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6

Abstract Animals learn certain complex tasks remarkably fast, sometimes after a single7

experience. What behavioral algorithms support this efficiency? Many contemporary studies8

based on two-alternative-forced-choice (2AFC) tasks observe only slow or incomplete9

learning. As an alternative, we study the unconstrained behavior of mice in a complex10

labyrinth and measure the dynamics of learning and the behaviors that enable it. A mouse in11

the labyrinth makes ~2000 navigation decisions per hour. The animal explores the maze,12

quickly discovers the location of a reward, and executes correct 10-bit choices after only 1013

reward experiences – a learning rate 1000-fold higher than in 2AFC experiments. Many mice14

improve discontinuously from one minute to the next, suggesting moments of sudden insight15

about the structure of the labyrinth. The underlying search algorithm does not require a global16

memory of places visited and is largely explained by purely local turning rules.17

18

Introduction19

How can animals or machines acquire the ability for complex behaviors from one or a few20

experiences? Canonical examples include language learning in children, where new words are21

learned after just a few instances of their use, or learning to balance a bicycle, where humans22

progress from complete incompetence to near perfection after crashing once or a few times.23

Clearly such rapid acquisition of new associations or of new motor skills can confer enormous24

survival advantages.25

In laboratory studies, one prominent instance of one-shot learning is the Bruce effect26

(Bruce, 1959). Here the female mouse forms an olfactory memory of her mating partner that27

allows her to terminate the pregnancy if she encounters another male that threatens infanticide.28

Another form of rapid learning accessible to laboratory experiments is fear conditioning, where29

a formerly innocuous stimulus gets associated with a painful experience, leading to subsequent30

avoidance of the stimulus (Fanselow and Bolles, 1979; Bourtchuladze et al., 1994). These31

learning systems appear designed for special purposes, they perform very specific associations,32

and govern binary behavioral decisions. They are likely implemented by specialized brain33

circuits, and indeed great progress has been made in localizing these operations to the accessory34

olfactory bulb (Brennan and Keverne, 1997) and the cortical amygdala (LeDoux, 2000).35

In the attempt to identify more generalizable mechanisms of learning and decision making,36

one route has been to train laboratory animals on abstract tasks with tightly specified sensory37

inputs that are linked to motor outputs via arbitrary contingency rules. Canonical examples38

are a monkey reporting motion in a visual stimulus by saccading its eyes (Newsome and Pare,39

1988), and a mouse in a box classifying stimuli by moving its forelimbs or the tongue (Burgess40

et al., 2017; Guo et al., 2014). The tasks are of low complexity, typically a 1 bit decision based41
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on 1 or 2 bits of input. Remarkably they are learned exceedingly slowly: A mouse typically42

requires many weeks of shaping and thousands of trials to reach asymptotic performance; a43

monkey may require many months (Carandini and Churchland, 2013).44

What is needed therefore is a rodent behavior that involves complex decision making, with45

many input variables and many possible choices. Ideally the animals would learn to perform46

this task without excessive intervention by human shaping, so we may be confident that they47

employ innate brain mechanisms rather than circuits created by the training. Obviously the48

behavior should be easy to measure in the laboratory. Finally, it would be satisfying if this49

behavior showed a glimpse of rapid learning.50

Navigation through space is a complex behavior displayed by many animals. It typically51

involves integrating multiple cues to decide among many possible actions. It relies intimately52

on rapid learning. For example a pigeon or desert ant leaving its shelter acquires the information53

needed for the homing path in a single episode. Major questions remain about how the brain54

stores this information and converts it to a policy for decisions during the homing path. One55

way to formalize the act of decision-making in the laboratory is to introduce structure in the56

environment in the form of a maze that defines straight paths and decision points. A maze of57

tunnels is in fact a natural environment for a burrowing rodent. Early studies of rodent behavior58

did place the animals into true labyrinths (Small, 1901), but their use gradually declined in59

favor of linear tracks or boxes with a single choice point.60

We report here on the behavior of laboratory mice in a complex labyrinth of tunnels. A61

single mouse is placed in a home cage from which it has free access to the maze for one62

night. No handling, shaping, or training by the investigators is involved. By continuous video-63

recording and automated tracking we observe the animal’s entire life experience within the64

labyrinth. Some of the mice are water-deprived and a single location deep inside the maze65

offers water. We find that these animals learn to navigate to the water port after just a few66

reward experiences. In many cases one can identify unique moments of “insight” when the67

animal’s behavior changes discontinuously. This all happens within ~1 hour. Underlying the68

rapid learning is an efficient mode of exploration driven by simple navigation rules. Mice that69

do not lack water show the same patterns of exploration. This laboratory-based navigation70

behavior may form a suitable substrate for studying the neural mechanisms that implement71

few-shot learning.72

Results73

Adaptation to the maze74

At the start of the experiment a single mouse was placed in a conventional mouse cage with75

bedding and food. A short tunnel offered free access to a maze consisting of a warren of76

corridors (Figure 1A-B). The bottom and walls of the maze were constructed of black plastic77

that is transparent in the infrared. A video camera placed below the maze captured the animal’s78

actions continuously using infrared illumination (Figure 1B). The recordings were analyzed79

offline to track the movements of the mouse, with keypoints on the nose, mid-body, tail base,80

and the four feet (Figure 1D). All observations were made in darkness during the animal’s81

subjective night.82

The logical structure of the maze is a binary tree, with 6 levels of branches, leading from the83

single entrance to 64 endpoints (Figure 1C). A total of 63 T-junctions are connected by straight84

corridors in a design with maximal symmetry (Figure 1A, Figure 3–figure supplement 1),85

such that all the nodes at a given level of the tree have the same local geometry. One of the 6486

endpoints of the maze is outfitted with a water port. After activation by a brief nose poke, the87

port delivers a small drop of water, followed by a 90-s time-out period.88

2 of 33



Manuscript under review

A

B

C

D

0 1 2 3 4 5 6

Figure 1. The maze environment. Top (A) and side (B) views of a home cage, connected via an entry
tunnel to an enclosed labyrinth. The animal’s actions in the maze are recorded via video from below
using infrared illumination. (C) The maze is structured as a binary tree with 63 branch points (in levels
numbered 0,...,5) and 64 end nodes. One end node has a water port that dispenses a drop when it gets
poked. Blue line in A and C: path from maze entry to water port. (D) A mouse considering the options
at the maze’s central intersection. Colored keypoints are tracked by DeepLabCut: nose, mid body, tail
base, 4 feet.

Figure 1–figure supplement 1. Occupancy of the maze.
Figure 1–figure supplement 2. Fraction of time in maze by group.
Figure 1–figure supplement 3. Transitions between cage and maze.
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Time in maze: 0:51-9:46 min 16:15-17:40 min

48:50-49:14 min 52:34-53:57 min

Figure 2. Sample trajectories during adaptation to the maze. Four sample bouts from one mouse
(B3) into the maze at various times during the experiment (time markings at bottom). The trajectory of
the animal’s nose is shown; time is encoded by the color of the trace. The entrance from the home cage
and the water port are indicated in panel A.

Figure 2–figure supplement 1. Speed of locomotion.

After an initial period of exploratory experiments we settled on a frozen protocol that was89

applied to 20 animals. Ten of these mice had been mildly water-deprived for up to 24 hours;90

they received food in the home cage and water only from the port hidden in the maze. Another91

ten mice had free access to food and water in the cage, and received no water from the port92

in the maze. Each animal’s behavior in the maze was recorded continuously for 7 h during93

the first night of its experience with the maze, starting the moment the connection tunnel was94

opened (sample videos here). The investigator played no role during this period, and the animal95

was free to act as it wished including travel between the cage and the maze.96

All of the mice except one passed between the cage and the maze readily and frequently97

(Figure 1–figure supplement 1). The single outlier animal barely entered the maze and never98

progressed past the first junction; we excluded this mouse’s data from subsequent analysis.99

On average over the entire period of study the animals spent 46% of the time in the maze100

(Figure 1–figure supplement 2). This fraction was similar whether or not the animal was101

motivated by water rewards (47% for rewarded vs 44% for unrewarded animals). Over time the102

animals appeared increasingly comfortable in the maze, taking breaks for grooming and the103

occasional nap. When the investigator lifted the cage lid at the end of the night some animals104

were seen to escape into the safety of the maze.105

We examined the rate of transitions from the cage to the maze and how it depends on time106

spent in the cage (Figure 1–figure supplement 3A). Surprisingly the rate of entry into the107

maze is highest immediately after the animal returns to the cage. Then it declines gradually108

by a factor of 4 over the first minute in the cage and remains steady thereafter. This is a large109

effect, observed for every individual animal in both the rewarded and unrewarded groups. By110

contrast the opposite transition, namely exit from the maze, occurs at an essentially constant111
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rate throughout the visit (Figure 1–figure supplement 3B).112

