Raw File
intrinsics.cpp
// This file is a part of Julia. License is MIT: http://julialang.org/license

namespace JL_I {
    enum intrinsic {
        // wrap and unwrap
        box=0, unbox,
        // arithmetic
        neg_int, add_int, sub_int, mul_int,
        sdiv_int, udiv_int, srem_int, urem_int, smod_int,
        neg_float, add_float, sub_float, mul_float, div_float, rem_float,
        fma_float, muladd_float,
        // fast arithmetic
        neg_float_fast, add_float_fast, sub_float_fast,
        mul_float_fast, div_float_fast, rem_float_fast,
        // same-type comparisons
        eq_int,  ne_int,
        slt_int, ult_int,
        sle_int, ule_int,
        eq_float, ne_float,
        lt_float, le_float,
        eq_float_fast, ne_float_fast,
        lt_float_fast, le_float_fast,
        fpiseq, fpislt,
        // bitwise operators
        and_int, or_int, xor_int, not_int, shl_int, lshr_int, ashr_int,
        bswap_int, ctpop_int, ctlz_int, cttz_int,
        // conversion
        sext_int, zext_int, trunc_int,
        fptoui, fptosi, uitofp, sitofp,
        fptrunc, fpext,
        // checked conversion
        checked_fptosi, checked_fptoui,
        checked_trunc_sint, checked_trunc_uint, check_top_bit,
        // checked arithmetic
        checked_sadd, checked_uadd, checked_ssub, checked_usub,
        checked_smul, checked_umul,
        nan_dom_err,
        // functions
        abs_float, copysign_float, flipsign_int, select_value,
        ceil_llvm, floor_llvm, trunc_llvm, rint_llvm,
        sqrt_llvm, powi_llvm,
        sqrt_llvm_fast,
        // pointer access
        pointerref, pointerset,
        // c interface
        ccall, cglobal, jl_alloca, llvmcall
    };
};

using namespace JL_I;

#include "ccall.cpp"

/*
  low-level intrinsics design:
  functions like add_int expect unboxed values of matching bit-length.
  every operation that can return an unboxed value does so.
  this maximizes opportunities for composing functions without
    unnecessary boxing.
  this means that box and unbox functions might do nothing except change
    the type tag of a value.
  boxing is delayed until absolutely necessary, and handled at the point
    where the box is needed.
*/

static Type *FTnbits(size_t nb)
{
#ifndef DISABLE_FLOAT16
    if (nb == 16)
        return Type::getHalfTy(jl_LLVMContext);
    else
#endif
    if (nb == 32)
        return Type::getFloatTy(jl_LLVMContext);
    else if (nb == 64)
        return Type::getDoubleTy(jl_LLVMContext);
    else if (nb == 128)
        return Type::getFP128Ty(jl_LLVMContext);
    else
        jl_error("Unsupported Float Size");
}
// convert int type to same-size float type
static Type *FT(Type *t)
{
    if (t->isFloatingPointTy())
        return t;
    return FTnbits(t->getPrimitiveSizeInBits());
}

// reinterpret-cast to float
static Value *FP(Value *v)
{
    if (v->getType()->isFloatingPointTy())
        return v;
    return builder.CreateBitCast(v, FT(v->getType()));
}

// convert float type to same-size int type
static Type *JL_INTT(Type *t)
{
    if (t->isIntegerTy())
        return t;
    if (t->isPointerTy())
        return T_size;
    if (t == T_float32) return T_int32;
    assert(t == T_float64);
    return T_int64;
}

// reinterpret-cast to int
static Value *JL_INT(Value *v)
{
    Type *t = v->getType();
    if (t->isIntegerTy())
        return v;
    if (t->isPointerTy())
        return builder.CreatePtrToInt(v, JL_INTT(t));
    return builder.CreateBitCast(v, JL_INTT(t));
}

static Value *uint_cnvt(Type *to, Value *x)
{
    Type *t = x->getType();
    if (t == to) return x;
    if (to->getPrimitiveSizeInBits() < x->getType()->getPrimitiveSizeInBits())
        return builder.CreateTrunc(x, to);
    return builder.CreateZExt(x, to);
}

#define LLVM_FP(a,b) APFloat(a,b)
static Constant *julia_const_to_llvm(jl_value_t *e, bool nested=false)
{
    jl_value_t *jt = jl_typeof(e);
    jl_datatype_t *bt = (jl_datatype_t*)jt;

    if (!jl_is_datatype(bt) || bt == jl_gensym_type)
        return NULL;

    if (e == jl_true)
        return ConstantInt::get(T_int1, 1);
    if (e == jl_false)
        return ConstantInt::get(T_int1, 0);

    if (jl_is_cpointer_type(jt))
        return ConstantExpr::getIntToPtr(ConstantInt::get(T_size, jl_unbox_long(e)), julia_type_to_llvm((jl_value_t*)bt));
    if (jl_is_bitstype(jt)) {
        int nb = jl_datatype_size(bt);
        //TODO: non-power-of-2 size datatypes may not be interpreted correctly on big-endian systems
        switch (nb) {
        case 1: {
            uint8_t data8 = *(uint8_t*)jl_data_ptr(e);
            return ConstantInt::get(T_int8, data8);
        }
        case 2: {
            uint16_t data16 = *(uint16_t*)jl_data_ptr(e);
#ifndef DISABLE_FLOAT16
            if (jl_is_float(e)) {
                return ConstantFP::get(jl_LLVMContext,LLVM_FP(APFloat::IEEEhalf,APInt(16,data16)));
            }
#endif
            return ConstantInt::get(T_int16, data16);
        }
        case 4: {
            uint32_t data32 = *(uint32_t*)jl_data_ptr(e);
            if (jl_is_float(e)) {
                return ConstantFP::get(jl_LLVMContext,LLVM_FP(APFloat::IEEEsingle,APInt(32,data32)));
            }
            return ConstantInt::get(T_int32, data32);
        }
        case 8: {
            uint64_t data64 = *(uint64_t*)jl_data_ptr(e);
            if (jl_is_float(e)) {
                return ConstantFP::get(jl_LLVMContext,LLVM_FP(APFloat::IEEEdouble,APInt(64,data64)));
            }
            return ConstantInt::get(T_int64, data64);
        }
        default:
            size_t nw = (nb+sizeof(uint64_t)-1)/sizeof(uint64_t);
            uint64_t *data = (uint64_t*)jl_data_ptr(e);
            APInt val;
#if !defined(_P64)
            // malloc may not be 16-byte aligned on P32,
            // but we must ensure that llvm's uint64_t reads don't fall
            // off the end of a page
            // where 16-byte alignment requirement == (8-byte typetag) % (uint64_t ArrayRef access)
            if (nb % 16 != 0) {
                uint64_t *data_a64 = (uint64_t*)alloca(sizeof(uint64_t)*nw);
                memcpy(data_a64, data, nb);
                val = APInt(8*nb, ArrayRef<uint64_t>(data_a64, nw));
            }
            else
#endif
            val = APInt(8*nb, ArrayRef<uint64_t>(data, nw));
            if (nb == 16 && jl_is_float(e)) {
                return ConstantFP::get(jl_LLVMContext,LLVM_FP(APFloat::IEEEquad,val));
                // If we have a floating point type that's not hardware supported, just treat it like an integer for LLVM purposes
            }
            return ConstantInt::get(IntegerType::get(jl_LLVMContext,8*nb),val);
        }
    }
    if (jl_isbits(jt)) {
        size_t nf = jl_datatype_nfields(bt), i;
        size_t llvm_nf = 0;
        Constant **fields = (Constant**)alloca(nf * sizeof(Constant*));
        jl_value_t *f=NULL;
        JL_GC_PUSH1(&f);
        for(i=0; i < nf; i++) {
            f = jl_get_nth_field(e, i);
            Constant *val;
            if (f == jl_true)
                val = ConstantInt::get(T_int8,1);
            else if (f == jl_false)
                val = ConstantInt::get(T_int8,0);
            else
                val = julia_const_to_llvm(f, true);
            if (val == NULL) {
                JL_GC_POP();
                return NULL;
            }
            fields[llvm_nf++] = val;
        }
        JL_GC_POP();
        Type *t = julia_struct_to_llvm(jt);
        if (type_is_ghost(t))
            return UndefValue::get(NoopType);
        if (t->isVectorTy())
            return ConstantVector::get(ArrayRef<Constant*>(fields,llvm_nf));

