function W = emgr(f,g,s,t,w,pr,nf,ut,us,xs,um,xm,dp) %% emgr - EMpirical GRamian Framework % % project: emgr ( https://gramian.de ) % version: 5.7 ( 2019-02-26 ) % authors: Christian Himpe ( 0000-0003-2194-6754 ) % license: BSD-2-Clause License ( opensource.org/licenses/BSD-2-Clause ) % summary: Empirical system Gramians for (nonlinear) input-output systems. % % USAGE: % % W = emgr(f,g,s,t,w,[pr],[nf],[ut],[us],[xs],[um],[xm],[dp]) % % DESCRIPTION: % % Empirical gramian matrix and empirical covariance matrix computation % for model reduction, decentralized control, nonlinearity quantification, % sensitivity analysis, parameter identification, uncertainty quantification & % combined state and parameter reduction of large-scale input-output systems. % Data-driven analysis of input-output coherence and system-gramian-based % nonlinear model order reduction. Compatible with OCTAVE and MATLAB. % % ALGORITHM: % % C. Himpe (2018). emgr - The Empirical Gramian Framework. Algorithms 11(7):91 % % % ARGUMENTS: % % f {handle} vector field handle: x' = f(x,u,p,t) % g {handle} output function handle: y = g(x,u,p,t) % s {vector} system dimensions: [inputs,states,outputs] % t {vector} time discretization: [time-step,time-horizon] % w {char} single character encoding gramian type: % * 'c' empirical controllability gramian (Wc) % * 'o' empirical observability gramian (Wo) % * 'x' empirical cross gramian (Wx aka Wco or Xcg) % * 'y' empirical linear cross gramian (Wy) % * 's' empirical sensitivity gramian (Ws) % * 'i' empirical identifiability gramian (Wi) % * 'j' empirical joint gramian (Wj) % pr {matrix|0} parameters, each column is one set % nf {vector|0} option flags, twelve component vector, default zero: % * center: none(0), steady(1), last(2), mean(3), rms(4), midr(5), geom(6) % * input scales: single(0), linear(1), geom(2), log(3), sparse(4) % * state scales: single(0), linear(1), geom(2), log(3), sparse(4) % * input rotations: unit(0), single(1) % * state rotations: unit(0), single(1) % * normalization (only: Wc, Wo, Wx, Wy): none(0), Jacobi(1), steady(2) % * state gramian variant: % * cross gramian type (only: Wx, Wy, Wj): regular(0), non-symmetric(1) % * observability gramian type (only: Wo, Wi): regular(0), averaged(1) % * extra input (only: Wo, Wx, Ws, Wi, Wj): none(0), yes(1) % * parameter centering (only: Ws, Wi, Wj): none(0), linear(1), log(2) % * parameter gramian variant: % * averaging type (only: Ws): input-state(0), input-output(1) % * Schur-complement (only: Wi, Wj): detailed(0), approximate(1) % * cross gramian partition size (only: Wx, Wj): full(0), partitioned(0) % ut {handle|'i'} input function handle: u_t = ut(t) or character: % * 'i' delta impulse input % * 's' step input / load vector / source term % * 'c' decaying exponential chirp input % * 'r' pseudo-random binary input % us {vector|0} steady-state input % xs {vector|0} steady-state and nominal initial state x_0 % um {matrix|1} input scales % xm {matrix|1} initial-state scales % dp {handle|@mtimes} inner product handle: xy = dp(x,y) % % RETURNS: % % W {matrix} Gramian Matrix (for: Wc, Wo, Wx, Wy) % W {cell} [State-, Parameter-] Gramian (for: Ws, Wi, Wj) % % CITE AS: % % C. Himpe (2019). emgr - EMpirical GRamian Framework (Version 5.7) % [Software]. Available from https://gramian.de . doi:10.5281/zenodo.2577980 % % KEYWORDS: % % model reduction, system