# This file is a part of Julia. License is MIT: https://julialang.org/license (:)(a::Real, b::Real) = (:)(promote(a,b)...) (:)(start::T, stop::T) where {T<:Real} = UnitRange{T}(start, stop) (:)(start::T, stop::T) where {T} = (:)(start, oftype(stop-start, 1), stop) # promote start and stop, leaving step alone (:)(start::A, step, stop::C) where {A<:Real,C<:Real} = (:)(convert(promote_type(A,C),start), step, convert(promote_type(A,C),stop)) # AbstractFloat specializations (:)(a::T, b::T) where {T<:AbstractFloat} = (:)(a, T(1), b) (:)(a::T, b::AbstractFloat, c::T) where {T<:Real} = (:)(promote(a,b,c)...) (:)(a::T, b::AbstractFloat, c::T) where {T<:AbstractFloat} = (:)(promote(a,b,c)...) (:)(a::T, b::Real, c::T) where {T<:AbstractFloat} = (:)(promote(a,b,c)...) (:)(start::T, step::T, stop::T) where {T<:AbstractFloat} = _colon(OrderStyle(T), ArithmeticStyle(T), start, step, stop) (:)(start::T, step::T, stop::T) where {T<:Real} = _colon(OrderStyle(T), ArithmeticStyle(T), start, step, stop) _colon(::Ordered, ::Any, start::T, step, stop::T) where {T} = StepRange(start, step, stop) # for T<:Union{Float16,Float32,Float64} see twiceprecision.jl _colon(::Ordered, ::ArithmeticRounds, start::T, step, stop::T) where {T} = StepRangeLen(start, step, floor(Int, (stop-start)/step)+1) _colon(::Any, ::Any, start::T, step, stop::T) where {T} = StepRangeLen(start, step, floor(Int, (stop-start)/step)+1) """ (:)(start, [step], stop) Range operator. `a:b` constructs a range from `a` to `b` with a step size of 1 (a [`UnitRange`](@ref)) , and `a:s:b` is similar but uses a step size of `s` (a [`StepRange`](@ref)). `:` is also used in indexing to select whole dimensions. """ (:)(start::T, step, stop::T) where {T} = _colon(start, step, stop) (:)(start::T, step, stop::T) where {T<:Real} = _colon(start, step, stop) # without the second method above, the first method above is ambiguous with # (:)(start::A, step, stop::C) where {A<:Real,C<:Real} function _colon(start::T, step, stop::T) where T T′ = typeof(start+zero(step)) StepRange(convert(T′,start), step, convert(T′,stop)) end """ range(start[, stop]; length, stop, step=1) Given a starting value, construct a range either by length or from `start` to `stop`, optionally with a given step (defaults to 1, a [`UnitRange`](@ref)). One of `length` or `stop` is required. If `length`, `stop`, and `step` are all specified, they must agree. If `length` and `stop` are provided and `step` is not, the step size will be computed automatically such that there are `length` linearly spaced elements in the range (a [`LinRange`](@ref)). If `step` and `stop` are provided and `length` is not, the overall range length will be computed automatically such that the elements are `step` spaced (a [`StepRange`](@ref)). `stop` may be specified as either a positional or keyword argument. # Examples ```jldoctest julia> range(1, length=100) 1:100 julia> range(1, stop=100) 1:100 julia> range(1, step=5, length=100) 1:5:496 julia> range(1, step=5, stop=100) 1:5:96 julia> range(1, 10, length=101) 1.0:0.09:10.0 julia> range(1, 100, step=5) 1:5:96 ``` """ range(start; length::Union{Integer,Nothing}=nothing, stop=nothing, step=nothing) = _range(start, step, stop, length) range(start, stop; length::Union{Integer,Nothing}=nothing, step=nothing) = _range2(start, step, stop, length) _range2(start, ::Nothing, stop, ::Nothing) = throw(ArgumentError("At least one of `length` or `step` must be specified")) _range2(start, step, stop, length) = _range(start, step, stop, length) # Range from start to stop: range(a, [step=s,] stop=b), no length _range(start, step, stop, ::Nothing) = (:)(start, step, stop) _range(start, ::Nothing, stop, ::Nothing) = (:)(start, stop) # Range of a given length: range(a, [step=s,] length=l), no stop _range(a::Real, ::Nothing, ::Nothing, len::Integer) = UnitRange{typeof(a)}(a, oftype(a, a+len-1)) _range(a::AbstractFloat, ::Nothing, ::Nothing, len::Integer) = _range(a, oftype(a, 1), nothing, len) _range(a::AbstractFloat, st::AbstractFloat, ::Nothing, len::Integer) = _range(promote(a, st)..., nothing, len) _range(a::Real, st::AbstractFloat, ::Nothing, len::Integer) = _range(float(a), st, nothing, len) _range(a::AbstractFloat, st::Real, ::Nothing, len::Integer) = _range(a, float(st), nothing, len) _range(a, ::Nothing, ::Nothing, len::Integer) = _range(a, oftype(a-a, 