        Constant *init;
        if (t->isStructTy()) {
            StructType *st = dyn_cast<StructType>(t);
            assert(st);
            init = ConstantStruct::get(st, ArrayRef<Constant*>(fields,llvm_nf));
        }
        else {
            assert(t->isArrayTy());
            ArrayType *at = dyn_cast<ArrayType>(t);
            assert(at);
            init = ConstantArray::get(at, ArrayRef<Constant*>(fields,llvm_nf));
        }
        if (nested)
            return init;
        else
            return new GlobalVariable(*jl_Module, t, true, GlobalVariable::ExternalLinkage, init);
    }
    return NULL;
}

static Value *emit_unboxed(jl_value_t *e, jl_codectx_t *ctx)
{
    Constant *c = julia_const_to_llvm(e);
    if (c) return mark_julia_type(c, jl_typeof(e));
    return emit_expr(e, ctx, false);
}

static Value *ghostValue(jl_value_t *ty);

// emit code to unpack a raw value from a box
static Value *emit_unbox(Type *to, Value *x, jl_value_t *jt)
{
    Type *ty = (x == NULL) ? NULL : x->getType();
    if (x == NULL || ty == NoopType) {
        if (to == T_void) {
            if (jt != NULL)
                return (ty == NoopType && julia_type_of(x) == jt) ? x : ghostValue(jt);
            return NULL;
        }
        return UndefValue::get(to);
    }
    if (ty != jl_pvalue_llvmt) {
        if (ty->isPointerTy() && to->isAggregateType()) {
            x = builder.CreateLoad(x); // something stack allocated
            ty = x->getType();
        }
        else {
            // bools are stored internally as int8 (for now)
            if (ty == T_int1 && to == T_int8)
                return builder.CreateZExt(x, T_int8);
            if (ty->isPointerTy() && !to->isPointerTy())
                return builder.CreatePtrToInt(x, to);
            if (!ty->isPointerTy() && to->isPointerTy())
                return builder.CreateIntToPtr(x, to);
        }
        if (ty != to) {
            // this can happen when a branch yielding a different type ends
            // up being dead code, and type inference knows that the other
            // branch's type is the only one that matters.
            // assert(ty == T_void);
            return UndefValue::get(to);
        }
        return x;
    }
    Value *p = x;
    if (to == T_int1) {
        // bools stored as int8, so an extra Trunc is needed to get an int1
        return builder.CreateTrunc(builder.
                                   CreateLoad(builder.
                                              CreateBitCast(p, T_pint8)),
                                   T_int1);
    }
    if (to->isStructTy() && !to->isSized()) {
        // empty struct - TODO - is this a good way to represent it?
        assert(to != T_void);
        return UndefValue::get(to);
    }
    return builder.CreateAlignedLoad(builder.CreateBitCast(p, to->getPointerTo()), 16); // julia's gc gives 16-byte aligned addresses
}

// unbox trying to determine type automatically
static Value *auto_unbox(jl_value_t *x, jl_codectx_t *ctx)
{
    Value *v = emit_unboxed(x, ctx);
    if (v->getType() != jl_pvalue_llvmt) {
        return v;
    }
    jl_value_t *bt = expr_type(x, ctx);
    if (!jl_is_bitstype(bt)) {
        if (jl_is_symbol(x)) {
            std::map<jl_sym_t*,jl_varinfo_t>::iterator it = ctx->vars.find((jl_sym_t*)x);
            if (it != ctx->vars.end())
                bt = (*it).second.declType;
        }
        if (bt == NULL || !jl_is_bitstype(bt)) {
            // TODO: make sure this code is valid; hopefully it is
            // unreachable but it should still be well-formed.
            emit_error("auto_unbox: unable to determine argument type", ctx);
            // This isn't correct but probably most likely to cause
            // the least amount of trouble
            return UndefValue::get(T_int64);
        }
    }
    Type *to = julia_type_to_llvm(bt);
    if (to == NULL || to == jl_pvalue_llvmt) {
        unsigned int nb = jl_datatype_size(bt)*8;
        to = IntegerType::get(jl_LLVMContext, nb);
    }
    if (to == T_void) {
        return NULL;
    }
    assert(!to->isAggregateType() && jl_is_immutable_datatype(bt));
    return emit_unbox(to, v, bt);
}

// figure out how many bits a bitstype has at compile time, or -1
int try_to_determine_bitstype_nbits(jl_value_t *targ, jl_codectx_t *ctx)
{
    jl_value_t *et = expr_type(targ, ctx);
    if (jl_is_type_type(et)) {
        jl_value_t *p = jl_tparam0(et);
        if (p == (jl_value_t*)jl_bool_type)
            return 1;
        if (jl_is_bitstype(p))
            return jl_datatype_size(p)*8;
        if (jl_is_typevar(p)) {
            jl_value_t *ub = ((jl_tvar_t*)p)->ub;
            if (jl_is_bitstype(ub))
                return jl_datatype_size(ub)*8;
        }
    }
    return -1;
}

// unbox using user-specified type
static Value *generic_unbox(jl_value_t *targ, jl_value_t *x, jl_codectx_t *ctx)
{
    jl_value_t *et = expr_type(targ, ctx);
    if (jl_is_type_type(et)) {
        jl_value_t *p = jl_tparam0(et);
        if (jl_is_leaf_type(p)) {
            Type *to = julia_type_to_llvm(p);
            Value *lx = emit_unboxed(x,ctx);
            if (to->isAggregateType() && lx->getType() == PointerType::get(to,0) && jl_is_immutable(p)) // can lazy load on demand, no copy needed
                return lx;
            return emit_reg2mem(emit_unbox(to, lx, p), ctx);
        }
    }
    int nb = try_to_determine_bitstype_nbits(targ, ctx);
    if (nb == -1) {
        jl_value_t *bt=NULL;
        JL_TRY {
            bt = jl_interpret_toplevel_expr_in(ctx->module, targ,
                                               jl_svec_data(ctx->sp),
                                               jl_svec_len(ctx->sp)/2);
        }
        JL_CATCH {
        }
        if (bt == NULL || !jl_is_bitstype(bt)) {
            //jl_error("unbox: could not determine argument size");
            emit_error("unbox: could not determine argument size", ctx);
            return UndefValue::get(T_void);
        }
        nb = (bt==(jl_value_t*)jl_bool_type) ? 1 : jl_datatype_size(bt)*8;
    }
    Type *to = IntegerType::get(jl_LLVMContext, nb);
    return emit_unbox(to, emit_unboxed(x, ctx), et);
}

static Value *generic_box(jl_value_t *targ, jl_value_t *x, jl_codectx_t *ctx)
{
    Value *vx = auto_unbox(x, ctx);
    Type *vxt = vx->getType();

    jl_value_t *et = expr_type(targ, ctx);
    jl_value_t *bt = NULL;
    if (jl_is_type_type(et) && jl_is_leaf_type(jl_tparam0(et)) &&
        jl_is_bitstype(jl_tparam0(et))) {
        bt = jl_tparam0(et);
    }
    else {
        bt = static_eval(targ, ctx, true, false);
    }

    if (vxt == T_void) {
        return vx;
    }
    if (!vxt->isSingleValueType()) {
        emit_error("reinterpret: expected bitstype value as second argument", ctx);
        return UndefValue::get(jl_pvalue_llvmt);
    }
    size_t nb = vxt->isPointerTy() ? sizeof(void*) * 8 : vxt->getPrimitiveSizeInBits();
    if (nb == 1)
        nb = 8;
    assert(nb != 0);