gramians, empirical gramians, cross gramian, MOR % % SEE ALSO: gram (Control System Toolbox) % Integrator Handle global ODE; if not(isa(ODE,'function_handle')), ODE = @ssp2; end%if % Version Info if strcmp(f,'version'), W = 5.7; return; end%if % Default Arguments if (nargin < 6) || isempty(pr), pr = 0.0; end%if if (nargin < 7) || isempty(nf), nf = 0.0; end%if if (nargin < 8) || isempty(ut), ut = 'i'; end%if if (nargin < 9) || isempty(us), us = 0.0; end%if if (nargin < 10) || isempty(xs), xs = 0.0; end%if if (nargin < 11) || isempty(um), um = 1.0; end%if if (nargin < 12) || isempty(xm), xm = 1.0; end%if if (nargin < 13) || isempty(dp), dp = @mtimes; end%if %% SETUP % System Dimensions M = s(1); % Number of inputs N = s(2); % Number of states Q = s(3); % Number of outputs A = 0; % Number of augmented parameter states P = size(pr,1); % Dimension of parameter and number of sets K = size(pr,2); % Number of parameter-sets % Time Discretization dt = t(1); % Time-step width Tf = t(2); % Time horizon nt = floor(Tf / dt) + 1; % Number of time-steps plus initial value % Lazy Output Functional if isnumeric(g) && (g == 1), g = @id; Q = N; end%if % Augmented Parameter-States (set by parameter gramians) if (numel(s) == 4), A = s(4); end%if % Pad Flag Vector if numel(nf) < 12, nf(12) = 0; end%if % Built-in Input Functions if not(isa(ut,'function_handle')) switch lower(ut) case 's' % Step Input ut = @(t) 1; case 'c' % Decaying Exponential Chirp Input a0 = (2.0 * pi) / (4.0 * dt) * Tf / log(4.0 * (dt / Tf)); b0 = (4.0 * (dt / Tf)) ^ (1.0 / Tf); ut = @(t) 0.5 * cos(a0 * (b0 ^ t - 1.0)) + 0.5; case 'r' % Pseudo-Random Binary Input ut = @(t) randi([0,1],1,1); otherwise % Delta Impulse Input ut = @(t) (t <= dt) / dt; end%switch end%if % Lazy Optional Arguments if isscalar(us), us = repmat(us,M,1); end%if if isscalar(xs), xs = repmat(xs,N,1); end%if if isscalar(um), um = repmat(um,M,1); end%if if isscalar(xm), xm = repmat(xm,N,1); end%if % Gramian Normalization if nf(6) && (A == 0) switch nf(6) case 1 % Jacobi-type preconditioner NF = nf; NF(6) = 0; DP = @(x,y) sum(x .* y',2); % Diagonal-only pseudo-kernel WT = emgr(f,g,s,t,w,pr,NF,ut,us,xs,um,xm,DP); TX = sqrt(abs(WT)); case 2 % Steady-state preconditioner TX = xs; end%switch TX(abs(TX) < sqrt(eps)) = 1; f = @(x,u,p,t) f(TX .* x,u,p,t) ./ TX; g = @(x,u,p,t) g(TX .* x,u,p,t); xs = xs ./ TX; end%if % Non-symmetric cross Gramian or average observability Gramian if nf(7), R = 1; else, R = Q; end%if % Extra Input if nf(8), up = @(t) us + ut(t); else, up = @(t) us; end%if % Scale Sampling if size(um,2) == 1, um = um * scales(nf(2),nf(4)); end%if if size(xm,2) == 1, vm = xm(1:Q) * scales(nf(2),nf(4)); end%if if size(xm,2) == 1, xm = xm * scales(nf(3),nf(5)); end%if C = size(um,2); % Number of input scales sets D = size(xm,2); % Number of state scales sets %% GRAMIAN COMPUTATION switch lower(w) % Empirical system gramian types % Common Layout: % For each {parameter set, scale, input/state/parameter component}: % Perturb, simulate, center, normalize, accumulate % Assemble, normalize, post-process % Parameter gramians call state gramians case 'c' % Empirical Controllability Gramian W = 0; % Reserve gramian variable for k = 1:K for c = 1:C for m = find(um(:,c))' % parfor em = sparse(m + M * (A > 0),1,um(m,c),M + P,1); umc = @(t) up(t) + ut(t) .