The nature of the animal’s forays into the maze changed over time. We call each foray113

from entrance to exit a “bout”. After a few hesitant entries into the main corridor, the mouse114

engaged in one or more long bouts that dove deep into the binary tree to most or all of the115

leaf nodes (Figure 2A). For a water-deprived animal, this typically led to discovery of the116

reward port. After ~10 bouts, the trajectories became more focused, involving travel to the117

reward port and some additional exploration (Figure 2B). At a later stage still, the animal118

often executed perfect exploitation bouts that led straight to the reward port and back with no119

wrong turns (Figure 2C). Even at this late stage, however, the animal continued to explore120

other parts of the maze (Figure 2D). Similarly the unrewarded animals explored the maze121

throughout the night (Figure 1–figure supplement 2). While the length and structure of the122

animal’s trajectories changed over time, the speed remained remarkably constant after ~50 s of123

adaptation (Figure 2–figure supplement 2).124

Whereas Figure 2 illustrates the trajectory of a mouse’s nose in full spatio-temporal detail,125

a convenient reduced representation is the “node sequence”. This simply marks the events126

when the animal enters each of the 127 nodes of the binary tree that describes the maze (see127

Methods and Figure 3–figure supplement 1). Among these nodes, 63 are T-junctions where128

the animal has 3 choices for the next node, and 64 are end nodes where the animal’s only choice129

is to reverse course. We call the transition from one node to the next a “step”. The analysis in130

the rest of the paper was carried out on the animal’s node sequence.131

Few-shot learning of a reward location132

We now examine early changes in the animal’s behavior when it rapidly acquires and remembers133

information needed for navigation. First we focus on navigation to the water port.134

The ten water-deprived animals had no indication that water would be found in the maze.135

Yet, all 10 discovered the water port in less than 2000 s and fewer than 17 bouts (Figure 3A).136

The port dispensed only a drop of water followed by a 90-s timeout before rearming. During the137

timeout the animals generally left the port location to explore other parts of the maze or return138

home, even though they were not obliged to do so. For each of the water-deprived animals, the139

frequency at which it consumed rewards in the maze increased rapidly as it learned how to find140

the water port, then settled after a few reward experiences (Figure 3A).141

How many reward experiences are sufficient to teach the animal reliable navigation to the142

water port? To establish a learning curve one wants to compare performance on the identical143

task over successive trials. Recall that this experiment has no imposed trial structure. Yet144

the animals naturally segmented their behavior through discrete visits to the maze. Thus we145

focused on all the instances when the animal started at the maze entrance and walked to the146

water port (Figure 3B).147

On the first few occasions these paths to water can involve hundreds of steps between nodes148

and their length scatters over a wide range. However, after a few rewards, the animals began149

taking the perfect path without detours (6 steps, Figure 3–figure supplement 1), and soon that150

became the norm. Note the path length plotted here is directly related to the number of “turning151

errors”: every time the mouse turns away from the shortest path to the water port that adds two152

steps to the path length (Equation 7). The rate of these errors declined over time, by a factor153

of e after ~10 rewards consumed (Figure 3B). Late in the night ~75% of the paths to water154

were perfect. The animals executed them with increasing speed; eventually these fast “water155

runs” took as little as 2 s (Figure 3B). Many of these visits went unrewarded owing to the 90-s156

timeout period on the water port.157

In summary, after ~10 reward experiences on average the mice learn to navigate efficiently158

to the water port, which requires making 6 correct decisions, each among 3 options. Note that159
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Time line of all water rewardsA

B
Runs from entrance to water port

Figure 3. Few-shot learning of path to water. (A) Time line of all water rewards collected by 10
water-deprived mice (red dots, every fifth reward has a blue tick mark). (B) The length of runs from the
entrance to the water port, measured in steps between nodes, and plotted against the number of rewards
experienced. Main panel: All individual runs (cyan dots) and median over 10 mice (blue circles).
Exponential fit decays by 1∕e over 10.1 rewards. Right panel: Histogram of the run length, note log
axis. Red: perfect runs with the minimum length 6; green: longer runs. Top panel: The fraction of
perfect runs (length 6) plotted against the number of rewards experienced, along with the median
duration of those perfect runs.

Figure 3–figure supplement 1. Definition of node trajectories.
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BMaze rotation experiment Mouse A1: bouts before and after rotation

180°

4 mice: visits to various nodes before and after rotation

Figure 4. Navigation is robust to rotation of the maze. (A) Logic of the experiment: The animal
may have deposited an odorant in the maze (shading) that is centered on the water port. After 180
degree rotation of the maze, that gradient would lead to the image of the water port (blue dot). We also
measure how often the mouse goes to two control nodes (magenta dots) that are related by symmetry.
(B) Trajectory of mouse ‘A1’ in the bouts immediately before and after maze rotation. Time coded by
color from dark to light as in Figure 2. (C) Left: Cumulative number of rewards as well as visits to the
water port, the image of the water port, and the control nodes. All events are plotted vs time before and
after the maze rotation. Average over 4 animals. Middle and right: Same data with the counts centered
on zero and zoomed in for better resolution.

Figure 4–figure supplement 1. Navigation before and after maze rotation for each animal.
Figure 4–figure supplement 2. Speed before and after maze rotation.

even at late times, long after they have perfected the “water run”, the animals continue to take160

some extremely long paths: a subject for a later section (Figure 7).161

The role of cues attached to the maze162

These observations of rapid learning raise the question "How do the animals navigate?" In163

particular, does the mouse build an internal representation that guides its action at every164

junction? Or does it place marks in the external environment that signal the route to the water165

port? In an extreme version of externalized cognition, the mouse leaves behind a trail of urine166

marks or other secretions as it walks away from the water port, and on a subsequent bout simply167

sniffs its way up the odor gradient (Figure 4A). This would require no internal representation.168

The following experiment offers some partial insights. Owing to the design of the labyrinth169

one can rotate the entire apparatus by 180 degrees, open one wall and close another, and obtain170

a maze with the same structure (Figure 4A). Alternatively one can also rotate only the floor.171

After such a modification, all the physical cues attached to the rotated parts now point in the172

wrong direction, namely to the end node 180 degrees opposite the water port (the "image173

location"). If the animal navigated to the goal following cues previously deposited in the maze174

it should end up at that image location.175

We performed a maze rotation on four animals after several hours of exposure, when176

they had acquired the perfect route to water. Immediately after rotation, 3 of the 4 animals177
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went to the correct water port on their first entry into the maze, and before ever visiting the178

image location (e.g. Figure 4B). The fourth mouse visited the image location once and then179

the correct water port (Figure 4–figure supplement 1). The mice continued to collect water180

rewards efficiently even immediately after the rotation.181

Nonetheless, the maze rotation did introduce subtle changes in behavior that lasted for an182

hour or more (Figure 4C). Visits to the image location were at chance levels prior to rotation,183

then increased by a factor of 1.8. Visits to the water port declined in frequency, although they184

still exceeded visits to the image location by a factor of 5. The reward rate declined by a factor185

of 0.7. These effects could be verified for each animal (Figure 4–figure supplement 1). The186

speed of the mice was not disturbed (Figure 4–figure supplement 2).187

In summary, for navigation to the water port the experienced animals do not strictly depend188

on physical cues that are attached to the maze. This includes any material they might have189

deposited, but also pre-existing construction details by which they may have learned to identify190

locations in the maze. The mice clearly notice a change in these cues, but continue to navigate191

effectively to the goal. This conclusion applies to the time point of the rotation, a few hours192

into the experiment. Conceivably the animal’s navigation policy and its use of sensory cues193

changes in the course of learning. This and many other questions regarding the mechanisms of194

cognition will be taken up in a separate study.195

Discontinuous learning196

While an average across animals shows evidence of rapid learning (Figure 3) one wonders197

whether the knowledge is acquired gradually or discontinuously, through moments of “sudden198

insight”. To explore this we scrutinized more closely the time line of individual water-deprived199

animals in their experience with the maze. The discovery of the water port and the subsequent200

collection of water drops at a regular rate is one clear change in behavior that relies on new201

knowledge. Indeed, the rate of water rewards can increase rather suddenly (Figure 3A),202

suggesting an instantaneous step in knowledge.203

Over time, the animals learned the path to water not only from the entrance of the maze but204

from many locations scattered throughout the maze. The largest distance between the water205

port and an end node in the opposite half of the maze involves 12 steps through 11 intersections206

(Figure 5A). Thus we included as another behavioral variable the occurrence of long direct207

paths to the water port which reflects how directedly the animals navigate within the maze.208

Figure 5B shows for one animal the cumulative occurrence of water rewards and that of209

long direct paths to water. The animal discovers the water port early on at 75 s, but at 1380210

s the rate of water rewards jumps suddenly by a factor of 5. The long paths to water follow211

a rather different time line. At first they occur randomly, at the same rate as the paths to the212

unrewarded control nodes. At 2070 s the long paths suddenly increase in frequency by a factor213

of 5. Given the sudden change in rates of both kinds of events there is little ambiguity about214

when the two steps happen and they are well separated in time (Figure 5B).215

The animal behaves as though it gains a new insight at the time of the second step that216

allows it to travel to the water port directly from elsewhere in the maze. Note that the two217

behavioral variables are independent: The long paths don’t change when the reward rate steps218

up, and the reward rate doesn’t change when the rate of long paths steps up. Another animal219

(Figure 5C) similarly showed an early step in the reward rate (at 860 s) and a dramatic step in220

the rate of long paths (at 2580 s). In this case the emergence of long paths coincided with a221

modest increase (factor of 2) in the reward rate.222

Similar discontinuities in behavior were seen in at least 5 of the 10 water-deprived animals223

(Figure 5B, Figure 5–figure supplement 1, Figure 5–figure supplement 2), and their timing224

could be identified to a precision of ~200 s. More gradual performance change was observed225
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Figure 5. Sudden changes in behavior. (A) An example of a long uninterrupted path through 11
junctions to the water port (drop icon). Blue circles mark control nodes related by symmetry to the
water port to assess the frequency of long paths occurring by chance. (B) For one animal (named C1)
the cumulative number of rewards (green); of long paths (>6 junctions) to the water port (red); and of
similar paths to the 3 control nodes (blue, divided by 3). All are plotted against the time spent in the
maze. Arrowheads indicate the time of sudden changes, obtained from fitting a step function to the rates.
(C) Same as B for animal B1. (D) Same as B for animal C9, an example of more continuous learning.