    Type *llvmt = vxt;
    if (bt != NULL && jl_is_bitstype(bt)) {
        size_t box_nb = jl_datatype_size(bt) * 8;
        if (box_nb != nb) {
            std::stringstream msg;
            msg << "box: expected argument with " << box_nb << " bits, got " << nb;
            emit_error(msg.str(), ctx);
            return UndefValue::get(jl_pvalue_llvmt);
        }

        llvmt = julia_type_to_llvm(bt);
        if (llvmt != jl_pvalue_llvmt) { // this can happen if !jl_is_leaf_type(bt)
            if (vxt != llvmt) {
                if (llvmt == T_int1) {
                    vx = builder.CreateTrunc(vx, llvmt);
                }
                else if (vxt == T_int1 && llvmt == T_int8) {
                    vx = builder.CreateZExt(vx, llvmt);
                }
                else {
                    assert(box_nb == nb);
                    // PtrToInt and IntToPtr ignore size differences
                    if (vxt->isPointerTy() && !llvmt->isPointerTy()) {
                        vx = builder.CreatePtrToInt(vx, llvmt);
                    }
                    else if (!vxt->isPointerTy() && llvmt->isPointerTy()) {
                        vx = builder.CreateIntToPtr(vx, llvmt);
                    }
                    else {
                        vx = builder.CreateBitCast(vx, llvmt);
                    }
                }
            }

            return mark_julia_type(vx, bt);
        }
    }

    if (vxt == T_int1) {
        llvmt = T_int8;
        vx = builder.CreateZExt(vx, llvmt);
    }

    // emit runtime checks
    Value *typ = emit_expr(targ, ctx);
    Value *cond = builder.CreateICmpEQ(builder.CreateLoad(builder.CreateGEP(
                    builder.CreateBitCast(typ, T_pint32),
                    ConstantInt::get(T_int32, offsetof(jl_datatype_t, size) / sizeof(int32_t)))),
            ConstantInt::get(T_int32, nb / 8));
    error_unless(cond, "box: expected bitsize of type and argument don't match", ctx);

    // dynamically-determined type; evaluate.
    return allocate_box_dynamic(typ, ConstantInt::get(T_size, nb/8), vx);
}

static Type *staticeval_bitstype(jl_value_t *targ, const char *fname, jl_codectx_t *ctx)
{
    jl_value_t *bt =
        jl_interpret_toplevel_expr_in(ctx->module, targ,
                                      jl_svec_data(ctx->sp),
                                      jl_svec_len(ctx->sp)/2);
    if (!jl_is_bitstype(bt))
        jl_errorf("%s: expected bits type as first argument", fname);
    Type *to = julia_type_to_llvm(bt);
    if (to == NULL) {
        unsigned int nb = jl_datatype_size(bt)*8;
        to = IntegerType::get(jl_LLVMContext, nb);
    }
    return to;
}

// NOTE: signd (signed) only relevant if check == true
static Value *generic_trunc(jl_value_t *targ, jl_value_t *x, jl_codectx_t *ctx, bool check, bool signd)
{
    Type *to = staticeval_bitstype(targ, "trunc_int", ctx);
    Value *ix = JL_INT(auto_unbox(x,ctx));
    Value *ans = builder.CreateTrunc(ix, to);
    if (check) {
        Value *back = signd ? builder.CreateSExt(ans, ix->getType()) :
            builder.CreateZExt(ans, ix->getType());
        raise_exception_unless(builder.CreateICmpEQ(back, ix),
                               prepare_global(jlinexacterr_var), ctx);
    }
    return ans;
}

static Value *generic_sext(jl_value_t *targ, jl_value_t *x, jl_codectx_t *ctx)
{
    Type *to = staticeval_bitstype(targ, "sext_int", ctx);
    return builder.CreateSExt(JL_INT(auto_unbox(x,ctx)), to);
}

static Value *generic_zext(jl_value_t *targ, jl_value_t *x, jl_codectx_t *ctx)
{
    Type *to = staticeval_bitstype(targ, "zext_int", ctx);
    return builder.CreateZExt(JL_INT(auto_unbox(x,ctx)), to);
}

static Value *emit_eqfsi(Value *x, Value *y)
{
    x = FP(x);
    Value *fy = JL_INT(y);

    // using all 64-bit is slightly faster than using mixed sizes
    Value *xx = x, *vv = fy;
    if (x->getType() == T_float32)
        xx = builder.CreateFPExt(xx, T_float64);
    if (vv->getType()->getPrimitiveSizeInBits() < 64)
        vv = builder.CreateSExt(vv, T_int64);

    Value *back = builder.CreateSIToFP(vv, xx->getType());
    return builder.CreateAnd
        (builder.CreateFCmpOEQ(xx, back),
         builder.CreateICmpEQ(vv, builder.CreateFPToSI(back, vv->getType())));
}

static Value *emit_eqfui(Value *x, Value *y)
{
    x = FP(x);
    Value *fy = JL_INT(y);

    // using all 64-bit is slightly faster than using mixed sizes
    Value *xx = x, *vv = fy;
    if (x->getType() == T_float32)
        xx = builder.CreateFPExt(xx, T_float64);
    if (vv->getType()->getPrimitiveSizeInBits() < 64)
        vv = builder.CreateZExt(vv, T_int64);

    Value *back = builder.CreateUIToFP(vv, xx->getType());
    return builder.CreateAnd
        (builder.CreateFCmpOEQ(xx, back),
         builder.CreateICmpEQ(vv, builder.CreateFPToUI(back, vv->getType())));
}

static Value *emit_checked_fptosi(Type *to, Value *x, jl_codectx_t *ctx)
{
    x = FP(x);
    Value *v = builder.CreateFPToSI(x, to);
    if (x->getType() == T_float32 && to == T_int32) {
        raise_exception_unless
            (builder.CreateFCmpOEQ(builder.CreateFPExt(x, T_float64),
                                   builder.CreateSIToFP(v, T_float64)),
             prepare_global(jlinexacterr_var), ctx);
    }
    else {
        raise_exception_unless(emit_eqfsi(x, v), prepare_global(jlinexacterr_var), ctx);
    }
    return v;
}

static Value *emit_checked_fptosi(jl_value_t *targ, Value *x, jl_codectx_t *ctx)
{
    return emit_checked_fptosi(staticeval_bitstype(targ, "checked_fptosi", ctx), x, ctx);
}

static Value *emit_checked_fptoui(Type *to, Value *x, jl_codectx_t *ctx)
{
    x = FP(x);
    Value *v = builder.CreateFPToUI(x, to);
    if (x->getType() == T_float32 && to == T_int32) {
        raise_exception_unless
            (builder.CreateFCmpOEQ(builder.CreateFPExt(x, T_float64),
                                   builder.CreateUIToFP(v, T_float64)),
             prepare_global(jlinexacterr_var), ctx);
    }
    else {
        raise_exception_unless(emit_eqfui(x, v), prepare_global(jlinexacterr_var), ctx);
    }
    return v;
}

static Value *emit_checked_fptoui(jl_value_t *targ, Value *x, jl_codectx_t *ctx)
{
    return emit_checked_fptoui(staticeval_bitstype(targ, "checked_fptoui", ctx), x, ctx);
}