1), nothing, len) _range(a::T, step, ::Nothing, len::Integer) where {T} = _rangestyle(OrderStyle(T), ArithmeticStyle(T), a, step, len) _rangestyle(::Ordered, ::ArithmeticWraps, a::T, step::S, len::Integer) where {T,S} = StepRange{T,S}(a, step, convert(T, a+step*(len-1))) _rangestyle(::Any, ::Any, a::T, step::S, len::Integer) where {T,S} = StepRangeLen{typeof(a+0*step),T,S}(a, step, len) # Malformed calls _range(start, step, ::Nothing, ::Nothing) = # range(a, step=s) throw(ArgumentError("At least one of `length` or `stop` must be specified")) _range(start, ::Nothing, ::Nothing, ::Nothing) = # range(a) throw(ArgumentError("At least one of `length` or `stop` must be specified")) _range(::Nothing, ::Nothing, ::Nothing, ::Nothing) = # range(nothing) throw(ArgumentError("At least one of `length` or `stop` must be specified")) _range(start::Real, step::Real, stop::Real, length::Integer) = # range(a, step=s, stop=b, length=l) throw(ArgumentError("Too many arguments specified; try passing only one of `stop` or `length`")) _range(::Nothing, ::Nothing, ::Nothing, ::Integer) = # range(nothing, length=l) throw(ArgumentError("Can't start a range at `nothing`")) ## 1-dimensional ranges ## """ AbstractRange{T} Supertype for ranges with elements of type `T`. [`UnitRange`](@ref) and other types are subtypes of this. """ abstract type AbstractRange{T} <: AbstractArray{T,1} end RangeStepStyle(::Type{<:AbstractRange}) = RangeStepIrregular() RangeStepStyle(::Type{<:AbstractRange{<:Integer}}) = RangeStepRegular() convert(::Type{T}, r::AbstractRange) where {T<:AbstractRange} = r isa T ? r : T(r) ## ordinal ranges """ OrdinalRange{T, S} <: AbstractRange{T} Supertype for ordinal ranges with elements of type `T` with spacing(s) of type `S`. The steps should be always-exact multiples of [`oneunit`](@ref), and `T` should be a "discrete" type, which cannot have values smaller than `oneunit`. For example, `Integer` or `Date` types would qualify, whereas `Float64` would not (since this type can represent values smaller than `oneunit(Float64)`. [`UnitRange`](@ref), [`StepRange`](@ref), and other types are subtypes of this. """ abstract type OrdinalRange{T,S} <: AbstractRange{T} end """ AbstractUnitRange{T} <: OrdinalRange{T, T} Supertype for ranges with a step size of [`oneunit(T)`](@ref) with elements of type `T`. [`UnitRange`](@ref) and other types are subtypes of this. """ abstract type AbstractUnitRange{T} <: OrdinalRange{T,T} end """ StepRange{T, S} <: OrdinalRange{T, S} Ranges with elements of type `T` with spacing of type `S`. The step between each element is constant, and the range is defined in terms of a `start` and `stop` of type `T` and a `step` of type `S`. Neither `T` nor `S` should be floating point types. The syntax `a:b:c` with `b > 1` and `a`, `b`, and `c` all integers creates a `StepRange`. # Examples ```jldoctest julia> collect(StepRange(1, Int8(2), 10)) 5-element Array{Int64,1}: 1 3 5 7 9 julia> typeof(StepRange(1, Int8(2), 10)) StepRange{Int64,Int8} julia> typeof(1:3:6) StepRange{Int64,Int64} ``` """ struct StepRange{T,S} <: OrdinalRange{T,S} start::T step::S stop::T function StepRange{T,S}(start::T, step::S, stop::T) where {T,S} new(start, step, steprange_last(start,step,stop)) end end # to make StepRange constructor inlineable, so optimizer can see `step` value function steprange_last(start::T, step, stop) where T if isa(start,AbstractFloat) || isa(step,AbstractFloat) throw(ArgumentError("StepRange should not be used with floating point")) end z = zero(step) step == z && throw(ArgumentError("step cannot be zero")) if stop == start last = stop else if (step > z) != (stop > start) last = steprange_last_empty(start, step, stop) else # Compute absolute value of difference between `start` and `stop` # (to simplify handling both signed and unsigned T and checking for signed overflow): absdiff, absstep = stop > start ? (stop - start, step) : (start - stop, -step) # Compute remainder as a nonnegative number: if T <: Signed && absdiff < zero(absdiff) # handle signed overflow with unsigned rem remain = convert(T, unsigned(absdiff) % absstep) else remain = absdiff % absstep end # Move `stop` closer to `start` if there is a remainder: last = stop > start ? stop - remain : stop + remain end end last end function steprange_last_empty(start::Integer, step, stop) # empty range has a special