Figure 5–figure supplement 1. Long direct paths for all animals.
Figure 5–figure supplement 2. Statistics of sudden changes in behavior.
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Maze level from which home run startsStart of first home runA B

C D

Figure 6. Homing succeeds on first attempt. (A) Locations in the maze where the 19 animals started
their first return to the exit (home run). Some locations were used by 2 or 3 animals (darker color). (B)
Left: The cumulative number of home runs from different levels in the maze, summed over all animals,
and plotted against the bout number. Level 1 = first T-junction, level 7 = end nodes. Right: Zoom of
(Left) into early bouts. (C) Overlap between the outbound and the home path. Histogram of the overlap
for all bouts of all animals. (D) Same analysis for just the first bout of each animal. The length of the
home run is color-coded as in panel B.

for the remaining animals (Figure 5 D). We varied the criterion of performance by asking226

for even longer error-free paths, and the results were largely unchanged and no additional227

discontinuity appeared. These observations suggest that mice can acquire a complex decision-228

making skill rather suddenly. A mouse may have multiple moments of sudden insight that229

affect different aspects of its behavior. The exact time of the insight cannot be predicted but is230

easily identified post-hoc. Future neurophysiological studies of the phenomenon will face the231

interesting challenge of capturing these singular events.232

One-shot learning of the home path233

For an animal entering an unfamiliar environment, the most important path to keep in memory234

may be the escape route. In the present case that is the route to the maze entrance, from which235

the tunnel leads home to the cage. We expected that the mice would begin by penetrating into236

the maze gradually and return home repeatedly so as to confirm the escape route, a pattern237

previously observed for rodents in an open arena (Tchernichovski et al., 1998; Fonio et al.,238

2009). This might help build a memory of the home path gradually level-by-level into the239

binary tree. Nothing could be further from the truth.240

At the end of any given bout into the maze, there is a “home run”, namely the direct241

path without reversals that takes the animal to the exit (see Figure 3–figure supplement 1).242

Figure 6 A shows the nodes where each animal started its first home run, following the first243

penetration into the maze. With few exceptions, that first home run began from an end node,244

as deep into the maze as possible. Recall that this involves making the correct choice at six245

successive 3-way intersections, an outcome that is unlikely to happen by chance.246

The above hypothesis regarding gradual practice of home runs would predict that short247

10 of 33



Manuscript under review

Drink

Leave
Explore

BA

Figure 7. Exploration is a dominant and persistent mode of behavior. (A) Ethogram for rewarded
animals. Area of the circle reflects the fraction of time spent in each behavioral mode averaged over
animals and duration of the experiment. Width of the arrow reflects the probability of transitioning to
another mode. ‘Drink’ involves travel to the water port and time spent there. Transitions from ‘Leave’
represent what the animal does at the start of the next bout into the maze. (B) The fraction of time spent
in each mode as a function of absolute time throughout the night. Mean ± SD across the 10 rewarded
animals.

Figure 7–figure supplement 1. Three modes of behavior.

home runs should appear before long ones in the course of the experiment. The opposite is the248

case (Figure 6 B). In fact, the end nodes (level 7 of the maze) are by far the favorite place from249

which to return to the exit, and those maximal-length home runs systematically appear before250

shorter ones. This conclusion was confirmed for each individual animal, whether rewarded or251

unrewarded.252

Clearly the animals do not practice the home path or build it up gradually. Instead they253

seem to possess an Ariadne’s thread (Pseudo-Apollodorus, I-II Century AD) starting with254

their first excursion into the maze, long before they might have acquired any general knowledge255

of the maze layout. On the other hand the mouse does not follow the strategy of Theseus,256

namely to precisely retrace the path that led it into the labyrinth. In that case the animal’s home257

path should be the reverse of the path into the maze that started the bout. Instead the entry258

path and the home path tend to have little overlap (Figure 6C). Note the minimum overlap is 1,259

because all paths into and out of the maze have to pass through the central junction (node 0 in260

Figure 3–figure supplement 1). This is also the most frequent overlap. The peak at overlaps261

6-8 for rewarded animals results from the frequent paths to the water port and back, a sequence262

of at least 7 nodes in each direction. The separation of outbound and return path is seen even263

on the very first home run (Figure 6D). Many home runs from the deepest level (7 nodes) have264

only the central junction in common with the outbound path (overlap = 1).265

In summary it appears that the animal acquires a homing strategy over the course of a266

single bout, and in a manner that allows a direct return home even from locations not previously267

encountered.268

Structure of behavior in the maze269

Here we focus on rules and patterns that govern the animal’s activity in the maze on both large270

and small scales.271

Behavioral states272

Once the animal has learned to perform long uninterrupted paths to the water port, one can273

categorize its behavior within the maze by three states: (1) walking to the water port; (2)274
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BA C

N32

E = 32 N32

Figure 8. Exploration covers the maze efficiently. (A) The number of distinct end nodes
encountered as a function of the number of end nodes visited for: mouse C1 (red); the optimal explorer
agent (black); an unbiased random walk (blue). Arrowhead: the valueN32 = 76 by which mouse C1
discovered half of the end nodes. (B) An expanded section of the graph in A including curves from 10
rewarded (red) and 9 unrewarded (green) animals. The efficiency of exploration, defined as
E = 32∕N32, is 0.385 ± 0.050 (SD) for rewarded and 0.384 ± 0.039 (SD) for unrewarded mice. (C)
The efficiency of exploration for the same animals, comparing the values in the first and second halves
of the time in the maze. The decline is a factor of 0.74 ± 0.12 (SD) for rewarded and 0.81 ± 0.13 (SD)
for unrewarded mice.

Figure 8–figure supplement 1. Efficiency of exploration

walking to the exit; and (3) exploring the maze. Operationally we define exploration as all275

periods in which the animal is in the maze but not on a direct path to water or to the exit. For276

the ten sated animals this includes all times in the maze except for the walks to the exit.277

Figure 7 illustrates the occupancies and transition probabilities between these states. The278

animals spent most of their time by far in the exploration state: 84% for rewarded and 95%279

for unrewarded mice. Across animals there was very little variation in the balance of the 3280

modes (Figure 7–figure supplement 1). The rewarded mice began about half their bouts into281

the maze with a trip to the water port and the other half by exploring (Figure 7A). After a282

drink, the animals routinely continued exploring, about 90% of the time.283

For water-deprived animals the dominance of exploration persisted even at a late stage of284

the night when they routinely executed perfect exploitation bouts to and from the water port:285

Over the duration of the night the ‘explore’ fraction dropped slightly from 0.92 to 0.75, with the286

balance accrued to the ‘drink’ and ‘leave’ modes as the animals executed many direct runs to the287

water port and back. The unrewarded group of animals also explored the maze throughout the288

night even though it offered no overt rewards (Figure 7–figure supplement 1). One suspects289

that the animals derive some intrinsic reward from the act of patrolling the environment itself.290

Efficiency of exploration291

During the direct paths to water and to the exit the animal behaves deterministically, whereas292

the exploration behavior appears stochastic. Here we delve into the rules that govern the293

exploration component of behavior.294

One can presume that a goal of the exploratory mode is to rapidly survey all parts of the295

environment for the appearance of new resources or threats. We will measure the efficiency of296

exploration by how rapidly the animal visits all end nodes of the binary maze, starting at any297

time during the experiment. The optimal agent with perfect memory and complete knowledge298

of the maze – including the absence of any loops – could visit the end nodes systematically299

one after another without repeats, thus encountering all of them after just 64 visits. A less300

perfect agent, on the other hand, will visit the same node repeatedly before having encountered301

all of them. Figure 8A plots for one exploring mouse the number of distinct end nodes it302

encountered as a function of the number of end nodes visited. The number of new nodes rises303
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Figure 9. Turning biases favor exploration. (A) Definition of four turning biases at a T-junction
based on the ratios of actions taken. Top: An animal arriving from the stem of the T (shaded) may
either reverse or turn left or right. PSF is the probability that it will move forward rather than reversing.
Given that it moves forward, PSA is the probability that it will take an alternating turn from the
preceding one (gray), i.e. left-right or right-left. Bottom: An animal arriving from the bar of the T may
either reverse or go straight, or turn into the stem of the T. PBF is the probability that it will move
forward through the junction rather than reversing. Given that it moves forward, PBS is the probability
that it turns into the stem. (B) Scatter graph of the biases PSF and PBF (left) and PSA and PBS (right).Every dot represents a mouse. Cross: values for an unbiased random walk. (C) Exploration curve of
new end nodes discovered vs end nodes visited, displayed as in Figure 8A, including results from a
biased random walk with the 4 turning biases derived from the same mouse, as well as a more elaborate
Markov-chain model (see Figure 11C). (D) Efficiency of exploration (Equation 1) in 19 mice
compared to the efficiency of the corresponding biased random walk.