static Value *emit_runtime_pointerref(jl_value_t *e, jl_value_t *i, jl_codectx_t *ctx)
{
    Value *preffunc =
        jl_Module->getOrInsertFunction("jl_pointerref",
                                       FunctionType::get(jl_pvalue_llvmt, two_pvalue_llvmt, false));
    int ldepth = ctx->gc.argDepth;
    Value *parg = emit_boxed_rooted(e, ctx);
    Value *iarg = boxed(emit_expr(i, ctx), ctx);
#ifdef LLVM37
    Value *ret = builder.CreateCall(prepare_call(preffunc), { parg, iarg });
#else
    Value *ret = builder.CreateCall2(prepare_call(preffunc), parg, iarg);
#endif
    ctx->gc.argDepth = ldepth;
    return ret;
}

static Value *emit_pointerref(jl_value_t *e, jl_value_t *i, jl_codectx_t *ctx)
{
    jl_value_t *aty = expr_type(e, ctx);
    if (!jl_is_cpointer_type(aty))
        return emit_runtime_pointerref(e, i, ctx);
        //jl_error("pointerref: expected pointer type as first argument");
    jl_value_t *ety = jl_tparam0(aty);
    if (jl_is_typevar(ety))
        return emit_runtime_pointerref(e, i, ctx);
        //jl_error("pointerref: invalid pointer");
    if (expr_type(i, ctx) != (jl_value_t*)jl_long_type)
        return emit_runtime_pointerref(e, i, ctx);
        //jl_error("pointerref: invalid index type");
    Value *thePtr = auto_unbox(e,ctx);
    Value *idx = emit_unbox(T_size, emit_unboxed(i, ctx), (jl_value_t*)jl_long_type);
    Value *im1 = builder.CreateSub(idx, ConstantInt::get(T_size, 1));
    if (!jl_isbits(ety)) {
        if (ety == (jl_value_t*)jl_any_type)
            return builder.CreateLoad(builder.CreateGEP(
                        builder.CreateBitCast(thePtr, jl_ppvalue_llvmt),
                        im1));
        if (!jl_is_structtype(ety) || jl_is_array_type(ety) || !jl_is_leaf_type(ety)) {
            emit_error("pointerref: invalid pointer type", ctx);
            return NULL;
        }
        assert(jl_is_datatype(ety));
        uint64_t size = jl_datatype_size(ety);
        Value *strct =
            builder.CreateCall(prepare_call(jlallocobj_func),
                               ConstantInt::get(T_size, sizeof(void*)+size));
        builder.CreateStore(literal_pointer_val((jl_value_t*)ety),
                            emit_typeptr_addr(strct));
        im1 = builder.CreateMul(im1, ConstantInt::get(T_size,
                    LLT_ALIGN(size, ((jl_datatype_t*)ety)->alignment)));
        thePtr = builder.CreateGEP(builder.CreateBitCast(thePtr, T_pint8), im1);
        builder.CreateMemCpy(builder.CreateBitCast(strct, T_pint8),
                             thePtr, size, 1);
        return mark_julia_type(strct, ety);
    }
    // TODO: alignment?
    return typed_load(thePtr, im1, ety, ctx, tbaa_user, 1);
}

static Value *emit_runtime_pointerset(jl_value_t *e, jl_value_t *x, jl_value_t *i, jl_codectx_t *ctx)
{
    Value *psetfunc =
        jl_Module->getOrInsertFunction("jl_pointerset",
                                       FunctionType::get(T_void, three_pvalue_llvmt, false));
    int ldepth = ctx->gc.argDepth;
    Value *parg = emit_boxed_rooted(e, ctx);
    Value *iarg = emit_boxed_rooted(i, ctx);
    Value *xarg = boxed(emit_expr(x, ctx), ctx);
#ifdef LLVM37
    builder.CreateCall(prepare_call(psetfunc), { parg, xarg, iarg });
#else
    builder.CreateCall3(prepare_call(psetfunc), parg, xarg, iarg);
#endif
    ctx->gc.argDepth = ldepth;
    return parg;
}

// e[i] = x
static Value *emit_pointerset(jl_value_t *e, jl_value_t *x, jl_value_t *i, jl_codectx_t *ctx)
{
    jl_value_t *aty = expr_type(e, ctx);
    if (!jl_is_cpointer_type(aty))
        return emit_runtime_pointerset(e, x, i, ctx);
        //jl_error("pointerset: expected pointer type as first argument");
    jl_value_t *ety = jl_tparam0(aty);
    if (jl_is_typevar(ety))
        return emit_runtime_pointerset(e, x, i, ctx);
        //jl_error("pointerset: invalid pointer");
    jl_value_t *xty = expr_type(x, ctx);
    Value *val=NULL;
    if (!jl_subtype(xty, ety, 0)) {
        val = emit_expr(x,ctx);
        emit_typecheck(val, ety, "pointerset: type mismatch in assign", ctx);
    }
    if (expr_type(i, ctx) != (jl_value_t*)jl_long_type)
        return emit_runtime_pointerset(e, x, i, ctx);
        //jl_error("pointerset: invalid index type");
    Value *idx = emit_unbox(T_size, emit_unboxed(i, ctx),(jl_value_t*)jl_long_type);
    Value *im1 = builder.CreateSub(idx, ConstantInt::get(T_size, 1));
    Value *thePtr = auto_unbox(e,ctx);
    if (!jl_isbits(ety) && ety != (jl_value_t*)jl_any_type) {
        if (!jl_is_structtype(ety) || jl_is_array_type(ety) || !jl_is_leaf_type(ety)) {
            emit_error("pointerset: invalid pointer type", ctx);
            return NULL;
        }
        if (val==NULL) val = emit_expr(x,ctx,true,true);
        assert(val->getType() == jl_pvalue_llvmt); //Boxed
        assert(jl_is_datatype(ety));
        uint64_t size = ((jl_datatype_t*)ety)->size;
        im1 = builder.CreateMul(im1, ConstantInt::get(T_size,
                    LLT_ALIGN(size, ((jl_datatype_t*)ety)->alignment)));
        builder.CreateMemCpy(builder.CreateGEP(builder.CreateBitCast(thePtr, T_pint8), im1),
                             builder.CreateBitCast(val, T_pint8), size, 1);
    }
    else {
        if (val == NULL) {
            if (ety == (jl_value_t*)jl_any_type)
                val = emit_expr(x,ctx);
            else
                val = emit_unboxed(x,ctx);
        }
        // TODO: alignment?
        typed_store(thePtr, im1, val, ety, ctx, tbaa_user, NULL, 1);
    }
    return mark_julia_type(thePtr, aty);
}

static Value *emit_srem(Value *x, Value *den, jl_codectx_t *ctx)
{
    Type *t = den->getType();
    raise_exception_unless(builder.CreateICmpNE(den, ConstantInt::get(t,0)),
                           prepare_global(jldiverr_var), ctx);
    BasicBlock *m1BB = BasicBlock::Create(getGlobalContext(),"minus1",ctx->f);
    BasicBlock *okBB = BasicBlock::Create(getGlobalContext(),"oksrem",ctx->f);
    BasicBlock *cont = BasicBlock::Create(getGlobalContext(),"after_srem",ctx->f);
    PHINode *ret = PHINode::Create(t, 2);
    builder.CreateCondBr(builder.CreateICmpEQ(den,ConstantInt::get(t,-1,true)),
                         m1BB, okBB);
    builder.SetInsertPoint(m1BB);
    builder.CreateBr(cont);
    builder.SetInsertPoint(okBB);
    Value *sremval = builder.CreateSRem(x, den);
    builder.CreateBr(cont);
    builder.SetInsertPoint(cont);
    ret->addIncoming(// rem(typemin, -1) is undefined
                     ConstantInt::get(t,0), m1BB);
    ret->addIncoming(sremval, okBB);
    builder.Insert(ret);
    return ret;
}

