% Generated by roxygen2: do not edit by hand % Please edit documentation in R/p_rope.R \name{p_rope} \alias{p_rope} \alias{p_rope.numeric} \alias{p_rope.data.frame} \alias{p_rope.BFBayesFactor} \alias{p_rope.stanreg} \alias{p_rope.brmsfit} \title{ROPE-based p-value} \usage{ p_rope(x, ...) \method{p_rope}{numeric}(x, range = "default", precision = 0.1, ...) \method{p_rope}{data.frame}(x, range = "default", precision = 0.1, ...) \method{p_rope}{BFBayesFactor}(x, range = "default", precision = 0.1, ...) \method{p_rope}{stanreg}(x, range = "default", precision = 0.1, effects = c("fixed", "random", "all"), parameters = NULL, ...) \method{p_rope}{brmsfit}(x, range = "default", precision = 0.1, effects = c("fixed", "random", "all"), component = c("conditional", "zi", "zero_inflated", "all"), parameters = NULL, ...) } \arguments{ \item{x}{Vector representing a posterior distribution. Can also be a \code{stanreg} or \code{brmsfit} model.} \item{...}{Currently not used.} \item{range}{ROPE's lower and higher bounds. Should be a list of two values (e.g., \code{c(-0.1, 0.1)}) or \code{"default"}. If \code{"default"}, the range is set to \code{c(0.1, 0.1)} if input is a vector and \code{x +- 0.1*SD(response)} if a Bayesian model is provided.} \item{precision}{The precision by which to explore the ROPE space (in percentage). Lower values increase the precision of the returned p value but can be quite computationaly costly.} \item{effects}{Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.} \item{parameters}{Regular expression pattern that describes the parameters that should be returned. Meta-parameters (like \code{lp__} or \code{prior_}) are filtered by default, so only parameters that typically appear in the \code{summary()} are returned. Use \code{parameters} to select specific parameters for the output.} \item{component}{Should results for all parameters, parameters for the conditional model or the zero-inflated part of the model be returned? May be abbreviated. Only applies to \pkg{brms}-models.} } \description{ Compute the ROPE-based p-value, an exploratory index representing the maximum percentage of \link[=hdi]{HDI} that does not contain (positive values) or is entirely contained (negative values) in the negligible values space defined by the \link[=rope]{ROPE}. It differs from the ROPE percentage, \emph{i.e.}, from the proportion of a given CI in the ROPE, as it represents the maximum CI to reach a ROPE proportion of 0\% (positive values) or 100\% (negative values). A ROPE-based \emph{p} of 97\% means that there is a probability of .97 that a parameter (described by its posterior distribution) is outside the ROPE. On the contrary, a ROPE-based p of -97\% means that there is a probability of .97 that the parameter is inside the ROPE. } \examples{ library(bayestestR) # precision = 1 is used to speed up examples... p_rope( x = rnorm(1000, mean = 1, sd = 1), range = c(-0.1, 0.1), precision = 1 ) df <- data.frame(replicate(4, rnorm(100))) p_rope(df, precision = 1) library(rstanarm) model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200) p_rope(model, precision = 1) \dontrun{ library(brms) model <- brms::brm(mpg ~ wt + cyl, data = mtcars) p_rope(model) library(BayesFactor) bf <- ttestBF(x = rnorm(100, 1, 1)) p_rope(bf) } }