Figure 9–figure supplement 1. Bias statistics.

monotonically; 32 of the end nodes have been discovered after the mouse checked 76 times;304

then the curve gradually asymptotes to 64. We will characterize the efficiency of the search by305

the number of visitsN32 required to survey half the end nodes, and define306

E = 32
N32

. (1)
This mouse explores with efficiency E = 32/76 = 0.42. For comparison, Figure 8A plots the307

performance of the optimal agent (E = 1.0) and that of a random walker that makes random308

decisions at every 3-way junction (E =0.23). Note the mouse is about half as efficient as the309

optimal agent, but twice as efficient as a random walker.310

The different mice were remarkably alike in this component of their exploratory behavior311

(Figure 8B): across animals the efficiency varied by only 11% of the mean (0.387 ± 0.044 SD).312

Furthermore there was no detectable difference in efficiency between the rewarded animals and313

the sated unrewarded animals. Over the course of the night the efficiency declined significantly314

for almost every animal – whether rewarded or not – by an average of 23% (Figure 8C).315
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Rules of exploration316

What allows the mice to search much more efficiently than a random walking agent? We317

inspected more closely the decisions that the animals make at each 3-way junction. It emerged318

that these decisions are governed by strong biases (Figure 9). The probability of choosing319

each arm of a T-junction depends crucially on how the animal entered the junction. The animal320

can enter a T-junction from 3 places and exit it in 3 directions (Figure 9A). By tallying the321

frequency of all these occurrences across all T-junctions in the maze one finds clear deviations322

from an unbiased random walk (Figure 9B, Figure 9–figure supplement 1).323

First, the animals have a strong preference for proceeding through a junction rather than324

returning to the preceding node (PSF and PBF in Figure 9B). Second there is a bias in favor325

of alternating turns left and right rather than repeating the same direction turn (PSA). Finally,326

the mice have a mild preference for taking a branch off the straight corridor rather than327

proceeding straight (PBS). A comparison across animals again revealed a remarkable degree328

of consistency even in these local rules of behavior: The turning biases varied by only 3%329

across the population and even between the rewarded and unrewarded groups (Figure 9B,330

Figure 9–figure supplement 1).331

Qualitatively, one can see that these turning biases will improve the animal’s search strategy.332

The forward biases PSF and PBF keep the animal from re-entering territory it has covered already.333

The bias PBS favors taking a branch that leads out of the maze. This allows the animal to rapidly334

cross multiple levels during an outward path and then enter a different territory. By comparison,335

the unbiased random walk tends to get stuck in the tips of the tree and revisits the same end336

nodes many times before escaping. To test this intuition we simulated a biased random agent337

whose turning probabilities at a T-junction followed the same biases as measured from the338

animal (Figure 9C). These biased agents did in fact search with much higher efficiency than339

the unbiased random walk. They did not fully explain the behavior of the mice (Figure 9D),340

accounting for ~87% of the animal’s efficiency (compared to 60% for the random walk). A more341

sophisticated model of the animal’s behavior - involving many more parameters (Figure 11C) -342

failed to get any closer to the observed efficiency (Figure 9C, Figure 8–figure supplement 1C).343

Clearly some components of efficient search in these mice remain to be understood.344

Systematic node preferences345

A surprising aspect of the animals’ explorations is that they visit certain end nodes of the346

binary tree much more frequently than others (Figure 10). This effect is large: more than a347

factor of 10 difference between the occupancy of the most popular and least popular end nodes348

(Figure 10A-B). This was surprising given our efforts to design the maze symmetrically, such349

that in principle all end nodes should be equivalent. Furthermore the node preferences were350

very consistent across animals and even across the rewarded and unrewarded groups. Note that351

the standard error across animals of each node’s occupancy is much smaller than the differences352

between the nodes (Figure 10B).353

The nodes on the periphery of the maze are systematically preferred. Comparing the354

outermost ring of 26 end nodes (excluding the water port and its neighbor) to the innermost 16355

end nodes, the outer ones are favored by a large factor of 2.2. This may relate to earlier reports356

of a “centrifugal tendency” among rats patrolling a maze (Uster et al., 1976).357

Interestingly, the biased random walk using four bias numbers (Figure 9, Figure 11D)358

replicates a good amount of the pattern of preferences. For unrewarded animals, where the359

maze symmetry is not disturbed by the water port, the biased random walk predicts 51%360

of the observed variance across nodes (Figure 10C), and an outer/inner node preference of361

1.97, almost matching the observed ratio of 2.20. The more complex Markov-chain model of362

behavior (Figure 11C) performed slightly better, explaining 66% of the variance in port visits363
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A B C

Figure 10. Preference for certain end nodes during exploration. (A) The number of visits to
different end nodes encoded by a gray scale. Top: rewarded, bottom: unrewarded animals. Gray scale
spans a factor of 12 (top) or 13 (bottom). (B) The fraction of visits to each end node, comparing the
rewarded vs unrewarded group of animals. Each data point is for one end node, the error bar is the SEM
across animals in the group. The outlier on the bottom right is the neighbor of the water port, a
frequently visited end node among rewarded animals. The water port is off scale and not shown. (C) As
in panel B but comparing the unrewarded animals to their simulated 4-bias random walks. These biases
explain 51% of the variance in the observed preference for end nodes.

and matching the outer/inner node preference of 2.20.364

Models of maze behavior365

Moving beyond the efficiency of exploration one may ask more broadly: How well do we really366

understand what the mouse does in the maze? Can we predict its action at the next junction?367

Once the predictable component is removed, how much intrinsic randomness remains in the368

mouse’s behavior? Here we address these questions using more sophisticated models that369

predict the probability of the mouse’s future actions based on the history of its trajectory.370

At a formal level, the mouse’s trajectory through the maze is a string of numbers standing371

for the nodes the animal visited (Figure 11A and Figure 3–figure supplement 1). We want to372

predict the next action of the mouse, namely the step that takes it to the next node. The quality373

of the model will be assessed by the cross-entropy between the model’s predictions and the374

mouse’s observed actions, measured in bits per action. This is the uncertainty that remains375

about the mouse’s next action given the prediction from the model. The ultimate lower limit is376

the true source entropy of the mouse, namely that component of its decisions that cannot be377

explained by the history of its actions.378

One family of models we considered are fixed-depth Markov chains (Figure 11B). Here379

the probability of the next action at+1 is specified as a function of the history stretching over380

the k preceding nodes (st−k+1,… , st). In fitting the model to the mouse’s actual node sequence381

one tallies how often each history leads to each action, and uses those counts to estimate382

the conditional probabilities p(at+1|st−k+1,… , st). Given a new node sequence, the model383

will then use the history strings (st−k+1,… , st) to predict the outcome of the next action. In384

practice we trained the model on 80% of the animal’s trajectory and tested it by evaluating the385

cross-entropy on the remaining 20%.386

Ideally, the depth k of these action trees would be very large, so as to take as much of the387

prior history into account as possible. However, one soon runs into a problem of over-fitting:388

Because each T-junction in the maze has 3 neighboring junctions, the number of possible389

histories grows as 3k. As k increases, this quickly exceeds the length of the measured node390

sequence, so that every history appears only zero or one times in the data. At this point one391
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Figure 11. Recent history constrains the mouse’s decisions. (A) The mouse’s trajectory through the
maze produces a sequence of states st = node occupied after step t. From each state, up to 3 possible
actions lead to the next state (end nodes allow only one action). We want to predict the animal’s next
action, at+1, based on the prior history of states or actions. (B-D) Three possible models to make such a
prediction. (B) A fixed-depth Markov chain where the probability of the next action depends only on
the current state st and the preceding state st−1. The branches of the tree represent all 3 × 127 possible
histories (st−1, st). (C) A variable-depth Markov chain where only certain branches of the tree of
histories contribute to the action probability. Here one history contains only the current state, some
others reach back three steps. (D) A biased random walk model, as defined in Figure 9, in which the
probability of the next action depends only on the preceding action, not on the state. (E) Performance of
the models in (B,C,D) when predicting the decisions of the animal at T-junctions. In each case we show
the cross-entropy between the predicted action probability and the real actions of the animal (lower
values indicate better prediction, perfect prediction would produce zero). Dotted line represents an
unbiased random walk with 1/3 probability of each action.