// Temporarily switch the builder to fast-math mode if requested
struct math_builder {
    FastMathFlags old_fmf;
    math_builder(jl_codectx_t *ctx, bool always_fast = false):
        old_fmf(builder.getFastMathFlags())
    {
        if (jl_options.fast_math != JL_OPTIONS_FAST_MATH_OFF &&
            (always_fast ||
             jl_options.fast_math == JL_OPTIONS_FAST_MATH_ON)) {
            FastMathFlags fmf;
            fmf.setUnsafeAlgebra();
            builder.SetFastMathFlags(fmf);
        }
    }
    IRBuilder<>& operator()() const { return builder; }
    ~math_builder() {
        builder.SetFastMathFlags(old_fmf);
    }
};

static Value *emit_smod(Value *x, Value *den, jl_codectx_t *ctx)
{
    Type *t = den->getType();
    raise_exception_unless(builder.CreateICmpNE(den, ConstantInt::get(t,0)),
                           prepare_global(jldiverr_var), ctx);
    BasicBlock *m1BB = BasicBlock::Create(getGlobalContext(),"minus1",ctx->f);
    BasicBlock *okBB = BasicBlock::Create(getGlobalContext(),"oksmod",ctx->f);
    BasicBlock *cont = BasicBlock::Create(getGlobalContext(),"after_smod",ctx->f);
    PHINode *ret = PHINode::Create(t, 2);
    builder.CreateCondBr(builder.CreateICmpEQ(den,ConstantInt::get(t,-1,true)),
                         m1BB, okBB);
    builder.SetInsertPoint(m1BB);
    builder.CreateBr(cont);
    builder.SetInsertPoint(okBB);

    Value *rem = builder.CreateSRem(x,den);
    Value *smodval =
        builder.
        CreateSelect(builder.CreateICmpEQ(builder.CreateICmpSLT(x,ConstantInt::get(t,0)),
                                          builder.CreateICmpSLT(den,ConstantInt::get(t,0))),
                     // mod == rem for arguments with same sign
                     rem,
                     builder.CreateSRem(builder.CreateAdd(den,rem),den));

    builder.CreateBr(cont);
    builder.SetInsertPoint(cont);
    ret->addIncoming(// rem(typemin, -1) is undefined
                     ConstantInt::get(t,0), m1BB);
    ret->addIncoming(smodval, okBB);
    builder.Insert(ret);
    return ret;
}

#define HANDLE(intr,n)                                                  \
    case intr: if (nargs!=n) jl_error(#intr": wrong number of arguments");

static Value *emit_intrinsic(intrinsic f, jl_value_t **args, size_t nargs,
                             jl_codectx_t *ctx)
{
    switch (f) {
    case ccall: return emit_ccall(args, nargs, ctx);
    case cglobal: return emit_cglobal(args, nargs, ctx);
    case llvmcall: return emit_llvmcall(args, nargs, ctx);

    HANDLE(box,2)         return generic_box(args[1], args[2], ctx);
    HANDLE(unbox,2)       return generic_unbox(args[1], args[2], ctx);
    HANDLE(trunc_int,2)   return generic_trunc(args[1], args[2], ctx, false, false);
    HANDLE(checked_trunc_sint,2)
        return generic_trunc(args[1], args[2], ctx, true, true);
    HANDLE(checked_trunc_uint,2)
        return generic_trunc(args[1], args[2], ctx, true, false);
    HANDLE(sext_int,2)    return generic_sext(args[1], args[2], ctx);
    HANDLE(zext_int,2)    return generic_zext(args[1], args[2], ctx);
    HANDLE(pointerref,2)  return emit_pointerref(args[1], args[2], ctx);
    HANDLE(pointerset,3)  return emit_pointerset(args[1], args[2], args[3], ctx);
    HANDLE(checked_fptosi,2) {
        Value *x = FP(auto_unbox(args[2], ctx));
        return emit_checked_fptosi(args[1], x, ctx);
    }
    HANDLE(checked_fptoui,2) {
        Value *x = FP(auto_unbox(args[2], ctx));
        return emit_checked_fptoui(args[1], x, ctx);
    }
    HANDLE(uitofp,2) return builder.CreateUIToFP(JL_INT(auto_unbox(args[2],ctx)), FTnbits(try_to_determine_bitstype_nbits(args[1],ctx)));
    HANDLE(sitofp,2) return builder.CreateSIToFP(JL_INT(auto_unbox(args[2],ctx)), FTnbits(try_to_determine_bitstype_nbits(args[1],ctx)));

    case fptoui:
        if (nargs == 1) {
            Value *x = FP(auto_unbox(args[1], ctx));
            return builder.CreateFPToUI(FP(x), JL_INTT(x->getType()));
        }
        else if (nargs == 2) {
            return builder.CreateFPToUI(FP(auto_unbox(args[2],ctx)),
                                        Type::getIntNTy(jl_LLVMContext, try_to_determine_bitstype_nbits(args[1],ctx)));
        }
        else {
            jl_error("fptoui: wrong number of arguments");
        }
    case fptosi:
        if (nargs == 1) {
            Value *x = FP(auto_unbox(args[1], ctx));
            return builder.CreateFPToSI(FP(x), JL_INTT(x->getType()));
        }
        else if (nargs == 2) {
            return builder.CreateFPToSI(FP(auto_unbox(args[2],ctx)),
                                        Type::getIntNTy(jl_LLVMContext, try_to_determine_bitstype_nbits(args[1],ctx)));
        }
        else {
            jl_error("fptosi: wrong number of arguments");
        }

    HANDLE(fptrunc,2) return builder.CreateFPTrunc(FP(auto_unbox(args[2],ctx)), FTnbits(try_to_determine_bitstype_nbits(args[1],ctx)));
    HANDLE(fpext,2) {
        Value *x = auto_unbox(args[2],ctx);
#if JL_NEED_FLOATTEMP_VAR
        // Target platform might carry extra precision.
        // Force rounding to single precision first. The reason is that it's
        // fine to keep working in extended precision as long as it's
        // understood that everything is implicitly rounded to 23 bits,
        // but if we start looking at more bits we need to actually do the
        // rounding first instead of carrying around incorrect low bits.
        builder.CreateStore(FP(x), builder.CreateBitCast(prepare_global(jlfloattemp_var),FT(x->getType())->getPointerTo()), true);
        x  = builder.CreateLoad(builder.CreateBitCast(prepare_global(jlfloattemp_var),FT(x->getType())->getPointerTo()), true);
#endif
        return builder.CreateFPExt(x, FTnbits(try_to_determine_bitstype_nbits(args[1],ctx)));
    }
    HANDLE(select_value,3) {
        Value *isfalse = emit_condition(args[1], "select_value", ctx);
        jl_value_t *t1 = expr_type(args[2], ctx);
        Type *llt1 = julia_type_to_llvm(t1);
        jl_value_t *t2 = expr_type(args[3], ctx);
        Type *llt2 = julia_type_to_llvm(t2);
        int argStart = ctx->gc.argDepth;
        Value *ifelse_result;
        if (llt1 == jl_pvalue_llvmt && llt2 == jl_pvalue_llvmt) {
            Value *arg1 = emit_expr(args[3], ctx, false);
            if (arg1->getType() == jl_pvalue_llvmt)
                make_gcroot(arg1, ctx);
            ifelse_result = builder.CreateSelect(isfalse,
                                                 arg1,
                                                 emit_expr(args[2], ctx, false));
        }
        else if (t1 == t2 && llt1 == llt2 && llt1 != jl_pvalue_llvmt) {
            Value *x = auto_unbox(args[3], ctx);
            ifelse_result = tpropagate(x, builder.CreateSelect(isfalse,
                                                               x,
                                                               auto_unbox(args[2], ctx)));
        }
        else {
            Value *arg1 = boxed(emit_expr(args[3],ctx,false), ctx, expr_type(args[3],ctx));
            make_gcroot(arg1, ctx);
            ifelse_result = builder.CreateSelect(isfalse,
                                                 arg1,
                                                 boxed(emit_expr(args[2],ctx,false), ctx, expr_type(args[2],ctx)));
        }
        ctx->gc.argDepth = argStart;
        return ifelse_result;
    }
    default: ;
    }

    if (nargs < 1) jl_error("invalid intrinsic call");
    Value *x = auto_unbox(args[1], ctx);
    Value *y = NULL;
    if (nargs>1) {
        y = auto_unbox(args[2], ctx);
    }
    Value *z = NULL;
    if (nargs>2) {
        z = auto_unbox(args[3], ctx);
    }
    Type *t = x->getType();
    if (t == T_void || (y && y->getType() == T_void) || (z && z->getType() == T_void))
        return t == T_void ? x : y->getType() == T_void ? y : z;