representation where stop = start-1 # this is needed to avoid the wrap-around that can happen computing # start - step, which leads to a range that looks very large instead # of empty. if step > zero(step) last = start - oneunit(stop-start) else last = start + oneunit(stop-start) end last end # For types where x+oneunit(x) may not be well-defined steprange_last_empty(start, step, stop) = start - step StepRange(start::T, step::S, stop::T) where {T,S} = StepRange{T,S}(start, step, stop) """ UnitRange{T<:Real} A range parameterized by a `start` and `stop` of type `T`, filled with elements spaced by `1` from `start` until `stop` is exceeded. The syntax `a:b` with `a` and `b` both `Integer`s creates a `UnitRange`. # Examples ```jldoctest julia> collect(UnitRange(2.3, 5.2)) 3-element Array{Float64,1}: 2.3 3.3 4.3 julia> typeof(1:10) UnitRange{Int64} ``` """ struct UnitRange{T<:Real} <: AbstractUnitRange{T} start::T stop::T UnitRange{T}(start, stop) where {T<:Real} = new(start, unitrange_last(start,stop)) end UnitRange(start::T, stop::T) where {T<:Real} = UnitRange{T}(start, stop) unitrange_last(::Bool, stop::Bool) = stop unitrange_last(start::T, stop::T) where {T<:Integer} = ifelse(stop >= start, stop, convert(T,start-oneunit(stop-start))) unitrange_last(start::T, stop::T) where {T} = ifelse(stop >= start, convert(T,start+floor(stop-start)), convert(T,start-oneunit(stop-start))) if isdefined(Main, :Base) function getindex(t::Tuple, r::AbstractUnitRange{<:Real}) n = length(r) n == 0 && return () a = Vector{eltype(t)}(undef, n) o = first(r) - 1 for i = 1:n el = t[o + i] @inbounds a[i] = el end (a...,) end end """ Base.OneTo(n) Define an `AbstractUnitRange` that behaves like `1:n`, with the added distinction that the lower limit is guaranteed (by the type system) to be 1. """ struct OneTo{T<:Integer} <: AbstractUnitRange{T} stop::T OneTo{T}(stop) where {T<:Integer} = new(max(zero(T), stop)) function OneTo{T}(r::AbstractRange) where {T<:Integer} throwstart(r) = (@_noinline_meta; throw(ArgumentError("first element must be 1, got $(first(r))"))) throwstep(r) = (@_noinline_meta; throw(ArgumentError("step must be 1, got $(step(r))"))) first(r) == 1 || throwstart(r) step(r) == 1 || throwstep(r) return new(max(zero(T), last(r))) end end OneTo(stop::T) where {T<:Integer} = OneTo{T}(stop) OneTo(r::AbstractRange{T}) where {T<:Integer} = OneTo{T}(r) ## Step ranges parameterized by length """ StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1]) where {T,R,S} StepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S} A range `r` where `r[i]` produces values of type `T` (in the second form, `T` is deduced automatically), parameterized by a `ref`erence value, a `step`, and the `len`gth. By default `ref` is the starting value `r[1]`, but alternatively you can supply it as the value of `r[offset]` for some other index `1 <= offset <= len`. In conjunction with `TwicePrecision` this can be used to implement ranges that are free of roundoff error. """ struct StepRangeLen{T,R,S} <: AbstractRange{T} ref::R # reference value (might be smallest-magnitude value in the range) step::S # step value len::Int # length of the range offset::Int # the index of ref function StepRangeLen{T,R,S}(ref::R, step::S, len::Integer, offset::Integer = 1) where {T,R,S} len >= 0 || throw(ArgumentError("length cannot be negative, got $len")) 1 <= offset <= max(1,len) || throw(ArgumentError("StepRangeLen: offset must be in [1,$len], got $offset")) new(ref, step, len, offset) end end StepRangeLen(ref::R, step::S, len::Integer, offset::Integer = 1) where {R,S} = StepRangeLen{typeof(ref+0*step),R,S}(ref, step, len, offset) StepRangeLen{T}(ref::R, step::S, len::Integer, offset::Integer = 1) where {T,R,S} = StepRangeLen{T,R,S}(ref, step, len, offset) ## range with computed step """ LinRange{T} A range with `len` linearly spaced elements between its `start` and `stop`. The size of the spacing is controlled by `len`, which must be an `Int`. # Examples ```jldoctest julia> LinRange(1.5, 5.5, 9) 9-element LinRange{Float64}: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5 ``` """ struct LinRange{T} <: AbstractRange{T} start::T stop::T len::Int lendiv::Int function LinRange{T}(start,stop,len) where T len >= 0 || throw(ArgumentError("range($start, stop=$stop, length=$len): negative length")) if len == 1 start == stop || throw(ArgumentError("range($start, stop=$stop, length=$len): endpoints differ")) return new(start, stop, 1, 1) end new(start,stop,len,max(len-1,1)) end end function LinRange(start, stop, len::Integer) T = typeof((stop-start)/len) LinRange{T}(start, stop, len) end function _range(start::T, ::Nothing, stop::S, len::Integer) where {T,S} a, b = promote(start, stop) _range(a, nothing, b, len) end _range(start::T, ::Nothing, stop::T, len::Integer) where {T<:Real} = LinRange{T}(start, stop, len) _range(start::T, ::Nothing, stop::T, len::Integer) where {T} = LinRange{T}(start, stop, len) _range(start::T, ::Nothing, stop::T, len::Integer) where {T<:Integer} = _linspace(float(T), start, stop, len) ## for Float16, Float32, and Float64 we hit twiceprecision.jl to lift to higher precision StepRangeLen # for all other types we fall back to a plain old LinRange _linspace(::Type{T}, start::Integer, stop::Integer, len::Integer) where T = LinRange{T}(start, stop, len) function show(io::IO, r::LinRange) print(io, "range(") show(io, first(r)) print(io, ", stop=") show(io, last(r)) print(io, ", length=") show(io, length(r)) print(io, ')') end """ `print_range(io, r)` prints out a nice looking range r in terms of its elements as if it were `collect(r)`, dependent on the size of the terminal, and taking into account whether compact numbers should be shown. It figures out the width in characters of each element, and if they end up too wide, it shows the first and last elements separated by a horizontal elipsis. Typical output will look like `1.0,2.0,3.0,…,4.0,5.0,6.0`. `print_range(io, r, pre, sep, post, hdots)` uses optional parameters `pre` and `post` characters for each printed row, `sep` separator string between printed elements, `hdots` string for the horizontal ellipsis. """ function print_range(io::IO, r::AbstractRange, pre::AbstractString = " ", sep::AbstractString = ",", post::AbstractString = "", hdots::AbstractString = ",\u2026,") # horiz ellipsis # This function borrows from print_matrix() in show.jl # and should be called by show and display limit = get(io, :limit, false) sz = displaysize(io) if !haskey(io, :compact) io = IOContext(io, :compact => true) end screenheight, screenwidth = sz[1] - 4, sz[2] screenwidth -= length(pre) + length(post) postsp = "" sepsize = length(sep) m = 1 # treat the range as a one-row matrix n = length(r) # Figure out spacing alignments for r, but only need to examine the # left and right edge columns, as many as could conceivably fit on the # screen, with the middle columns summarized by horz, vert, or diag ellipsis maxpossiblecols = div(screenwidth, 1+sepsize) # assume each element is at least 1 char + 1 separator colsr = n <= maxpossiblecols ? (1:n) : [1:div(maxpossiblecols,2)+1; (n-div(maxpossiblecols,2)):n] rowmatrix = reshape(r[colsr], 1, length(colsr)) # treat the range as a one-row matrix for print_matrix_row A = alignment(io, rowmatrix, 1:m, 1:length(rowmatrix), screenwidth, screenwidth, sepsize) # how much space range takes if n <= length(A) # cols fit screen, so print out all elements print(io, pre) # put in pre chars print_matrix_row(io,rowmatrix,A,1,1:n,sep) # the entire range print(io, post) # add the post characters else # cols don't fit so put horiz ellipsis in the middle # how many chars left after dividing width of screen in half # and accounting for the horiz ellipsis c = div(screenwidth-length(hdots)+1,2)+1 # chars remaining for each side of rowmatrix alignR = reverse(alignment(io, rowmatrix, 1:m, length(rowmatrix):-1:1, c, c, sepsize)) # which cols of rowmatrix to put on the right c = screenwidth - sum(map(sum,alignR)) - (length(alignR)-1)*sepsize - length(hdots) alignL = alignment(io, rowmatrix, 1:m, 1:length(rowmatrix), c, c, sepsize) # which cols of rowmatrix to put on the left print(io, pre) # put in pre chars print_matrix_row(io, rowmatrix,alignL,1,1:length(alignL),sep) # left part of range print(io, hdots) # horizontal ellipsis print_matrix_row(io, rowmatrix,alignR,1,length(rowmatrix)-length(alignR)+1:length(rowmatrix),sep) # right part of range print(io, post) # post chars end end ## interface implementations size(r::AbstractRange) = (length(r),) isempty(r::StepRange) = (r.start != r.stop) & ((r.step > zero(r.step)) != (r.stop > r.start)) isempty(r::AbstractUnitRange) = first(r) > last(r) isempty(r::StepRangeLen) = length(r) == 