Figure 11–figure supplement 1. Markov model fits.
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can no longer estimate any probabilities, and cross-validation on a different segment of data392

fails catastrophically. In practice we found that this limitation sets in already beyond k = 2393

(Figure 11–figure supplement 1A). To address this issue of data-limitation we developed a394

variable-depth Markov chain (Figure 11C). This model retains longer histories, but only if395

they occur frequently enough to allow a reliable probability estimate (see Methods, Figure 11–396

figure supplement 1B-C). In addition, we explored different schemes of pooling the counts397

across certain T-junctions that are related by the symmetry of the maze (see Methods).398

With thesemethods we focused on the portions of trajectory when themousewas in ‘explore’399

mode, because the segments in ‘drink’ and ‘leave’ mode are fully predictable. Furthermore,400

we evaluated the models only at nodes corresponding to T-junctions, because the decision401

from an end node is again fully predictable. Figure 11E compares the performance of various402

models of mouse behavior. The variable-depth Markov chains routinely produced the best fits,403

although the improvement over fixed-depth models was modest. Across all 19 animals in this404

study the remaining uncertainty about the animal’s action at a T-junction is 1.237 ± 0.035 (SD)405

bits/action, compared to the prior uncertainty of log2 3 = 1.585 bits. The rewarded animals406

have slightly lower entropy than the unrewarded ones (1.216 vs 1.261 bits/action). The Markov407

chain models that produced the best fits to the behavior used history strings with an average408

length of ~4.409

We also evaluated the predictions obtained from the simple biased random walk model410

(Figure 11D). Recall that this attempts to capture the history-dependence with just 4 bias411

parameters (Figure 9A). As expected this produced considerably higher cross-entropies than412

the more sophisticated Markov chains (by about 18%, Figure 11E). Finally we used several413

professional file compression routines to try and compress the mouse’s node sequence. In414

principle, this sets an upper bound on the true source entropy of the mouse, even if the415

compression algorithm has no understanding of animal behavior. The best such algorithm (bzip2416

compression (Seward, 2019)) far under-performed all the other models of mouse behavior,417

giving 43% higher cross-entropy on average, and thus offered no additional useful bounds.418

We conclude that during exploration of the maze the mouse’s choice behavior is strongly419

influenced by its current location and ~3 locations preceding it. There are minor contributions420

from states further back. By knowing the animal’s history one can narrow down its action421

plan at a junction from the a priori 1.59 bits (one of three possible actions) to just ~1.24 bits.422

This finally is a quantitative answer to the question, “How well can one predict the animal’s423

behavior?” Whether the remainder represents an irreducible uncertainty – akin to “free will”424

of the mouse – remains to be seen. Readers are encouraged to improve on this number by425

applying their own models of behavior to our published data set.426

Discussion427

Summary of contributions428

We present a new approach to the study of learning and decision-making in mice. We give the429

animal access to a complex labyrinth and leave it undisturbed for a night while monitoring its430

movements. The result is a rich data set that reveals new aspects of learning and the structure of431

exploratory behavior. With these methods we find that mice learn a complex task that requires432

6 correct 3-way decisions after only ~10 experiences of success (Figure 2, Figure 3). Along433

the way the animal gains task knowledge in discontinuous steps that can be localized to within434

a few minutes of resolution (Figure 5). Underlying the learning process is an exploratory435

behavior that occupies 90% of the animal’s time in the maze and persists long after the task has436

been mastered, even in complete absence of an extrinsic reward (Figure 7). The decisions the437

animal makes at choice points in the labyrinth are constrained in part by the history of its actions438
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(Figure 9, Figure 11), in a way that favors efficient searching of the maze (Figure 8). This439

microstructure of behavior is surprisingly consistent across mice, with variation in parameters of440

only a few percent (Figure 9). Our most expressive models to predict the animal’s choices still441

leave a remaining uncertainty of ~1.24 bits per decision (Figure 11), a quantitative benchmark442

by which competing models can be tested. Finally, some of the observations constrain what443

algorithms the animals might use for learning and navigation (Figure 4).444

Historical context445

Mazes have been a staple of animal psychology for well over 100 years. The early versions446

were true labyrinths. For example, Small (1901) built a model of the maze in Hampton Court447

gardens scaled to rat size. Subsequent researchers felt less constrained by Victorian landscapes448

and began to simplify the maze concept. Most commonly the maze offered one standard path449

from a starting location to a food reward box. A few blind alleys would branch from the standard450

path, and researchers would tally how many errors the animal committed by briefly turning451

into a blind (Tolman and Honzik, 1930). Later on, the design was further reduced to a single452

T-junction. After all, the elementary act of maze navigation is whether to turn left or right at a453

junction (Tolman, 1938), so why not study that process in isolation? And reducing the concept454

even further, one can ask the animal to refrain from walking altogether, and instead poke its455

nose into a hole on the left or the right side of a box (Uchida and Mainen, 2003). This led to456

the popular behavior boxes now found in rodent neuroscience laboratories everywhere. Each457

of these reductions of the “maze” concept enabled a new type of experiment to study learning458

and decision-making, for example limiting the number of choice points allows one to better459

sample neural activity at each one. However, the essence of a “confusing network of paths”460

has been lost along the way, and with it the behavioral richness of the animals navigating those461

decisions.462

Owing in part to the dissemination of user-friendly tools for animal tracking, one sees463

a renaissance of experiments that embrace complex environments, including mazes with464

many choice points (Alonso et al., 2020; Wood et al., 2018; Sato et al., 2018; Nagy et al.,465

2020; Rondi-Reig et al., 2006; Yoder et al., 2011; McNamara et al., 2014), 3-dimensional466

environments (Grobéty and Schenk, 1992), and infinite mazes (Shokaku et al., 2020). The467

labyrinth in the present study is considerably more complex than Hampton Court or most of468

the mazes employed by Tolman and others (Tolman and Honzik, 1930; Buel, 1934; Munn,469

1950a). In those mazes the blind alleys are all short and unbranched; when an animal strays470

from the target path it receives feedback quickly and can correct. By contrast our binary tree471

maze has 64 equally deep branches, only one of which contains the reward port. If the animal472

makes a mistake at any level of the tree it can find out only after traveling all the way to the last473

node.474

Another crucial aspect of our experimental design is the absence of any human interference.475

Most studies of animal navigation and learning involve some kind of trial structure. For example476

the experimenter puts the rat in the start box, watches it make its way through the maze, coaxes477

it back on the path if necessary, and picks it up once it reaches the target box. Then another478

trial starts. In modern experiments with two-alternative-forced-choice (2AFC) behavior boxes479

the animal doesn’t have to be picked up, but a trial starts with appearance of a cue, and then480

proceeds through some strict protocol through delivery of the reward. The argument in favor481

of imposing a trial structure is that it creates reproducible conditions, so that one can gather482

comparable data and average them suitably over many trials.483

Our experiments had no imposed structure whatsoever; in fact it may be inappropriate to484

call them experiments. The investigator opened the entry to the maze in the evening and did485

not return until the morning. A potential advantage of leaving the animals to themselves is486
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that they are more likely to engage in mouse-like behavior, rather than constantly responding487

to the stress of human interference or the alienation from being a cog in a behavior machine.488

The result was a rich data set, with the typical animal delivering ~15,000 decisions in a single489

night, even if one only counts the nodes of the binary tree as decision points. Since the mice490

made all the choices, the scientific effort lay primarily in adapting methods of data analysis to491

the nature of mouse trajectories. Somewhat surprisingly, the absence of experimental structure492

was no obstacle to making precise and reproducible measurements of the animal’s behavior.493

How fast do animals learn?494

Among the wide range of phenomena of animal learning, one can distinguish easy and hard495

tasks by some measure of task complexity. In a simple picture of a behavioral task the animal496

needs to recognize several different contexts and based on that express one of several different497

actions. One can draw up a contingency table between contexts and actions, and measure the498

complexity of the task by the mutual information in that table. This ignores any task difficulties499

associated with sensing the context at all or with producing the desired actions. However,500

in all the examples discussed here the stimuli are discriminated easily and the actions come501

naturally, thus the learning difficulty lies only in forming the associations, not in sharpening502

the perceptual mechanisms or practicing complex motor output.503

Many well-studied behaviors have a complexity of 1 bit or less, and often animals can504

learn these associations after a single experience. For example, in the Bruce effect (Bruce,505

1959) the female maps two different contexts (smell of mate vs non-mate) onto two kinds of506

pregnancy outcomes (carry to term vs abort). The mutual information in that contingency table507

is at most 1 bit, and may be considerably lower, for example if non-mate males are very rare or508

very frequent. Mice form the correct association after a single instance of mating, although509

proper memory formation requires several hours of exposure to the mate odor (Rosser and510

Keverne, 1985).511

Similarly fear learning under the common electroshock paradigm establishes a mapping512

between two contexts (paired with shock vs innocuous) and two actions (freeze vs proceed),513

again with an upper bound of 1 bit of complexity. Rats and mice will form the association after514

a single experience lasting only seconds, and alter their behavior over several hours (Fanselow515

and Bolles, 1979; Bourtchuladze et al., 1994). This is an adaptive warning system to deal516

with life-threatening events, and rapid learning here has a clear survival value.517

Animals are particularly adept at learning a new association between an odor and food. For518

example bees will extend their proboscis in response to a new odor after just one pairing trial519

where the odor appeared together with sugar (Bitterman et al., 1983). Similarly rodents will520

start digging for food in a scented bowl after just a few pairings with that odor (Cleland et al.,521