    Value *fy;
    Value *den;
    Value *typemin;
    switch (f) {
    HANDLE(neg_int,1) return builder.CreateSub(ConstantInt::get(t, 0), JL_INT(x));
    HANDLE(add_int,2) return builder.CreateAdd(JL_INT(x), JL_INT(y));
    HANDLE(sub_int,2) return builder.CreateSub(JL_INT(x), JL_INT(y));
    HANDLE(mul_int,2) return builder.CreateMul(JL_INT(x), JL_INT(y));
    HANDLE(sdiv_int,2)
        den = JL_INT(y);
        t = den->getType();
        x = JL_INT(x);

        typemin = builder.CreateShl(ConstantInt::get(t,1),
                                    x->getType()->getPrimitiveSizeInBits()-1);
        raise_exception_unless(builder.
                               CreateAnd(builder.
                                         CreateICmpNE(den, ConstantInt::get(t,0)),
                                         builder.
                                         CreateOr(builder.
                                                  CreateICmpNE(den,
                                                               ConstantInt::get(t,-1,true)),
                                                  builder.CreateICmpNE(x, typemin))),
                               prepare_global(jldiverr_var), ctx);

        return builder.CreateSDiv(x, den);
    HANDLE(udiv_int,2)
        den = JL_INT(y);
        t = den->getType();
        raise_exception_unless(builder.CreateICmpNE(den, ConstantInt::get(t,0)),
                               prepare_global(jldiverr_var), ctx);
        return builder.CreateUDiv(JL_INT(x), den);

    HANDLE(srem_int,2)
        return emit_srem(JL_INT(x), JL_INT(y), ctx);

    HANDLE(urem_int,2)
        den = JL_INT(y);
        t = den->getType();
        raise_exception_unless(builder.CreateICmpNE(den, ConstantInt::get(t,0)),
                               prepare_global(jldiverr_var), ctx);
        return builder.CreateURem(JL_INT(x), den);

    HANDLE(smod_int,2)
        return emit_smod(JL_INT(x), JL_INT(y), ctx);

// Implements IEEE negate. Unfortunately there is no compliant way
// to implement this in LLVM 3.4, though there are two different idioms
// that do the correct thing on LLVM <= 3.3 and >= 3.5 respectively.
// See issue #7868
#ifdef LLVM35
    HANDLE(neg_float,1) return math_builder(ctx)().CreateFSub(ConstantFP::get(FT(t), -0.0), FP(x));
    HANDLE(neg_float_fast,1) return math_builder(ctx, true)().CreateFNeg(FP(x));
#else
    HANDLE(neg_float,1)
        return math_builder(ctx)().CreateFMul(ConstantFP::get(FT(t), -1.0), FP(x));
    HANDLE(neg_float_fast,1)
        return math_builder(ctx, true)().CreateFMul(ConstantFP::get(FT(t), -1.0), FP(x));
#endif
    HANDLE(add_float,2) return math_builder(ctx)().CreateFAdd(FP(x), FP(y));
    HANDLE(sub_float,2) return math_builder(ctx)().CreateFSub(FP(x), FP(y));
    HANDLE(mul_float,2) return math_builder(ctx)().CreateFMul(FP(x), FP(y));
    HANDLE(div_float,2) return math_builder(ctx)().CreateFDiv(FP(x), FP(y));
    HANDLE(rem_float,2) return math_builder(ctx)().CreateFRem(FP(x), FP(y));
    HANDLE(add_float_fast,2) return math_builder(ctx, true)().CreateFAdd(FP(x), FP(y));
    HANDLE(sub_float_fast,2) return math_builder(ctx, true)().CreateFSub(FP(x), FP(y));
    HANDLE(mul_float_fast,2) return math_builder(ctx, true)().CreateFMul(FP(x), FP(y));
    HANDLE(div_float_fast,2) return math_builder(ctx, true)().CreateFDiv(FP(x), FP(y));
    HANDLE(rem_float_fast,2) return math_builder(ctx, true)().CreateFRem(FP(x), FP(y));
    HANDLE(fma_float,3) {
      assert(y->getType() == x->getType());
      assert(z->getType() == y->getType());
      Value *fmaintr = Intrinsic::getDeclaration(jl_Module, Intrinsic::fma,
                                   ArrayRef<Type*>(x->getType()));
#ifdef LLVM37
      return builder.CreateCall(fmaintr,{ FP(x), FP(y), FP(z) });
#else
      return builder.CreateCall3(fmaintr, FP(x), FP(y), FP(z));
#endif
    }
    HANDLE(muladd_float,3)
#ifdef LLVM34
    {
      assert(y->getType() == x->getType());
      assert(z->getType() == y->getType());
#ifdef LLVM37
      return builder.CreateCall
#else
      return builder.CreateCall3
#endif
        (Intrinsic::getDeclaration(jl_Module, Intrinsic::fmuladd,
                                   ArrayRef<Type*>(x->getType())),
         #ifdef LLVM37
         {FP(x), FP(y), FP(z)}
         #else
         FP(x), FP(y), FP(z)
         #endif
        );
    }
#else
      return math_builder(ctx, true)().
        CreateFAdd(builder.CreateFMul(FP(x), FP(y)), FP(z));
#endif

    HANDLE(checked_sadd,2)
    HANDLE(checked_uadd,2)
    HANDLE(checked_ssub,2)
    HANDLE(checked_usub,2)
    HANDLE(checked_smul,2)
    HANDLE(checked_umul,2) {
        Value *ix = JL_INT(x); Value *iy = JL_INT(y);
        assert(ix->getType() == iy->getType());
        Value *intr =
            Intrinsic::getDeclaration(jl_Module,
               f==checked_sadd ?
               Intrinsic::sadd_with_overflow :
               (f==checked_uadd ?
                Intrinsic::uadd_with_overflow :
                (f==checked_ssub ?
                 Intrinsic::ssub_with_overflow :
                 (f==checked_usub ?
                  Intrinsic::usub_with_overflow :
                  (f==checked_smul ?
                   Intrinsic::smul_with_overflow :
                   Intrinsic::umul_with_overflow)))),
               ArrayRef<Type*>(ix->getType()));
#ifdef LLVM37
        Value *res = builder.CreateCall(intr,{ix, iy});
#else
        Value *res = builder.CreateCall2(intr, ix, iy);
#endif
        Value *obit = builder.CreateExtractValue(res, ArrayRef<unsigned>(1));
        raise_exception_if(obit, prepare_global(jlovferr_var), ctx);
        return builder.CreateExtractValue(res, ArrayRef<unsigned>(0));
    }

    HANDLE(check_top_bit,1)
        // raise InexactError if argument's top bit is set
        x = JL_INT(x);
        raise_exception_if(builder.
                           CreateTrunc(builder.
                                       CreateLShr(x, ConstantInt::get(t, t->getPrimitiveSizeInBits()-1)),
                                       T_int1),
                           prepare_global(jlinexacterr_var), ctx);
        return x;