0 isempty(r::LinRange) = length(r) == 0 """ step(r) Get the step size of an [`AbstractRange`](@ref) object. # Examples ```jldoctest julia> step(1:10) 1 julia> step(1:2:10) 2 julia> step(2.5:0.3:10.9) 0.3 julia> step(range(2.5, stop=10.9, length=85)) 0.1 ``` """ step(r::StepRange) = r.step step(r::AbstractUnitRange{T}) where{T} = oneunit(T) - zero(T) step(r::StepRangeLen{T}) where {T} = T(r.step) step(r::LinRange) = (last(r)-first(r))/r.lendiv step_hp(r::StepRangeLen) = r.step step_hp(r::AbstractRange) = step(r) unsafe_length(r::AbstractRange) = length(r) # generic fallback function unsafe_length(r::StepRange) n = Integer(div((r.stop - r.start) + r.step, r.step)) isempty(r) ? zero(n) : n end length(r::StepRange) = unsafe_length(r) unsafe_length(r::AbstractUnitRange) = Integer(last(r) - first(r) + step(r)) unsafe_length(r::OneTo) = Integer(r.stop - zero(r.stop)) length(r::AbstractUnitRange) = unsafe_length(r) length(r::OneTo) = unsafe_length(r) length(r::StepRangeLen) = r.len length(r::LinRange) = r.len # Needed to fold the `firstindex` call in SimdLoop.simd_index firstindex(::UnitRange) = 1 firstindex(::StepRange) = 1 firstindex(::LinRange) = 1 function length(r::StepRange{T}) where T<:Union{Int,UInt,Int64,UInt64} isempty(r) && return zero(T) if r.step > 1 return checked_add(convert(T, div(unsigned(r.stop - r.start), r.step)), one(T)) elseif r.step < -1 return checked_add(convert(T, div(unsigned(r.start - r.stop), -r.step)), one(T)) elseif r.step > 0 return checked_add(div(checked_sub(r.stop, r.start), r.step), one(T)) else return checked_add(div(checked_sub(r.start, r.stop), -r.step), one(T)) end end function length(r::AbstractUnitRange{T}) where T<:Union{Int,Int64} @_inline_meta checked_add(checked_sub(last(r), first(r)), one(T)) end length(r::OneTo{T}) where {T<:Union{Int,Int64}} = T(r.stop) length(r::AbstractUnitRange{T}) where {T<:Union{UInt,UInt64}} = r.stop < r.start ? zero(T) : checked_add(last(r) - first(r), one(T)) # some special cases to favor default Int type let smallint = (Int === Int64 ? Union{Int8,UInt8,Int16,UInt16,Int32,UInt32} : Union{Int8,UInt8,Int16,UInt16}) global length function length(r::StepRange{<:smallint}) isempty(r) && return Int(0) div(Int(r.stop)+Int(r.step) - Int(r.start), Int(r.step)) end length(r::AbstractUnitRange{<:smallint}) = Int(last(r)) - Int(first(r)) + 1 length(r::OneTo{<:smallint}) = Int(r.stop) end first(r::OrdinalRange{T}) where {T} = convert(T, r.start) first(r::OneTo{T}) where {T} = oneunit(T) first(r::StepRangeLen) = unsafe_getindex(r, 1) first(r::LinRange) = r.start last(r::OrdinalRange{T}) where {T} = convert(T, r.stop) last(r::StepRangeLen) = unsafe_getindex(r, length(r)) last(r::LinRange) = r.stop minimum(r::AbstractUnitRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : first(r) maximum(r::AbstractUnitRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : last(r) minimum(r::AbstractRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : min(first(r), last(r)) maximum(r::AbstractRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : max(first(r), last(r)) extrema(r::AbstractRange) = (minimum(r), maximum(r)) # Ranges are immutable copy(r::AbstractRange) = r ## iteration function iterate(r::Union{LinRange,StepRangeLen}, i::Int=1) @_inline_meta length(r) < i && return nothing unsafe_getindex(r, i), i + 1 end iterate(r::OrdinalRange) = isempty(r) ? nothing : (first(r), first(r)) function iterate(r::OrdinalRange{T}, i) where {T} @_inline_meta i == last(r) && return nothing next = convert(T, i + step(r)) (next, next) end ## indexing _in_unit_range(v::UnitRange, val, i::Integer) = i > 0 && val <= v.stop && val >= v.start function getindex(v::UnitRange{T}, i::Integer) where T @_inline_meta val = convert(T, v.start + (i - 1)) @boundscheck _in_unit_range(v, val, i) || throw_boundserror(v, i) val end const OverflowSafe = Union{Bool,Int8,Int16,Int32,Int64,Int128, UInt8,UInt16,UInt32,UInt64,UInt128} function getindex(v::UnitRange{T}, i::Integer) where {T<:OverflowSafe} @_inline_meta val = v.start + (i - 1) @boundscheck _in_unit_range(v, val, i) || throw_boundserror(v, i) val % T end function getindex(v::OneTo{T}, i::Integer) where T @_inline_meta @boundscheck ((i > 0) & (i <= v.stop)) || throw_boundserror(v, i) convert(T, i) end function getindex(v::AbstractRange{T}, i::Integer) where T @_inline_meta ret = convert(T, first(v) + (i - 1)*step_hp(v)) ok = ifelse(step(v) > zero(step(v)), (ret <= v.stop) & (ret >= v.start), (ret <= v.start) & (ret >= v.stop)) @boundscheck ((i > 0) & ok) || throw_boundserror(v, i) ret end function getindex(r::Union{StepRangeLen,LinRange}, i::Integer) @_inline_meta @boundscheck checkbounds(r, i) unsafe_getindex(r, i) end # This is separate to make it useful even when running with --check-bounds=yes function unsafe_getindex(r::StepRangeLen{T}, i::Integer) where T u = i - r.offset T(r.ref + u*r.step) end function _getindex_hiprec(r::StepRangeLen, i::Integer) # without rounding by T u = i - r.offset r.ref + u*r.step end function unsafe_getindex(r::LinRange, i::Integer) lerpi(i-1, r.lendiv, r.start, r.stop) end function lerpi(j::Integer, d::Integer, a::T, b::T) where T @_inline_meta t = j/d T((1-t)*a + t*b) end getindex(r::AbstractRange, ::Colon) = copy(r) function getindex(r::AbstractUnitRange, s::AbstractUnitRange{<:Integer}) @_inline_meta @boundscheck checkbounds(r, s) f = first(r) st = oftype(f, f + first(s)-1) range(st, length=length(s)) end function getindex(r::OneTo{T}, s::OneTo) where T @_inline_meta @boundscheck checkbounds(r, s) OneTo(T(s.stop)) end function getindex(r::AbstractUnitRange, s::StepRange{<:Integer}) @_inline_meta @boundscheck checkbounds(r, s) st = oftype(first(r), first(r) + s.start-1) range(st, step=step(s), length=length(s)) end function getindex(r::StepRange, s::AbstractRange{<:Integer}) @_inline_meta @boundscheck checkbounds(r, s) st = oftype(r.start, r.start + (first(s)-1)*step(r)) range(st, step=step(r)*step(s), length=length(s)) end function getindex(r::StepRangeLen{T}, s::OrdinalRange{<:Integer}) where {T} @_inline_meta @boundscheck checkbounds(r, s) # Find closest approach to offset by s ind = LinearIndices(s) offset = max(min(1 + round(Int, (r.offset - first(s))/step(s)), last(ind)), first(ind)) ref = _getindex_hiprec(r, first(s) + (offset-1)*step(s)) return StepRangeLen{T}(ref, r.step*step(s), length(s), offset) end function getindex(r::LinRange, s::OrdinalRange{<:Integer}) @_inline_meta @boundscheck checkbounds(r, s) vfirst = unsafe_getindex(r, first(s)) vlast = unsafe_getindex(r, last(s)) return LinRange(vfirst, vlast, length(s)) end show(io::IO, r::AbstractRange) = print(io, repr(first(r)), ':', repr(step(r)), ':', repr(last(r))) show(io::IO, r::UnitRange) = print(io, repr(first(r)), ':', repr(last(r))) show(io::IO, r::OneTo) = print(io, "Base.OneTo(", r.stop, ")") ==(r::T, s::T) where {T<:AbstractRange} = (first(r) == first(s)) & (step(r) == step(s)) & (last(r) == last(s)) ==(r::OrdinalRange, s::OrdinalRange) = (first(r) == first(s)) & (step(r) == step(s)) & (last(r) == last(s)) ==(r::T, s::T) where {T<:Union{StepRangeLen,LinRange}} = (first(r) == first(s)) & (length(r) == length(s)) & (last(r) == last(s)) ==(r::Union{StepRange{T},StepRangeLen{T,T}}, s::Union{StepRange{T},StepRangeLen{T,T}}) where {T} = (first(r) == first(s)) & (last(r) == last(s)) & (step(r) == step(s)) function ==(r::AbstractRange, s::AbstractRange) lr = length(r) if lr != length(s) return false end yr, ys = iterate(r), iterate(s) while yr !== nothing yr[1] == ys[1] || return false yr, ys = iterate(r, yr[2]), iterate(s, ys[2]) end return true end intersect(r::OneTo, s::OneTo) = OneTo(min(r.stop,s.stop)) intersect(r::AbstractUnitRange{<:Integer}, s::AbstractUnitRange{<:Integer}) = max(first(r),first(s)):min(last(r),last(s)) intersect(i::Integer, r::AbstractUnitRange{<:Integer}) = i < first(r) ? (first(r):i) : i > last(r) ? (i:last(r)) : (i:i) intersect(r::AbstractUnitRange{<:Integer}, i::Integer) = intersect(i, r) function intersect(r::AbstractUnitRange{<:Integer}, s::StepRange{<:Integer}) if isempty(s) range(first(r), length=0) elseif step(s) == 0 intersect(first(s), r) elseif step(s) < 0 intersect(r, reverse(s)) else sta = first(s) ste = step(s) sto = last(s) lo = first(r) hi = last(r) i0 = max(sta, lo + mod(sta - lo, ste)) i1 = min(sto, hi - mod(hi - sta, ste)) i0:ste:i1 end end function intersect(r::StepRange{<:Integer}, s::AbstractUnitRange{<:Integer}) if step(r) < 0 reverse(intersect(s, reverse(r))) else intersect(s, r) end end function intersect(r::StepRange, s::StepRange) if isempty(r) || isempty(s) return range(first(r), step=step(r), length=0) elseif step(s) < 0 return intersect(r, reverse(s)) elseif step(r) < 0 return reverse(intersect(reverse(r), s)) end