import tntorch as tn
import numpy as np
import torch
torch.set_default_dtype(torch.float64)
def test_weight_mask():
for N in range(1, 5):
for k in range(1, N):
gt = tn.automata.weight_mask(N, k)
idx = torch.Tensor(np.array(np.unravel_index(np.arange(gt.numel(), dtype=int), list(gt.shape))).T)
assert torch.norm((torch.sum(idx, dim=1).round() == k).float() - gt[idx].torch().round().float()) <= 1e-7
def test_accepted_inputs():
for i in range(10):
gt = tn.Tensor(torch.randint(0, 2, (1, 2, 3, 4)))
idx = tn.automata.accepted_inputs(gt)
assert len(idx) == round(tn.sum(gt).item())
assert torch.norm(gt[idx].torch().double() - 1).item() <= 1e-7