    HANDLE(eq_int,2)  return builder.CreateICmpEQ(JL_INT(x), JL_INT(y));
    HANDLE(ne_int,2)  return builder.CreateICmpNE(JL_INT(x), JL_INT(y));
    HANDLE(slt_int,2) return builder.CreateICmpSLT(JL_INT(x), JL_INT(y));
    HANDLE(ult_int,2) return builder.CreateICmpULT(JL_INT(x), JL_INT(y));
    HANDLE(sle_int,2) return builder.CreateICmpSLE(JL_INT(x), JL_INT(y));
    HANDLE(ule_int,2) return builder.CreateICmpULE(JL_INT(x), JL_INT(y));

    HANDLE(eq_float,2) return math_builder(ctx)().CreateFCmpOEQ(FP(x), FP(y));
    HANDLE(ne_float,2) return math_builder(ctx)().CreateFCmpUNE(FP(x), FP(y));
    HANDLE(lt_float,2) return math_builder(ctx)().CreateFCmpOLT(FP(x), FP(y));
    HANDLE(le_float,2) return math_builder(ctx)().CreateFCmpOLE(FP(x), FP(y));

    HANDLE(eq_float_fast,2) return math_builder(ctx, true)().CreateFCmpOEQ(FP(x), FP(y));
    HANDLE(ne_float_fast,2) return math_builder(ctx, true)().CreateFCmpUNE(FP(x), FP(y));
    HANDLE(lt_float_fast,2) return math_builder(ctx, true)().CreateFCmpOLT(FP(x), FP(y));
    HANDLE(le_float_fast,2) return math_builder(ctx, true)().CreateFCmpOLE(FP(x), FP(y));

    HANDLE(fpiseq,2) {
        Value *xi = JL_INT(x);
        Value *yi = JL_INT(y);
        x = FP(x);
        fy = FP(y);
        return builder.CreateOr(builder.CreateAnd(builder.CreateFCmpUNO(x, x),
                                                  builder.CreateFCmpUNO(fy, fy)),
                                builder.CreateICmpEQ(xi, yi));
    }

    HANDLE(fpislt,2) {
        Value *xi = JL_INT(x);
        Value *yi = JL_INT(y);
        x = FP(x);
        fy = FP(y);
        return builder.CreateOr(
            builder.CreateAnd(
                builder.CreateFCmpORD(x, x),
                builder.CreateFCmpUNO(fy, fy)
            ),
            builder.CreateAnd(
                builder.CreateFCmpORD(x, fy),
                builder.CreateOr(
                    builder.CreateAnd(
                        builder.CreateICmpSGE(xi, ConstantInt::get(xi->getType(), 0)),
                        builder.CreateICmpSLT(xi, yi)
                    ),
                    builder.CreateAnd(
                        builder.CreateICmpSLT(xi, ConstantInt::get(xi->getType(), 0)),
                        builder.CreateICmpUGT(xi, yi)
                    )
                )
            )
        );
    }

    HANDLE(and_int,2) return builder.CreateAnd(JL_INT(x), JL_INT(y));
    HANDLE(or_int,2)  return builder.CreateOr(JL_INT(x), JL_INT(y));
    HANDLE(xor_int,2) return builder.CreateXor(JL_INT(x), JL_INT(y));
    HANDLE(not_int,1) return builder.CreateXor(JL_INT(x), ConstantInt::get(t, -1, true));
    HANDLE(shl_int,2)
        x = JL_INT(x); y = JL_INT(y);
        return builder.
            CreateSelect(builder.
                         CreateICmpUGE(y, ConstantInt::get(y->getType(),
                                                           x->getType()->getPrimitiveSizeInBits())),
                         ConstantInt::get(x->getType(),0),
                         builder.CreateShl(x, uint_cnvt(t,y)));
    HANDLE(lshr_int,2)
        x = JL_INT(x); y = JL_INT(y);
        return builder.
            CreateSelect(builder.
                         CreateICmpUGE(y, ConstantInt::get(y->getType(),
                                                           x->getType()->getPrimitiveSizeInBits())),
                         ConstantInt::get(x->getType(),0),
                         builder.CreateLShr(x, uint_cnvt(t,y)));
    HANDLE(ashr_int,2)
        x = JL_INT(x); y = JL_INT(y);
        return builder.
            CreateSelect(builder.
                         CreateICmpUGE(y, ConstantInt::get(y->getType(),
                                                           x->getType()->getPrimitiveSizeInBits())),
                         builder.CreateAShr(x, ConstantInt::get(x->getType(),
                                                                x->getType()->getPrimitiveSizeInBits()-1)),
                         builder.CreateAShr(x, uint_cnvt(t,y)));
    HANDLE(bswap_int,1)
        x = JL_INT(x);
        return builder.CreateCall(
            Intrinsic::getDeclaration(jl_Module, Intrinsic::bswap,
                                      ArrayRef<Type*>(x->getType())), x);
    HANDLE(ctpop_int,1)
        x = JL_INT(x);
        return builder.CreateCall(
            Intrinsic::getDeclaration(jl_Module, Intrinsic::ctpop,
                                      ArrayRef<Type*>(x->getType())), x);
    HANDLE(ctlz_int,1) {
        x = JL_INT(x);
        Type *types[1] = {x->getType()};
        Value *ctlz = Intrinsic::getDeclaration(jl_Module, Intrinsic::ctlz,
                                      ArrayRef<Type*>(types));
#ifdef LLVM37
        return builder.CreateCall(ctlz, {x, ConstantInt::get(T_int1,0)});
#else
        return builder.CreateCall2(ctlz, x, ConstantInt::get(T_int1,0));
#endif
    }
    HANDLE(cttz_int,1) {
        x = JL_INT(x);
        Type *types[1] = {x->getType()};
        Value *cttz = Intrinsic::getDeclaration(jl_Module, Intrinsic::cttz, ArrayRef<Type*>(types));
#ifdef LLVM37
        return builder.CreateCall(cttz, {x, ConstantInt::get(T_int1, 0)});
#else
        return builder.CreateCall2(cttz, x, ConstantInt::get(T_int1, 0));
#endif
    }

    HANDLE(nan_dom_err,2) {
        // nan_dom_err(f, x) throw DomainError if isnan(f)&&!isnan(x)
        Value *f = FP(x); x = FP(y);
        raise_exception_unless(builder.CreateOr(builder.CreateFCmpORD(f,f),
                                                builder.CreateFCmpUNO(x,x)),
                               prepare_global(jldomerr_var), ctx);
        return f;
    }