start1 = first(r) step1 = step(r) stop1 = last(r) start2 = first(s) step2 = step(s) stop2 = last(s) a = lcm(step1, step2) # if a == 0 # # One or both ranges have step 0. # if step1 == 0 && step2 == 0 # return start1 == start2 ? r : AbstractRange(start1, 0, 0) # elseif step1 == 0 # return start2 <= start1 <= stop2 && rem(start1 - start2, step2) == 0 ? r : AbstractRange(start1, 0, 0) # else # return start1 <= start2 <= stop1 && rem(start2 - start1, step1) == 0 ? (start2:step1:start2) : AbstractRange(start1, step1, 0) # end # end g, x, y = gcdx(step1, step2) if rem(start1 - start2, g) != 0 # Unaligned, no overlap possible. return range(start1, step=a, length=0) end z = div(start1 - start2, g) b = start1 - x * z * step1 # Possible points of the intersection of r and s are # ..., b-2a, b-a, b, b+a, b+2a, ... # Determine where in the sequence to start and stop. m = max(start1 + mod(b - start1, a), start2 + mod(b - start2, a)) n = min(stop1 - mod(stop1 - b, a), stop2 - mod(stop2 - b, a)) m:a:n end function intersect(r1::AbstractRange, r2::AbstractRange, r3::AbstractRange, r::AbstractRange...) i = intersect(intersect(r1, r2), r3) for t in r i = intersect(i, t) end i end # _findin (the index of intersection) function _findin(r::AbstractRange{<:Integer}, span::AbstractUnitRange{<:Integer}) local ifirst local ilast fspan = first(span) lspan = last(span) fr = first(r) lr = last(r) sr = step(r) if sr > 0 ifirst = fr >= fspan ? 1 : ceil(Integer,(fspan-fr)/sr)+1 ilast = lr <= lspan ? length(r) : length(r) - ceil(Integer,(lr-lspan)/sr) elseif sr < 0 ifirst = fr <= lspan ? 1 : ceil(Integer,(lspan-fr)/sr)+1 ilast = lr >= fspan ? length(r) : length(r) - ceil(Integer,(lr-fspan)/sr) else ifirst = fr >= fspan ? 1 : length(r)+1 ilast = fr <= lspan ? length(r) : 0 end r isa AbstractUnitRange ? (ifirst:ilast) : (ifirst:1:ilast) end ## linear operations on ranges ## -(r::OrdinalRange) = range(-first(r), step=-step(r), length=length(r)) -(r::StepRangeLen{T,R,S}) where {T,R,S} = StepRangeLen{T,R,S}(-r.ref, -r.step, length(r), r.offset) -(r::LinRange) = LinRange(-r.start, -r.stop, length(r)) # promote eltype if at least one container wouldn't change, otherwise join container types. el_same(::Type{T}, a::Type{<:AbstractArray{T,n}}, b::Type{<:AbstractArray{T,n}}) where {T,n} = a el_same(::Type{T}, a::Type{<:AbstractArray{T,n}}, b::Type{<:AbstractArray{S,n}}) where {T,S,n} = a el_same(::Type{T}, a::Type{<:AbstractArray{S,n}}, b::Type{<:AbstractArray{T,n}}) where {T,S,n} = b el_same(::Type, a, b) = promote_typejoin(a, b) promote_rule(a::Type{UnitRange{T1}}, b::Type{UnitRange{T2}}) where {T1,T2} = el_same(promote_type(T1,T2), a, b) UnitRange{T}(r::UnitRange{T}) where {T<:Real} = r UnitRange{T}(r::UnitRange) where {T<:Real} = UnitRange{T}(r.start, r.stop) promote_rule(a::Type{OneTo{T1}}, b::Type{OneTo{T2}}) where {T1,T2} = el_same(promote_type(T1,T2), a, b) OneTo{T}(r::OneTo{T}) where {T<:Integer} = r OneTo{T}(r::OneTo) where {T<:Integer} = OneTo{T}(r.stop) promote_rule(a::Type{UnitRange{T1}}, ::Type{UR}) where {T1,UR<:AbstractUnitRange} = promote_rule(a, UnitRange{eltype(UR)}) UnitRange{T}(r::AbstractUnitRange) where {T<:Real} = UnitRange{T}(first(r), last(r)) UnitRange(r::AbstractUnitRange) = UnitRange(first(r), last(r)) AbstractUnitRange{T}(r::AbstractUnitRange{T}) where {T} = r AbstractUnitRange{T}(r::UnitRange) where {T} = UnitRange{T}(r) AbstractUnitRange{T}(r::OneTo) where {T} = OneTo{T}(r) promote_rule(::Type{StepRange{T1a,T1b}}, ::Type{StepRange{T2a,T2b}}) where {T1a,T1b,T2a,T2b} = el_same(promote_type(T1a,T2a), # el_same only operates on array element type, so just promote second type parameter StepRange{T1a, promote_type(T1b,T2b)}, StepRange{T2a, promote_type(T1b,T2b)}) StepRange{T1,T2}(r::StepRange{T1,T2}) where {T1,T2} = r promote_rule(a::Type{StepRange{T1a,T1b}}, ::Type{UR}) where {T1a,T1b,UR<:AbstractUnitRange} = promote_rule(a, StepRange{eltype(UR), eltype(UR)}) StepRange{T1,T2}(r::AbstractRange) where {T1,T2} = StepRange{T1,T2}(convert(T1, first(r)), convert(T2, step(r)), convert(T1, last(r))) StepRange(r::AbstractUnitRange{T}) where {T} = StepRange{T,T}(first(r), step(r), last(r)) (::Type{StepRange{T1,T2} where T1})(r::AbstractRange) where {T2} = StepRange{eltype(r),T2}(r) promote_rule(::Type{StepRangeLen{T1,R1,S1}},::Type{StepRangeLen{T2,R2,S2}}) where {T1,T2,R1,R2,S1,S2} = el_same(promote_type(T1,T2), StepRangeLen{T1,promote_type(R1,R2),promote_type(S1,S2)}, StepRangeLen{T2,promote_type(R1,R2),promote_type(S1,S2)}) StepRangeLen{T,R,S}(r::StepRangeLen{T,R,S}) where {T,R,S} = r StepRangeLen{T,R,S}(r::StepRangeLen) where {T,R,S} = StepRangeLen{T,R,S}(convert(R, r.ref), convert(S, r.step), length(r), r.offset) StepRangeLen{T}(r::StepRangeLen) where {T} = StepRangeLen(convert(T, r.ref), convert(T, r.step), length(r), r.offset) promote_rule(a::Type{StepRangeLen{T,R,S}}, ::Type{OR}) where {T,R,S,OR<:AbstractRange} = promote_rule(a, StepRangeLen{eltype(OR), eltype(OR), eltype(OR)}) StepRangeLen{T,R,S}(r::AbstractRange) where {T,R,S} = StepRangeLen{T,R,S}(R(first(r)), S(step(r)), length(r)) StepRangeLen{T}(r::AbstractRange) where {T} = StepRangeLen(T(first(r)), T(step(r)), length(r)) StepRangeLen(r::AbstractRange) = StepRangeLen{eltype(r)}(r) promote_rule(a::Type{LinRange{T1}}, b::Type{LinRange{T2}}) where {T1,T2} = el_same(promote_type(T1,T2), a, b) LinRange{T}(r::LinRange{T}) where {T} = r LinRange{T}(r::AbstractRange) where {T} = LinRange{T}(first(r), last(r), length(r)) LinRange(r::AbstractRange{T}) where {T} = LinRange{T}(r) promote_rule(a::Type{LinRange{T}}, ::Type{OR}) where {T,OR<:OrdinalRange} = promote_rule(a, LinRange{eltype(OR)}) promote_rule(::Type{LinRange{L}}, b::Type{StepRangeLen{T,R,S}}) where {L,T,R,S} = promote_rule(StepRangeLen{L,L,L}, b) ## concatenation ## function vcat(rs::AbstractRange{T}...) where T n::Int = 0 for ra in rs n += length(ra) end a = Vector{T}(undef, n) i = 1 for ra in rs, x in ra @inbounds a[i] = x i += 1 end return a end Array{T,1}(r::AbstractRange{T}) where {T} = vcat(r) collect(r::AbstractRange) = vcat(r) reverse(r::OrdinalRange) = (:)(last(r), -step(r), first(r)) reverse(r::StepRangeLen) = StepRangeLen(r.ref, -r.step, length(r), length(r)-r.offset+1) reverse(r::LinRange) = LinRange(r.stop, r.start, length(r)) ## sorting ## issorted(r::AbstractUnitRange) = true issorted(r::AbstractRange) = length(r) <= 1 || step(r) >= zero(step(r)) sort(r::AbstractUnitRange) = r sort!(r::AbstractUnitRange) = r sort(r::AbstractRange) = issorted(r) ? r : reverse(r) sortperm(r::AbstractUnitRange) = 1:length(r) sortperm(r::AbstractRange) = issorted(r) ? (1:1:length(r)) : (length(r):-1:1) function sum(r::AbstractRange{<:Real}) l = length(r) # note that a little care is required to avoid overflow in l*(l-1)/2 return l * first(r) + (iseven(l) ? (step(r) * (l-1)) * (l>>1) : (step(r) * l) * ((l-1)>>1)) end function _in_range(x, r::AbstractRange) if step(r) == 0 return !isempty(r) && first(r) == x else n = round(Integer, (x - first(r)) / step(r)) + 1 return n >= 1 && n <= length(r) && r[n] == x end end in(x::Real, r::AbstractRange{<:Real}) = _in_range(x, r) # This method needs to be defined separately since -(::T, ::T) can be implemented # even if -(::T, ::Real) is not in(x::T, r::AbstractRange{T}) where {T} = _in_range(x, r) in(x::Integer, r::AbstractUnitRange{<:Integer}) = (first(r) <= x) & (x <= last(r)) in(x::Real, r::AbstractRange{T}) where {T<:Integer} = isinteger(x) && !isempty(r) && x >= minimum(r) && x <= maximum(r) && (mod(convert(T,x),step(r))-mod(first(r),step(r)) == 0) in(x::AbstractChar, r::AbstractRange{<:AbstractChar}) = !isempty(r) && x >= minimum(r) && x <= maximum(r) && (mod(Int(x) - Int(first(r)), step(r)) == 0) # Addition/subtraction of ranges function _define_range_op(@nospecialize f) @eval begin function $f(r1::OrdinalRange, r2::OrdinalRange) r1l = length(r1) (r1l == length(r2) || throw(DimensionMismatch("argument dimensions must match"))) range($f(first(r1), first(r2)), step=$f(step(r1), step(r2)), length=r1l) end function $f(r1::LinRange{T}, r2::LinRange{T}) where T len = r1.len (len == r2.len || throw(DimensionMismatch("argument dimensions must match"))) LinRange{T}(convert(T, $f(first(r1), first(r2))), convert(T, $f(last(r1), last(r2))), len) end $f(r1::Union{StepRangeLen, OrdinalRange, LinRange}, r2::Union{StepRangeLen, OrdinalRange, LinRange}) = $f(promote(r1, r2)...) end end _define_range_op(:+) _define_range_op(:-) function +(r1::StepRangeLen{T,S}, r2::StepRangeLen{T,S}) where {T,S} len = length(r1) (len == length(r2) || throw(DimensionMismatch("argument dimensions must match"))) StepRangeLen(first(r1)+first(r2), step(r1)+step(r2), len) end -(r1::StepRangeLen, r2::StepRangeLen) = +(r1, -r2)