2009). Again, these are 1-bit tasks learned rapidly after one or a few experiences.522

By comparison the tasks that a mouse performs in the labyrinth are more complex. For523

example, the path from the maze entrance to the water port involves 6 junctions, each with 3524

options. At a minimum 6 different contexts must be mapped correctly into one of 3 actions525

each, which involves 6 ⋅ log23 = 9.5 bits of complexity. The animals begin to execute perfect526

paths from the entrance to the water port well within the first hour (Figure 2C, Figure 3B).527

At a later stage during the night the animal learns to walk direct paths to water from many528

different locations in the maze (Figure 5); by this time it has consumed 10-20 rewards. In529

the limit, if the animal could turn correctly towards water from each of 63 junctions in the530

maze, it would have learned 63 ⋅ log23 = 100 bits. Conservatively we estimate that the animals531

have mastered 10-20 bits of complexity based on 10-20 reward experiences within an hour of532

time spent in the maze. Note this considers only information about the water port and ignores533

whatever else the animals are learning about the maze during their incessant exploratory forays.534
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These numbers align well with classic experiments on rats in diverse mazes and problem boxes535

Munn (1950a). Although those tasks come in many varieties, a common theme is that ~10536

successful trials are sufficient to learn ~10 decisions (Woodrow, 1942).537

In a different corner of the speed-complexity space are the many 2-alternative-forced-choice538

(2AFC) tasks in popular use today. These tend to be 1-bit tasks, for example the monkey should539

flick its eyes to the left when visual motion is to the left (Newsome and Pare, 1988), or the540

mouse should turn a steering wheel to the right when a light appears on the left (Burgess et al.,541

2017). Yet, the animals take a long time to learn these simple tasks. For example, the mouse542

with the steering wheel requires about 10,000 experiences before performance saturates. It543

never gets particularly good, with a typical hit rate only 2/3 of the way from random to perfect.544

All this training takes 3-6 weeks; in the case of monkeys several months. The rate of learning,545

measured in task complexity per unit time, is surprisingly low: < 1 bit/month compared to ~10546

bits/h observed in the labyrinth. The difference is a factor of 6,000. Similarly when measured in547

complexity learned per reward experience: The 2AFC mouse may need 5,000 rewards to learn548

a contingency table with 1 bit complexity, whereas the mouse in the maze needs ~10 rewards549

to learn 10 bits. Given these enormous differences in learning rate, one wonders whether the550

ultra-slow mode of learning has any relevance for an animal’s natural condition. In the month551

that the 2AFC mouse requires to finally report the location of a light, its relative in the wild has552

developed from a baby to having its own babies. Along the way, that wild mouse had to make553

many decisions, often involving high stakes, without the benefit of 10,000 trials of practice.554

Sudden insight555

The dynamics of the learning process are often conceived as a continuously growing associ-556

ation between stimuli and actions, with each reinforcing experience making an infinitesimal557

contribution. The reality can be quite different. When a child first learns to balance on a bicycle,558

performance goes from abysmal to astounding within a few seconds. The timing of such a559

discontinuous step in performance seems impossible to predict but easy to recognize after the560

fact.561

From the early days of animal learning experiments there have been warnings against the562

tendency to average learning curves across subjects (Krechevsky, 1932; Estes, 1956). The563

average of many discontinuous curves will certainly look continuous and incremental, but that564

reassuring shape may miss the essence of the learning process. A recent reanalysis of many565

Pavlovian conditioning experiments suggested that discontinuous steps in performance are the566

rule rather than the exception (Gallistel et al., 2004). Here we found that the same applies to567

navigation in a complex labyrinth. While the average learning curve presents like a continuous568

function (Figure 3B), the individual records of water rewards show that each animal improves569

rather quickly but at different times (Figure 3A).570

Owing to the unstructured nature of the experiment, the mouse may adopt different policies571

for getting to the water port. In at least half the animals we observed a discontinuous change572

in that policy, namely when the animal started using efficient direct paths within the maze573

(Figure 5, Figure 5–figure supplement 2). This second switch happened considerably after574

the animal started collecting rewards, and did not greatly affect the reward rate. Furthermore,575

the animals never reverted to the less efficient policy, just as a child rarely unlearns to balance576

a bicycle.577

Presumably this switch in performance reflects some discontinuous change in the animal’s578

internal model of the maze, what Tolman called the “cognitive map” (Tolman, 1948; Behrens579

et al., 2018). In the unrewarded animals we could not detect any discontinuous change in the580

use of long paths. However, as Tolman argued, those animals may well acquire a sophisticated581

cognitive map that reveals itself only when presented with a concrete task, like finding water.582
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Future experiments will need to address this. The discontinuous changes in performance pose583

a challenge to conventional models of reinforcement learning, in which reward events are the584

primary driver of learning and each event contributes an infinitesimal update to the action585

policy. It will also be important to model the acquisition of distinct kinds of knowledge that586

contribute to the same behavior, like the location of the target and efficient routes to approach587

it.588

Exploratory behavior589

By all accounts the animals spent a large fraction of the night exploring the maze (Figure 1–590

figure supplement 2). The water-deprived animals continued their forays into the depths of591

the maze long after they had found the water port and learned to exploit it regularly. After592

consuming a water reward they wandered off into the maze 90% of the time (Figure 7B) instead593

of lazily waiting in front of the port during the timeout period. The sated animals experienced594

no overt reward from the maze, yet they likewise spent nearly half their time exploring that595

environment. As has been noted many times, animals – like humans – derive some form of596

intrinsic reward from exploration (Berlyne, 1960). Some have suggested that there exists a597

homeostatic drive akin to hunger and thirst that elicits the information-seeking activity, and598

that the drive is in turn sated by the act of exploration (Hughes, 1997). If this were the case,599

then the drive to explore should be weakest just after an episode of exploration, much as the600

drive for food-seeking is weaker after a big meal.601

Our observations are in conflict with this notion. The animal is most likely to enter the maze602

within the first minute of its return to the cage (Figure 1–figure supplement 3), a strong trend603

that runs opposite to the prediction from satiation of curiosity. Several possible explanations604

come to mind: (1) On these very brief visits to the cage the animal may just want to certify605

that the exit route to the safe environment still exists, before continuing with exploration of the606

maze. (2) The temporal contrast between the boredom of the cage and the mystery of the maze607

is highest right at the moment of exit from the maze, and that may exert pressure to re-enter the608

maze. Understanding this in more detail will require dedicated experiments. For example, one609

could deliberately deprive the animals of access to the maze for some hours, and test whether610

that results in an increased drive to explore, as observed for other homeostatic drives around611

eating, drinking, and sleeping.612

When left to their own devices, mice choose to spend much of their time engaged in613

exploration. One wonders how that affects their actions when they are strapped into a rigid614

behavior machine, like a 2AFC choice box. Presumably the drive to explore persists, perhaps615

more so because the forced environment is so unpleasant. And within the confines of the two616

alternatives, the only act of exploration the mouse has left is to give the wrong answer. This617

would manifest as an unexpectedly high error rate on unambiguous stimuli, sometimes called618

the "lapse rate" (Carandini and Churchland, 2013; Pisupati et al., 2021). The fact that the619

lapse rate decreases only gradually over weeks to months of training (Burgess et al., 2017)620

suggests that it is difficult to crush the animal’s drive to explore.621

The animals in our experiments had never been presented with a maze environment, yet they622

quickly settled into a steady mode of exploration. Once a mouse progressed beyond the first623

intersection it typically entered deep into the maze to one or more end nodes (Figure 6). Within624

50 s of the first entry the animals adopted a steady speed of locomotion that they would retain625

throughout the night (Figure 2–figure supplement 2). Within 250 s of first contact with the626

maze the average animal already spent 50% of its time there (Figure 1–figure supplement 2).627

Contrast this with a recent study of “free exploration” in an exposed arena: Those animals628

required several hours before they even completed one walk around the perimeter (Fonio et al.,629

2009). Here the drive to explore is clearly pitted against fear of the open space, which may not630
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be conducive to observing exploration per se.631

The persistence of exploration throughout the entire duration of the experiment suggests632

that the animals are continuously surveying the environment, perhaps expecting new features633

to arise. These surveys are quite efficient: The animals cover all parts of the maze much faster634

than expected from a random walk (Figure 8). Effectively they avoid re-entering territory they635

surveyed just recently. It is often assumed that this requires some global memory of places636

visited in the environment (Nagy et al., 2020; Olton, 1979). Such memory would have to637

persist for a long time: Surveying half of the available end nodes typically required 450 turning638

decisions. However, we found that a global long-term memory is not needed to explain the639

efficient search. The animals seem to be governed by a set of local turning biases that require640

memory only of the most recent decision and no knowledge of location (Figure 9). These local641

biases alone can explain most of the character of exploration without any global understanding642

or long-term memory. Incidentally, they also explain other seemingly global aspects of the643

behavior, for example the systematic preference that the mice have for the outer rather than the644

inner regions of the maze (Figure 10). Of course, this argument does not exclude the presence645

of a long-term memory, which may reveal itself in some other feature of the behavior.646