* em(1:M); pmc = pr(:,k) + em(M + 1:end); x = ODE(f,@id,t,xs,umc,pmc); x = x - avg(x,nf(1),xs); x = x / um(m,c); if A > 0 W = W + em(M + 1:end) * dp(x,x'); else W = W + dp(x,x'); end%if end%for end%for end%for W = W * (dt / (C * K)); case 'o' % Empirical Observability Gramian W = 0; % Reserve gramian variable o = zeros(R * nt,N + A); % Pre-allocate observability matrix for k = 1:K for d = 1:D for n = find(xm(:,d))' % parfor en = sparse(n,1,xm(n,d),N + P,1); xnd = xs + en(1:N); pnd = pr(:,k) + en(N + 1:end); ys = g(xs,us,pnd,0); y = ODE(f,g,t,xnd,up,pnd); y = y - avg(y,nf(1),ys); y = y / xm(n,d); if nf(7) % Average observability gramian o(:,n) = sum(y,1)'; else % Regular observability gramian o(:,n) = y(:); end%if end%for W = W + dp(o',o); end%for end%for W = W * (dt / (D * K)); case 'x' % Empirical Cross Gramian assert((M == Q) || nf(7),'emgr: non-square system!'); i0 = 1; i1 = N + A; % Partitioned cross gramian if nf(11) > 0 sp = round(nf(11)); % Partition size ip = round(nf(12)); % Partition index i0 = i0 + (ip - 1) * sp; % Start index i1 = min(i0 + sp - 1,N); % End index if i0 > N i0 = i0 - (ceil(N / sp) * sp - N); i1 = min(i0 + sp - 1,N + A); end%if if (ip < 1) || (i0 > i1) || (i0 < 0), W = 0; return; end%if end%if W = 0; % Reserve gramian variable o = zeros(nt,i1 - i0 + 1,R); % Pre-allocate observability 3-tensor for k = 1:K for d = 1:D for n = find(xm(i0:i1,d))' en = sparse(i0 - 1 + n,1,xm(i0 - 1 + n,d),N + P,1); xnd = xs + en(1:N); pnd = pr(:,k) + en(N + 1:end); ys = g(xs,us,pnd,0); y = ODE(f,g,t,xnd,up,pnd); y = y - avg(y,nf(1),ys); y = y / xm(i0 - 1 + n,d); if nf(7) % Non-symmetric cross gramian o(:,n,1) = sum(y,1)'; else % Regular cross gramian o(:,n,:) = y'; end%if end%for for c = 1:C % parfor for m = find(um(:,c))' em = sparse(m,1,um(m,c),M,1); umc = @(t) us + ut(t) .* em; x = ODE(f,@id,t,xs,umc,pr(:,k)); x = x - avg(x,nf(1),xs); x = x / um(m,c); if nf(7) % Non-symmetric cross gramian W = W + dp(x,o(:,:,1)); else % Regular cross gramian W = W + dp(x,o(:,:,m)); end%if end%for end%for end%for end%for W = W * (dt / (C * D * K)); case 'y' % Empirical Linear Cross Gramian assert((M == Q) || nf(7),'emgr: non-square system!'); assert(C == size(vm,2),'emgr: scale count mismatch!'); W = 0; % Reserve gramian variable a = zeros(nt,N,R); % Pre-allocate adjoint 3-tensor for k = 1:K for c = 1:C for q = find(vm(:,c))' em = sparse(q,1,vm(q,c),Q,1); vqc = @(t) us + ut(t) .* em; z = ODE(g,@id,t,xs,vqc,pr(:,k)); z = z - avg(z,nf(1),xs); z = z / vm(q,c); if nf(7) % Non-symmetric cross gramian a(:,:,1) = a(:,:,1) + z'; else % Regular cross gramian a(:,:,q) = z'; end%if end%for for m = find(um(:,c))' % parfor em = sparse(m,1,um(m,c),M,1); umc = @(t) us + ut(t) .* em; x = ODE(f,@id,t,xs,umc,pr(:,k)); x = x - avg(x,nf(1),xs); x = x / um(m,c); if nf(7) % Non-symmetric cross gramian W = W + dp(x,a(:,:,1)); else % Regular cross gramian W = W + dp(x,a(:,:,m)); end%if end%for end%for end%for W = W * (dt / (C * K)); case 's' % Empirical Sensitivity Gramian [pr,pm] = pscales(pr,nf(9),C); W{1} = emgr(f,g,[M,N,Q],t,'c',pr,nf,ut,us,xs,um,xm,dp); if not(nf(10)) % Input-state sensitivty gramian DP = @(x,y) sum(sum(x .* y')); % Trace pseudo-kernel else % Input-output sensitivity gramian DP = @(x,y) sum(reshape(y,Q,[])); % Custom pseudo-kernel Y = emgr(f,g,[M,N,Q],t,'o',pr,nf,ut,us,xs,um,xm,DP); DP = @(x,y) abs(sum(y(:) .