. # Examples ```jldoctest; setup = :(using LinearAlgebra) julia> a = [1 2; 3 4]; julia> b = [5 6; 7 8]; julia> c = [9 10; 11 12]; julia> d = [13 14; 15 16]; julia> X = [[a] [b]; [c] [d]] 2×2 Matrix{Matrix{Int64}}: [1 2; 3 4] [5 6; 7 8] [9 10; 11 12] [13 14; 15 16] julia> permutedims(X) 2×2 Matrix{Matrix{Int64}}: [1 2; 3 4] [9 10; 11 12] [5 6; 7 8] [13 14; 15 16] julia> transpose(X) 2×2 transpose(::Matrix{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}: [1 3; 2 4] [9 11; 10 12] [5 7; 6 8] [13 15; 14 16] ``` """ permutedims(A::AbstractMatrix) = permutedims(A, (2,1)) """ permutedims(v::AbstractVector) Reshape vector `v` into a `1 × length(v)` row matrix. Differs from `LinearAlgebra`'s [`transpose`](@ref) in that the operation is not recursive. # Examples ```jldoctest; setup = :(using LinearAlgebra) julia> permutedims([1, 2, 3, 4]) 1×4 Matrix{Int64}: 1 2 3 4 julia> V = [[[1 2; 3 4]]; [[5 6; 7 8]]] 2-element Vector{Matrix{Int64}}: [1 2; 3 4] [5 6; 7 8] julia> permutedims(V) 1×2 Matrix{Matrix{Int64}}: [1 2; 3 4] [5 6; 7 8] julia> transpose(V) 1×2 transpose(::Vector{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}: [1 3; 2 4] [5 7; 6 8] ``` """ permutedims(v::AbstractVector) = reshape(v, (1, length(v))) """ permutedims!(dest, src, perm) Permute the dimensions of array `src` and store the result in the array `dest`. `perm` is a vector specifying a permutation of length `ndims(src)`. The preallocated array `dest` should have `size(dest) == size(src)[perm]` and is completely overwritten. No in-place permutation is supported and unexpected results will happen if `src` and `dest` have overlapping memory regions. See also [`permutedims`](@ref). """ function permutedims!(dest, src::AbstractArray, perm) Base.checkdims_perm(dest, src, perm) P = PermutedDimsArray(dest, invperm(perm)) _copy!(P, src) return dest end function Base.copyto!(dest::PermutedDimsArray{T,N}, src::AbstractArray{T,N}) where {T,N} checkbounds(dest, axes(src)...) _copy!(dest, src) end Base.copyto!(dest::PermutedDimsArray, src::AbstractArray) = _copy!(dest, src) function _copy!(P::PermutedDimsArray{T,N,perm}, src) where {T,N,perm} # If dest/src are "close to dense," then it pays to be cache-friendly. # Determine the first permuted dimension d = 0 # d+1 will hold the first permuted dimension of src while d < ndims(src) && perm[d+1] == d+1 d += 1 end if d == ndims(src) copyto!(parent(P), src) # it's not permuted else R1 = CartesianIndices(axes(src)[1:d]) d1 = findfirst(isequal(d+1), perm)::Int # first permuted dim of dest R2 = CartesianIndices(axes(src)[d+2:d1-1]) R3 = CartesianIndices(axes(src)[d1+1:end]) _permutedims!(P, src, R1, R2, R3, d+1, d1) end return P end @noinline function _permutedims!(P::PermutedDimsArray, src, R1::CartesianIndices{0}, R2, R3, ds, dp) ip, is = axes(src, dp), axes(src, ds) for jo in first(ip):8:last(ip), io in first(is):8:last(is) for I3 in R3, I2 in R2 for j in jo:min(jo+7, last(ip)) for i in io:min(io+7, last(is)) @inbounds P[i, I2, j, I3] = src[i, I2, j, I3] end end end end P end @noinline function _permutedims!(P::PermutedDimsArray, src, R1, R2, R3, ds, dp) ip, is = axes(src, dp), axes(src, ds) for jo in first(ip):8:last(ip), io in first(is):8:last(is) for I3 in R3, I2 in R2 for j in jo:min(jo+7, last(ip)) for i in io:min(io+7, last(is)) for I1 in R1 @inbounds P[I1, i, I2, j, I3] = src[I1, i, I2, j, I3] end end end end end P end const CommutativeOps = Union{typeof(+),typeof(Base.add_sum),typeof(min),typeof(max),typeof(Base._extrema_rf),typeof(|),typeof(&)} function Base._mapreduce_dim(f, op::CommutativeOps, init::Base._InitialValue, A::PermutedDimsArray, dims::Colon) Base._mapreduce_dim(f, op, init, parent(A), dims) end function Base._mapreduce_dim(f::typeof(identity), op::Union{typeof(Base.mul_prod),typeof(*)}, init::Base._InitialValue, A::PermutedDimsArray{<:Union{Real,Complex}}, dims::Colon) Base._mapreduce_dim(f, op, init, parent(A), dims) end function Base.mapreducedim!(f, op::CommutativeOps, B::AbstractArray{T,N}, A::PermutedDimsArray{S,N,perm,iperm}) where {T,S,N,perm,iperm} C = PermutedDimsArray{T,N,iperm,perm,typeof(B)}(B) # make the inverse permutation for the output Base.mapreducedim!(f, op, C, parent(A)) B end function Base.mapreducedim!(f::typeof(identity), op::Union{typeof(Base.mul_prod),typeof(*)}, B::AbstractArray{T,N}, A::PermutedDimsArray{<:Union{Real,Complex},N,perm,iperm}) where {T,N,perm,iperm} C = PermutedDimsArray{T,N,iperm,perm,typeof(B)}(B) # make the inverse permutation for the output Base.mapreducedim!(f, op, C, parent(A)) B end function Base.showarg(io::IO, A::PermutedDimsArray{T,N,perm}, toplevel) where {T,N,perm} print(io, "PermutedDimsArray(") Base.showarg(io, parent(A), false) print(io, ", ", perm, ')') toplevel && print(io, " with eltype ", eltype(A)) return nothing end end