Perhaps the most remarkable aspect of these biases is how similar they are across all 19 mice647

studied here, regardless of whether the animal experienced water rewards or not (Figure 9B,648

Figure 9–figure supplement 1), and independent of the sex of the mouse. The four decision649

probabilities were identical across individuals to within a standard deviation of <0.03. We650

cannot think of a trivial reason why this should be so. For example the two biases for forward651

motion (Figure 9B left) are poised halfway between the value for a random walk (p = 2∕3) and652

certainty (p = 1). At either of those extremes, simple saturation might lead to a reproducible653

value, but not in the middle of the range. Why do different animals follow the exact same654

decision rules at an intersection between tunnels? Given that tunnel systems are part of the655

mouse’s natural ecology, it is possible that those rules are innate and determined genetically.656

Indeed the rules by which mice build tunnels have a strong genetic component (Weber et al.,657

2013), so the rules for using tunnels may be written in the genes as well. The high precision658

with which one can measure those behaviors even in a single night of activity opens the way to659

efficient comparisons across genotypes, and also across animals with different developmental660

experience.661

Finally, after mice discover the water port and learn to access it from many different points662

in the maze (Figure 5) they are presumably eager to discover other things. In ongoing work we663

installed three water ports (visible in the videos accompanying this article) and implemented a664

rule that activates the three ports in a cyclic sequence. Mice discovered all three ports rapidly665

and learned to visit them in the correct order. Future experiments will have to raise the bar on666

what the mice are expected to learn in a night.667

Mechanisms of navigation668

How do the animals navigate when they perform direct paths to the water port or to the exit?669

The present study cannot resolve that, but one can gain some clues based on observations so670

far. Early workers already concluded that rodents in a maze will use whatever sensory cues671

and tricks are available to accomplish their tasks (Munn, 1950b). Our maze was designed to672

restrict those options somewhat.673

To limit the opportunity for visual navigation, the floor and walls of the maze are visually674

opaque. The ceiling is transparent, but the room is kept dark except for infrared illuminators.675

Even if the animal finds enough light, the goals (water port or exit) are invisible within the676

maze except from the immediately adjacent corridor. There are no visible beacons that would677

identify the goal.678
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With regard to the sense of touch and kinesthetics, the maze was constructed for maximal679

symmetry. At each level of the binary tree all the junctions have locally identical geometry,680

with intersecting corridors of the same length. In practice the animals may well detect some681

inadvertent cues, like an unusual drop of glue, that could identify one node from another. The682

maze rotation experiment suggests that such cues are not essential for the animal’s sense of683

location in the maze, at least in the expert phase.684

The role of odors deserves particular attention because the mouse may use them both685

passively and actively. Does the animal first find the water port by following the smell of water?686

Probably not. For one, the port only emits a single drop of water when triggered by a nose poke.687

Second, we observed many instances where the animal is in the final corridor adjacent to the688

water port yet fails to discover it. The initial discovery seems to occur via touch. The reader can689

verify this in the videos accompanying this article. Regarding active use of odor markings in690

the maze, the maze rotation experiment suggests that such cues are not required for navigation,691

at least once the animals have adopted the shortest path to the water port (Figure 4).692

Another algorithm that is often invoked for animals moving in an open arena is vector-based693

navigation (Wehner et al., 1996). Once the animal discovers a target, it keeps track of that694

target’s heading and distance using a path integrator. When it needs to return to the target it695

follows the heading vector and updates heading and distance until it arrives. Such a strategy has696

limited appeal inside a labyrinth because the vectors are constantly blocked by walls. Consider,697

for example, the “home runs” back to the exit at the end of a bout. Here the target, namely the698

exit, is known from the start of the bout, because the animal enters through the same hole. At699

the end of the bout, when the mouse decides to exit from the maze, can it follow the heading700

vector to the exit? Figure 6A shows the 13 locations from which mice returned in a direct path701

to the exit on their very first foray. None of these locations is compatible with heading-based702

navigation: In each case an animal following the heading to the exit would get stuck in a703

different end node first and would have to reverse from there, quite unlike what really happened.704

Finally, a partial clue comes from errors the animals make. We found that the rotation image705

of the water port, an end node diametrically across the entire maze, is one of the most popular706

destinations for rewarded animals (Figure 10A). These errors would be highly unexpected707

if the animals navigated from the entrance to the water by odor markings, or if they used an708

absolute representation of heading and distance. On the other hand, if the animal navigates via709

a remembered sequence of turns, then it will end up at that image node if it makes a single710

mistake at just the first T-junction.711

Future directed experiments will serve to narrow down how mice learn to navigate this712

environment, and how their policy might change over time. Since the animals get to perfection713

within an hour or so, one can test a new hypothesis quite efficiently. Understanding what714

mechanisms they use will then inform thinking about the algorithm for learning, and about the715

neuronal mechanisms that implement it.716
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Methods and Materials717

Experimental design718

The goal of the study was to observe mice as they explored a complex environment for the719

first time, with little or no human interference and no specific instructions. In preliminary720

experiments we tested several labyrinth designs and water reward schedules. Eventually we721

settled on the protocol described here, and tested 20 mice in rapid succession. Each mouse was722

observed only over a 7-hour period during the first night it encountered the labyrinth.723

Maze construction724

The maze measured ~24 x 24 x 2 inches; for manufacture we used materials specified in inches,725

so dimensions are quoted in those non-SI units where appropriate. The ceiling was made of 0.5726

inch clear acrylic. Slots of 1/8 inch width were cut into this plate on a 1.5 inch grid. Pegged727

walls made of 1/8 inch infrared-transmitting acrylic (opaque in the visible spectrum, ePlastics)728

were inserted into these slots and secured with a small amount of hot glue. The floor was a sheet729

of infrared-transmitting acrylic, supported by a thicker sheet of clear acrylic. The resulting730

corridors (1-1/8 inches wide) formed a 6-level binary tree with T-junctions and progressive731

shortening of each branch, ranging from ~12 inch to 1.5 inch (Figure 1 and Figure 2). A single732

end node contained a 1.5 cm circular opening with a water delivery port (described below).733

The maze included provision for two additional water ports not used in the present report. Once734

per week the maze was submerged in cage cleaning solution. Between different animals the735

floor and walls were cleaned with ethanol.736

Reward delivery system737

The water reward port was controlled by a Matlab script on the main computer through an738

interface (Sanworks Bpod State Machine r1). Rewards were triggered when the animal’s nose739

broke the IR beam in the water port (Sanworks Port interface + valve). The interface briefly740

opened the water valve to deliver ~30 µL of water and flashed an infrared LED mounted outside741

the maze for 1 s. This served to mark reward events on the video recording. Following each742

reward, the system entered a time-out period for 90 s, during which the port did not provide743

further reward. In experiments with sated mice the water port was turned off.744

Cage and connecting passage745

The entrance to the maze was connected to an otherwise normal mouse cage by red plastic746

tubing (3 cm dia, 1 m long). The cage contained food, bedding, nesting material, and in the747

case of unrewarded experiments also a normal water bottle.748

Animals and treatments749

All mice were C57BL/6J animals (Jackson Labs) between the ages of 45 and 98 days (mean 62750

days). Both sexes were used: 4 males and 6 females in the rewarded experiments, 5 males and751

4 females in the unrewarded experiments. For water deprivation, the animal was transferred752

from its home cage (generally group-housed) to the maze cage ~22 h before the start of the753

experiment. Non-deprived animals were transferred minutes before the start. All procedures754

were performed in accordance with institutional guidelines and approved by the Caltech IACUC.755

Video recording756

All data reported here were collected over the course of 7 hours during the dark portion of757

the animal’s light cycle. Video recording was initiated a few seconds prior to connecting the758

tunnel to the maze. Videos were recorded by an OpenCV python script controlling a single759

webcam (Logitech C920) located ~1 m below the floor of the maze. The maze and access tube760
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were illuminated by multiple infrared LED arrays (center wavelength 850 nm). Three of these761

lights illuminated the maze from below at a 45 degree angle, producing contrast to resolve762

the animal’s foot pads. The remaining lights pointed at the ceiling of the room to produce763

backlight for a sharp outline of the animal.764

Animal tracking765

A version of DeepLabCut (Nath et al., 2019) modified to support gray-scale processing was766

used to track the animal’s trajectory, using key points at the nose, feet, tail base and mid-body.767

All subsequent analysis was based on the trajectory of the animal’s nose, consisting of positions768

x(t) and y(t) in every video frame.769

Rates of transition between cage and maze770

This section relates to Figure 1–figure supplement 3. We entertained the hypothesis that the771

animals become “thirsty for exploration” as they spend more time in the cage. In that case one772

would predict that the probability of entering the maze in the next second will increase with773

time spent in the cage. One can compute this probability from the distribution of residency774

times in the cage, as follows:775

Say t = 0 when the animal enters the cage. The probability density that the animal will776

next leave the cage at time t is777

p (t) = e
−

t
∫
0
r(t′)dt′

r (t) (2)
where r (t) is the instantaneous rate for entering the maze. So778

t
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(4)

This relates the cumulative of the instantaneous rate function to the cumulative of the779

observed transition times. In this way we computed the rates780

rm (t) = rate of entry into the maze as a function of time spent in the cage (5)
rc (t) = rate of entry into the cage as a function of time spent in the maze (6)