* Y(:))); % Custom pseudo-kernel end%if W{2} = emgr(f,g,[M,N,Q,P],t,'c',pr,nf,ut,us,xs,pm,xm,DP); case 'i' % Empirical Augmented Observability Gramian [pr,pm] = pscales(pr,nf(9),D); V = emgr(f,g,[M,N,Q,P],t,'o',pr,nf,ut,us,xs,um,[xm;pm],dp); W{1} = V(1:N,1:N); % Observability gramian WM = V(1:N,N + 1:N + P); W{2} = V(N + 1:N + P,N + 1:N + P); % Identifiability gramian if not(nf(10)) W{2} = W{2} - (WM' * ainv(W{1}) * WM); end%if case 'j' % Empirical Joint Gramian [pr,pm] = pscales(pr,nf(9),D); V = emgr(f,g,[M,N,Q,P],t,'x',pr,nf,ut,us,xs,um,[xm;pm],dp); if nf(11), W = V; return; end%if % Joint gramian partition W{1} = V(1:N,1:N); % Cross gramian WM = V(1:N,N + 1:N + P); if not(nf(10)) % Cross-identifiability gramian W{2} = -0.5 * (WM' * ainv(W{1} + W{1}') * WM); else W{2} = -0.5 * (WM' * WM); end%if otherwise error('emgr: unknown gramian type!'); end%switch end %% LOCAL FUNCTION: scales function s = scales(nf1,nf2) % summary: Input and initial state perturbation scales switch nf1 case 1 % Linear s = [0.25, 0.50, 0.75, 1.0]; case 2 % Geometric s = [0.125, 0.25, 0.5, 1.0]; case 3 % Logarithmic s = [0.001, 0.01, 0.1, 1.0]; case 4 % Sparse s = [0.01, 0.50, 0.99, 1.0]; otherwise % One s = 1.0; end%switch if nf2 == 0, s = [-s,s]; end%if end %% LOCAL FUNCTION: pscales function [pr,pm] = pscales(p,nf,ns) % summary: Parameter perturbation scales assert(size(p,2) >= 2,'emgr: min and max parameter required!'); pmin = min(p,[],2); pmax = max(p,[],2); switch nf case 1 % Linear centering and scales pr = 0.5 * (pmax + pmin); pm = (pmax - pmin) * linspace(0,1.0,ns) + (pmin - pr); case 2 % Logarithmic centering and scales lmin = log(pmin); lmax = log(pmax); pr = real(exp(0.5 * (lmax + lmin))); pm = real(exp((lmax - lmin) * linspace(0,1.0,ns) + lmin)) - pr; otherwise % No centering and linear scales pr = pmin; pm = (pmax - pmin) * linspace(1.0 / ns,1.0,ns); end%switch end %% LOCAL FUNCTION: id function x = id(x,u,p,t) % summary: Output identity function ; end %% LOCAL FUNCTION: avg function a = avg(z,nf,zs) % summary: State and output trajectory centering switch nf case 1 % Steady state / output a = zs; case 2 % Final state / output a = z(:,end); case 3 % Temporal mean state / output a = mean(z,2); case 4 % Temporal root-mean-square state / output a = sqrt(mean(z .* z,2)); case 5 % Midrange state / output a = 0.5 * (max(z,[],2) - min(z,[],2)); case 6 % Geometric mean state / output a = prod(sign(z),2) .* prod(abs(z),2) .^ (1.0 / size(z,2)); otherwise % None a = 0; end%switch end %% LOCAL FUNCTION: ainv function x = ainv(m) % summary: Quadratic complexity approximate inverse matrix d = diag(m); k = find(abs(d) > sqrt(eps)); d(k) = 1.0 ./ d(k); x = m .* (-d); x = x .* (d'); x(1:numel(d) + 1:end) = d; end %% LOCAL FUNCTION: ssp2 function y = ssp2(f,g,t,x0,u,p) % summary: Low-Storage Strong-Stability-Preserving Second-Order Runge-Kutta % Configurable number of stages for enhanced stability global STAGES; if not(isscalar(STAGES)), STAGES = 3; end%if dt = t(1); nt = floor(t(2) / dt) + 1; y0 = g(x0,u(0),p,0); Q = numel(y0); % Q = N when g = id y = zeros(Q,nt); % Pre-allocate trajectory y(:,1) = y0; xk1 = x0; xk2 = x0; for k = 2:nt tk = (k - 1.5) * dt; uk = u(tk); for s = 1:(STAGES - 1) xk1 = xk1 + (dt / (STAGES - 1)) * f(xk1,uk,p,tk); end%for xk2 = xk2 + dt * f(xk1,uk,p,tk); xk2 = xk2 / STAGES; xk2 = xk2 + xk1 * ((STAGES - 1) / STAGES); xk1 = xk2; y(:,k) = g(xk1,uk,p,tk); end%for end