Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • a9a47ef
  • /
  • tests
  • /
  • test_matrix.py
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:81ed47d5c94e6c889baa3ce81e9f86c7a0e87630
directory badge Iframe embedding
swh:1:dir:0d826708ef0edee43cba04f8eeb5104c843e5183
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
test_matrix.py
import tntorch as tn
import pytest
import numpy as np
import torch
torch.set_default_dtype(torch.float64)


torch.manual_seed(1)


def test_construction():
    m = torch.rand(11 * 3, 23 * 2)

    input_dims = [11, 3]
    output_dims = [23, 2]
    ranks = [50]

    ttm = tn.TTMatrix(m, input_dims=input_dims, output_dims=output_dims, ranks=ranks)
    assert torch.allclose(m, ttm.torch())

    cpm = tn.CPMatrix(m, input_dims=input_dims, output_dims=output_dims, rank=ranks[0])
    assert torch.allclose(m, cpm.torch())


def test_tt_multiply():
    m = torch.rand(11 * 3, 23 * 2)
    v = torch.rand(30, 11 * 3)  # Note: batch = 30, 11 * 3 features

    input_dims = [11, 3]
    output_dims = [23, 2]
    ranks = [50]

    ttm = tn.TTMatrix(m, input_dims=input_dims, output_dims=output_dims, ranks=ranks)
    assert torch.allclose(v @ m, tn.tt_multiply(ttm, v))

    cpm = tn.CPMatrix(m, input_dims=input_dims, output_dims=output_dims, rank=ranks[0])
    assert torch.allclose(v @ m, tn.cp_multiply(cpm, v))


def test_trace():
    input_dims = [11, 3]
    output_dims = input_dims
    m = torch.rand(np.prod(input_dims), np.prod(output_dims))
    ranks = [50]

    ttm = tn.TTMatrix(m, input_dims=input_dims, output_dims=output_dims, ranks=ranks)
    assert torch.allclose(torch.trace(m), ttm.trace())

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top