    HANDLE(abs_float,1)
    {
        x = FP(x);
#ifdef LLVM34
        return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::fabs,
                                                            ArrayRef<Type*>(x->getType())),
                                  x);
#else
        Type *intt = JL_INTT(x->getType());
        Value *bits = builder.CreateBitCast(FP(x), intt);
        Value *absbits =
            builder.CreateAnd(bits,
                              ConstantInt::get(intt, APInt::getSignedMaxValue(((IntegerType*)intt)->getBitWidth())));
        return builder.CreateBitCast(absbits, x->getType());
#endif
    }
    HANDLE(copysign_float,2)
    {
        x = FP(x);
        fy = FP(y);
        Type *intt = JL_INTT(x->getType());
        Value *bits = builder.CreateBitCast(x, intt);
        Value *sbits = builder.CreateBitCast(fy, intt);
        unsigned nb = ((IntegerType*)intt)->getBitWidth();
        APInt notsignbit = APInt::getSignedMaxValue(nb);
        APInt signbit0(nb, 0); signbit0.setBit(nb-1);
        Value *rbits =
            builder.CreateOr(builder.CreateAnd(bits,
                                               ConstantInt::get(intt,
                                                                notsignbit)),
                             builder.CreateAnd(sbits,
                                               ConstantInt::get(intt,
                                                                signbit0)));
        return builder.CreateBitCast(rbits, x->getType());
    }
    HANDLE(flipsign_int,2)
    {
        x = JL_INT(x);
        fy = JL_INT(y);
        Type *intt = x->getType();
        ConstantInt *cx = dyn_cast<ConstantInt>(x);
        ConstantInt *cy = dyn_cast<ConstantInt>(fy);
        if (cx && cy) {
            APInt ix = cx->getValue();
            APInt iy = cy->getValue();
            return ConstantInt::get(intt, iy.isNonNegative() ? ix : -ix);
        }
        if (cy) {
            APInt iy = cy->getValue();
            return iy.isNonNegative() ? x : builder.CreateSub(ConstantInt::get(intt,0), x);
        }
        Value *tmp = builder.CreateAShr(fy, ConstantInt::get(intt,((IntegerType*)intt)->getBitWidth()-1));
        return builder.CreateXor(builder.CreateAdd(x,tmp),tmp);
    }
    HANDLE(jl_alloca,1) {
        return builder.CreateAlloca(IntegerType::get(jl_LLVMContext, 8),JL_INT(x));
    }
    HANDLE(ceil_llvm,1) {
        x = FP(x);
        return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::ceil,
                                                            ArrayRef<Type*>(x->getType())),
                                  x);
    }
    HANDLE(floor_llvm,1) {
        x = FP(x);
        return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::floor,
                                                            ArrayRef<Type*>(x->getType())),
                                  x);
    }
    HANDLE(trunc_llvm,1) {
        x = FP(x);
        return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::trunc,
                                                            ArrayRef<Type*>(x->getType())),
                                  x);
    }
    HANDLE(rint_llvm,1) {
        x = FP(x);
        return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::rint,
                                                            ArrayRef<Type*>(x->getType())),
                                  x);
    }
    HANDLE(sqrt_llvm,1) {
        x = FP(x);
        raise_exception_unless(builder.CreateFCmpUGE(x, ConstantFP::get(x->getType(),0.0)),
                               prepare_global(jldomerr_var), ctx);
        return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::sqrt,
                                                            ArrayRef<Type*>(x->getType())),
                                  x);
    }
    HANDLE(powi_llvm,2) {
        x = FP(x);
        y = JL_INT(y);
        Type *tx = x->getType();
#ifdef LLVM36
        Type *ts[1] = { tx };
        Value *powi = Intrinsic::getDeclaration(jl_Module, Intrinsic::powi,
            ArrayRef<Type*>(ts));
#ifdef LLVM37
        return builder.CreateCall(powi, {x, y});
#else
        return builder.CreateCall2(powi, x, y);
#endif
#else
        // issue #6506
        Type *ts[2] = { tx, tx };
        Value *pow = jl_Module->getOrInsertFunction(
            tx==T_float64 ? "pow" : "powf", FunctionType::get(tx, ts, false));
        return builder.CreateCall2(pow, x, builder.CreateSIToFP(y, tx));
#endif
    }
    HANDLE(sqrt_llvm_fast,1) {
        x = FP(x);
        return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::sqrt,
                                                            ArrayRef<Type*>(x->getType())),
                                  x);
    }
    default:
        assert(false);
    }
    assert(false);
    return NULL;
}

#undef HANDLE

static Function *boxfunc_llvm(FunctionType *ft, const std::string &cname,
                              void *addr, Module *m)
{
    Function *f =
        Function::Create(ft, Function::ExternalLinkage, cname, m);
    add_named_global(f, addr);
    return f;
}

static FunctionType *ft1arg(Type *ret, Type *arg)
{
    std::vector<Type*> args1(0);
    args1.push_back(arg);
    return FunctionType::get(ret, args1, false);
}

static FunctionType *ft2arg(Type *ret, Type *arg1, Type *arg2)
{
    std::vector<Type*> args2(0);
    args2.push_back(arg1);
    args2.push_back(arg2);
    return FunctionType::get(ret, args2, false);
}

#define BOX_F(ct,jl_ct)                                                    \
    box_##ct##_func = boxfunc_llvm(ft1arg(jl_pvalue_llvmt, T_##jl_ct),     \
                                   "jl_box_"#ct, (void*)&jl_box_##ct, m);

#define SBOX_F(ct,jl_ct) BOX_F(ct,jl_ct); box_##ct##_func->addAttribute(1, Attribute::SExt);
#define UBOX_F(ct,jl_ct) BOX_F(ct,jl_ct); box_##ct##_func->addAttribute(1, Attribute::ZExt);

static void add_intrinsic(jl_module_t *m, const std::string &name, intrinsic f)
{
    jl_value_t *i = jl_box32(jl_intrinsic_type, (int32_t)f);
    jl_sym_t *sym = jl_symbol(const_cast<char*>(name.c_str()));
    jl_set_const(m, sym, i);
    jl_module_export(m, sym);
}

#define ADD_I(name) add_intrinsic(inm, #name, name)

extern "C" void jl_init_intrinsic_functions(void)
{
    jl_module_t *inm = jl_new_module(jl_symbol("Intrinsics"));
    inm->parent = jl_core_module;
    jl_set_const(jl_core_module, jl_symbol("Intrinsics"), (jl_value_t*)inm);
    ADD_I(box); ADD_I(unbox);
    ADD_I(neg_int); ADD_I(add_int); ADD_I(sub_int); ADD_I(mul_int);
    ADD_I(sdiv_int); ADD_I(udiv_int); ADD_I(srem_int); ADD_I(urem_int);
    ADD_I(smod_int);
    ADD_I(neg_float); ADD_I(add_float); ADD_I(sub_float); ADD_I(mul_float);
    ADD_I(div_float); ADD_I(rem_float); ADD_I(fma_float); ADD_I(muladd_float);
    ADD_I(neg_float_fast); ADD_I(add_float_fast); ADD_I(sub_float_fast);
    ADD_I(mul_float_fast); ADD_I(div_float_fast); ADD_I(rem_float_fast);
    ADD_I(eq_int); ADD_I(ne_int);
    ADD_I(slt_int); ADD_I(ult_int);
    ADD_I(sle_int); ADD_I(ule_int);
    ADD_I(eq_float); ADD_I(ne_float);
    ADD_I(lt_float); ADD_I(le_float);
    ADD_I(eq_float_fast); ADD_I(ne_float_fast);
    ADD_I(lt_float_fast); ADD_I(le_float_fast);
    ADD_I(fpiseq); ADD_I(fpislt);
    ADD_I(and_int); ADD_I(or_int); ADD_I(xor_int); ADD_I(not_int);
    ADD_I(shl_int); ADD_I(lshr_int); ADD_I(ashr_int); ADD_I(bswap_int);
    ADD_I(ctpop_int); ADD_I(ctlz_int); ADD_I(cttz_int);
    ADD_I(sext_int); ADD_I(zext_int); ADD_I(trunc_int);
    ADD_I(fptoui); ADD_I(fptosi);
    ADD_I(uitofp); ADD_I(sitofp);
    ADD_I(fptrunc); ADD_I(fpext);
    ADD_I(abs_float); ADD_I(copysign_float);
    ADD_I(flipsign_int); ADD_I(select_value);
    ADD_I(ceil_llvm); ADD_I(floor_llvm); ADD_I(trunc_llvm); ADD_I(rint_llvm);
    ADD_I(sqrt_llvm); ADD_I(powi_llvm);
    ADD_I(sqrt_llvm_fast);
    ADD_I(pointerref); ADD_I(pointerset);
    ADD_I(checked_sadd); ADD_I(checked_uadd);
    ADD_I(checked_ssub); ADD_I(checked_usub);
    ADD_I(checked_smul); ADD_I(checked_umul);
    ADD_I(checked_fptosi); ADD_I(checked_fptoui);
    ADD_I(checked_trunc_sint);
    ADD_I(checked_trunc_uint);
    ADD_I(check_top_bit);
    ADD_I(nan_dom_err);
    ADD_I(ccall); ADD_I(cglobal);
    ADD_I(jl_alloca);
    ADD_I(llvmcall);
}
back to top