%Code will produce a plot showing the number of infants required to achieve a % power of 95% for different levels of intervention effect comparing 2 groups, % with and without an intervention. The power is computed when the groups are % compared with and without taking into account individual nociceptive sensitivity. % Simulations are run with increasing sample size until a power of 95% is achieved. % As Figure 2C and D. % Please note that this code takes some time to run if the intervention % effect is low. To replicate the figures in the paper exactly please use [5:5:95] % The level of intervention effect can be adjusted on line 24. % Progress on the simulations is displayed in the command window. % All simulations with nociceptive senstivity are performed first, followed % by those without accounting for nociceptive senstivity. % Code produced by Caroline Hartley August 2020 % Please see the related paper and cite as: % %% intervention_effect=[5:5:95]; %percentage intervention effect %initialise variables to store the number of infants needed per drug level % to reach a power of 95% number_for_95power_with_nociceptivesensitivity=zeros(size(intervention_effect)); number_for_95power_no_nociceptivesensitivity=zeros(size(intervention_effect)); %run loop taking into account nociceptive senstivity % for each drug level the number of subjects per group is increased by 1 % (starting with one infant per group) until 95 power is reached for m=1:length(intervention_effect) disp(strcat('running simulations with nociceptive sensitivity and intervention effect of: ',num2str(intervention_effect(m)))) power=0; %initialise power variable no_subs=1; %start with 1 infant per group while power<95 no_subs=no_subs+1; %increase number of subjects by 1 each time until power is 95 n_p=no_subs; n_a=n_p; noise_level_iter=1; drug_reduction=intervention_effect(m); iter_n=1000; p_store_with_nociceptivesensitivity=zeros(iter_n,1); for iter=1:iter_n rand('seed',iter) %seed variables for replicability randn('seed',iter) %simulate individual nociceptive sensitivity (pinprick responses) pp_p=1.4*rand(n_p,1)+0.15; %placebo data simulated nociceptive sensitivity pp_a=1.4*rand(n_a,1)+0.15; %analgesic data simulated nociceptive sensitivity %simulate lance responses from these nociceptive sensitivty values %Related to the relationship found in Study 1 - see Methods l_p_estimate=2.62*pp_p-0.75; %placebo lance data - estimated data from linear regression l_a_estimate=2.62*pp_a-0.75; %analgesic lance data %reduce l_a data by drug effect l_a=(1-(drug_reduction/100))*l_a_estimate; %add noise noise=noise_level_iter*0.37; %noise relates to standard deviation of residuals. Standard deviation of residuals in study 1 was 0.37 l_p=l_p_estimate+noise*randn(n_p,1); l_a=l_a+noise*randn(n_a,1); %compare data accounting for individual nociceptive sensitivity lance=[l_p;l_a]; pp=[pp_p;pp_a]; modality=[ones(length(l_p),1);2*ones(length(l_a),1)]; tbl=table(lance,pp,modality,'VariableNames',{'Lance','Pinprick','modality'}); tbl.modality = categorical(tbl.modality); lm = fitlm(tbl,'Lance~Pinprick+modality'); p_store_with_nociceptivesensitivity(iter)=table2array(lm.Coefficients(3,4)); end %find the power power=length(find(p_store_with_nociceptivesensitivity<0.05))/iter_n*100; end number_for_95power_with_nociceptivesensitivity(m)=no_subs; end %run loop taking into account nociceptive senstivity % for each drug level the number of subjects per group is increased by 1 % (starting with one infant per group) until 95 power is reached for m=1:length(intervention_effect) disp(strcat('running simulations without nociceptive sensitivity and intervention effect of: ',num2str(intervention_effect(m)))) power=0; %initialise power variable no_subs=1; %start with 1 infant per group while power<95 no_subs=no_subs+1; %increase number of subjects by 1 each time until power is 95 n_p=no_subs; n_a=n_p; noise_level_iter=1; drug_reduction=intervention_effect(m); iter_n=1000; p_store_no_nociceptivesensitivity=zeros(iter_n,1); for iter=1:iter_n rand('seed',iter) %seed variables for replicability randn('seed',iter) %simulate individual nociceptive sensitivity (pinprick responses) pp_p=1.4*rand(n_p,1)+0.15; %placebo data simulated nociceptive sensitivity pp_a=1.4*rand(n_a,1)+0.15; %analgesic data simulated nociceptive sensitivity %simulate lance responses from these nociceptive sensitivty values %Related to the relationship found in Study 1 - see Methods l_p_estimate=2.62*pp_p-0.75; %placebo lance data - estimated data from linear regression l_a_estimate=2.62*pp_a-0.75; %analgesic lance data %reduce l_a data by drug effect l_a=(1-(drug_reduction/100))*l_a_estimate; %add noise noise=noise_level_iter*0.37; %noise relates to standard deviation of residuals. Standard deviation of residuals in study 1 was 0.37 l_p=l_p_estimate+noise*randn(n_p,1); l_a=l_a+noise*randn(n_a,1); %compare data without accounting for individual nociceptive sensitivity [~,p]=ttest2(l_p,l_a); p_store_no_nociceptivesensitivity(iter)=p; end %find the power power=length(find(p_store_no_nociceptivesensitivity<0.05))/iter_n*100; end number_for_95power_no_nociceptivesensitivity(m)=no_subs; end %% figure; semilogy(intervention_effect,number_for_95power_no_nociceptivesensitivity,'b') hold on semilogy(intervention_effect,number_for_95power_with_nociceptivesensitivity,'r') ylabel('Number of infants','fontsize',15) xlabel('Intervention effect','fontsize',15) set(gca,'fontsize',15) xlim([min(intervention_effect),max(intervention_effect)]) legend('Without nociceptive sensitivity','With nociceptive sensitivity') figure; plot(intervention_effect,(number_for_95power_no_nociceptivesensitivity-number_for_95power_with_nociceptivesensitivity)./number_for_95power_no_nociceptivesensitivity*100,'k') ylabel('Percentage reduction','fontsize',15) xlabel('Intervention effect','fontsize',15) set(gca,'fontsize',15) xlim([min(intervention_effect),max(intervention_effect)])