https://github.com/cran/HLSM
Tip revision: 31ec11bc3c0ac504839d98ce0e6e8feb8951fbbe authored by Samrachana Adhikari on 18 June 2014, 00:00:00 UTC
version 0.1
version 0.1
Tip revision: 31ec11b
plots.Rd
\name{plotDiagnostic}
\alias{plotDiagnostic}
\alias{plotLikelihood}
\title{built-in plot functions for HLSM object}
\description{
Functions to plot the likelihood and diagnostic-plot of posterior draws of the parameters from MCMC sample.
}
\usage{
plotLikelihood(object,burnin = 0, thin = 1)
plotDiagnostic(chain)
}
\arguments{
\item{object}{object of class 'HLSM' obtained as an output from \code{HLSM()} or \code{HLSMfixedEF()}
}
\item{burnin}{burnin value if want to plot burned chain}
\item{thin}{a numeric thinning value}
\item{chain}{a numeric vector of posterior draws of parameter of interest.}
}
\value{
returns plot objects.
}
\author{Sam Adhikari}
\examples{
#using advice seeking network of teachers in 15 schools
#to fit the data
#Random effect model#
priors = NULL
tune = NULL
initialVals = NULL
niter = 10
random.fit = HLSM(X = ps.edge.vars.mat,Y = ps.advice.mat,
initialVals = initialVals,priors = priors,
tune = tune,tuneIn = FALSE,dd = 2,niter = niter,
intervention = 0)
plotLikelihood(random.fit)
intercept = getIntercept(random.fit)
dim(intercept) ##is an array of dimension niter by 15
plotDiagnostic(intercept[,1])
##look at the diagnostic plot of intercept for the first school
}