The rate of entering the maze is highest at short times in the cage (Figure 1–figure supple-781

ment 3A). It peaks after ~15 s in the cage and then declines gradually by a factor of 4 over782

the first minute. So the mouse is most likely to enter the maze just after it returns from there.783

This runs opposite to the expectation from a homeostatic drive for exploration, which should784

be sated right after the animal returns. We found no evidence for an increase in the rate at785

late times. These effects were very similar in rewarded and unrewarded groups and in fact the786

tendency to return early was seen in every animal.787

By contrast the rate of exiting the maze is almost perfectly constant over time (Figure 1–788

figure supplement 3B). In other words the exit from the maze appears like a constant rate789

Poisson process. There is a slight elevation of the rate at short times among rewarded animals790
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(Figure 1–figure supplement 3B top). This may come from the occasional brief water runs791

they perform. Another strange deviation is an unusual number of very short bouts (duration792

2-12 s) among unrewarded animals (Figure 1–figure supplement 3B bottom). These are brief793

excursions in which the animal runs to the central junction, turns around, and runs to the exit.794

Several animals exhibited these, often several bouts in a row, and at all times of the night.795

Reduced trajectories796

From the raw nose trajectory we computed two reduced versions. First we divided the maze797

into discrete “cells”, namely the squares the width of a corridor that make up the grid of the798

maze. At any given time the nose is in one of these cells and that time series defines the cell799

trajectory.800

At a coarser level still one can ask when the animal passes through the nodes of the binary801

tree, which are the decision points in the maze. The special cells that correspond to the nodes802

of the tree are those at the center of a T-junction and those at the leaves of the tree. We marked803

all the times when the trajectory (x(t), y(t)) entered a new node cell. If the animal leaves a804

node cell and returns to it before entering a different node cell, that is not considered a new805

node. This procedure defines a discrete node sequence si and corresponding arrival times at806

those nodes ti. We call the transition between two nodes a “step”. Much of the analysis in this807

paper is derived from the animal’s node sequence. The median mouse performed 16,192 steps808

in the 7 h period of observation (mean = 15,257; SD = 3,340).809

In Figure 5 and Figure 6 we count the occurrence of direct paths leading to the water810

port (a “water run”) or to the exit (a “home run”). A direct path is a node sequence without any811

reversals. Figure 3–figure supplement 1 illustrates some examples.812

If the animal makes one wrong step from the direct path, that step needs to be backtracked,813

adding a total of two steps to the length of the path. If further errors occur during backtracking814

they need to be corrected as well. The binary maze contains no loops, so the number of errors815

is directly related to the length of the path:816

Errors = (Length of path − Length of direct path)∕2. (7)
Maze rotation817

The maze rotation experiment (Figure 4) was performed on 4 mice, all water-deprived. Two818

of the animals (’D7’ and ’D9’) had experienced the maze before, and are part of the ’rewarded’819

group in other sections of the report. Two additional animals (’F2’ and ’A1’) had had no prior820

contact with the maze.821

The maze rotation occurred after at least 6 hours of exposure, by which time the animals822

had all perfected the direct path to the water port.823

For animals ’D7’ and ’D9’ we rotated only the floor of the maze, leaving the walls and824

ceiling in the original configuration. For ’F2’ and ’A1’ we rotated the entire maze, moving one825

wall segment at the central junction and the water port to attain the same shape. Navigation826

remained intact for all animals. Note that ’A1’ performed a perfect path to the water port and827

back immediately before and after a full maze rotation (Figure 4B).828

The visits to the 4 locations in the maze (Figure 4C, Figure 4–figure supplement 1) were829

limited to direct paths of length at least 2 steps. This avoids counting rapid flickers between830

two adjacent nodes. In other words, the animal has to move at least 2 steps away from the target831

node before another visit qualifies.832
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Statistics of sudden insight833

In Figure 5 one can distinguish two events: First the animal finds the water port and begins834

to collect rewards at a steady rate: this is when the green curve rises up. At a later time the835

long direct paths to the water port become much more frequent than to the comparable control836

nodes: this is when the red and blue curves diverge. For almost all animals these two events are837

well separated in time (Figure 5–figure supplement 1). In many cases the rate of long paths838

seems to change discontinuously: a sudden change in slope of the curve.839

Here we analyze the degree of "sudden change", namely how rapidly the rate changes in a840

time series of events. We modeled the rate as a sigmoid function of time during the experiment:841

r (t) = ri +
rf − ri
2

erf
(

t − ts
w

)

(8)
where842

erf (x) = 2
√

�

x

∫
0

e−x
2dx

The rate begins at a low initial level ri, reflecting chance occurrence of the event, and843

saturates at a high final level rf, limited for example by the animal’s walking speed. The other844

two parameters are the time ts of half-maximal rate change, and the width w over which that845

rate change takes place. A sudden change in the event rate would correspond to w = 0.846

The data are a set of n event times ti in the observation interval [0, T ]. We model the event847

train as an inhomogeneous Poisson point process with instantaneous rate r(t). The likelihood848

of the data given the rate function r(t) is849

L [r (t)] = e
−

T
∫
0
r(t)dt∏

i
r
(

ti
) (9)

and the log likelihood is850

lnL =
∑

i
lnr

(

ti
)

−
T

∫
0

r (t) dt (10)

For each of the 10 rewarded mice, we maximized lnL over the 4 parameters of the rate851

model, both for the reward events and the long paths to water. The resulting fits are plotted in852

Figure 5–figure supplement 1.853

Focusing on the learning of long paths to water, for 6 of the 10 animals the optimal width854

parameter w was less than 300 s: B1, B2, C1, C3, C6, C7. These are the same animals one855

would credit with a sudden kink in the cumulative event count based on visual inspection856

(Figure 5–figure supplement 1).857

To measure the uncertainty in the timing of this step, we refit the data for this subgroup of858

mice with a model involving a sudden step in the rate,859

r (t) =
{

ri, t < ts
rf , t > ts

(11)
and computed the likelihood of the data as a function of the step time ts. We report the mean860

and standard deviation of the step time over its likelihood in Figure 5–figure supplement 2.861

Animal C6 was dropped from this "sudden step" group, because the uncertainty in the step862

time was too large (∼900 s).863
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Efficiency of exploration864

The goal of this analysis is to measure how effectively the animal surveys all the end nodes of865

the maze. The specific question is: In a string of n end nodes that the animal samples, how866

many of these are distinct? On average how does the number of distinct nodes d increase with867

n? This was calculated as follows:868

We restricted the animal’s node trajectory (si) to clips of exploration mode, excluding the869

direct paths to the water port or the exit. All subsequent steps were applied to these clips, then870

averaged over clips. Within each clip we marked the sequence of end nodes (ei). We slid a871

window of size n across this sequence and counted the number of distinct nodes d in each872

window. Then we averaged d over all windows in all clips. Then we repeated that for a wide873

range of n. The resulting d(n) is plotted in the figures reporting new nodes vs nodes visited874

(Figure 8A,B and Figure 9C).875

For a summary analysis we fitted the curves of d(n) with a 2-parameter function:876

d(n) ≈ 64
⎛

⎜

⎜

⎝

1 − 1
1 + z+bz3

1+b

⎞

⎟

⎟

⎠

(12)

where877

z = n ∕a . (13)
The parameter a is the number of visits n required to survey half of the end nodes, whereas b878

reflects a relative acceleration in discovering the last few end nodes. This function was found879

by trial and error and produces absurdly good fits to the data (Figure 8–figure supplement 1).880

The values quoted in the text for efficiency of exploration are E = 32 ∕a (Equation 1).881

The value of b was generally small (~0.1) with no difference between rewarded and unre-882

warded animals. It declined slightly over the night (Figure 8–figure supplement 1B), along883

with the decline in a (Figure 8C).884

Biased random walk885

For the analysis of Figure 9 we considered only the parts of the trajectory during ‘exploration’886

mode. Then we parsed every step between two nodes in terms of the type of action it represents.887

Note that every link between nodes in the maze is either a ‘left branch’ or a ‘right branch’,888

depending on its relationship to the parent T-junction. Therefore there are 4 kinds of action:889

• a = 0: ‘in left’, take a left branch into the maze890

• a = 1: ‘in right’, take a right branch into the maze891

• a = 2: ‘out left’, take a left branch out of the maze892

• a = 3: ‘out right’, take a right branch out of the maze893

At any given node some actions are not available, for example from an end node one can894

only take one of the ‘out’ actions.895

To compute the turning biases we considered every T-junction along the trajectory and896

correlated the action a0 that led into that node with the subsequent action a1. By tallying the897

action pairs (a0, a1) we computed the conditional probabilities p(a1|a0). Then the 4 biases are898

defined as899
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PSF = p (0 |0) + p (0 |1) + p (1 |0) + p (1 |1)
p (0 |0) + p (0 |1) + p (1 |0) + p (1 |1) + p (2 |0) + p (3 |1)

(14)

PSA = p (0 |1) + p (1 |0)
p (0 |0) + p (0 |1) + p (1 |0) + p (1 |1)

(15)

PBF = p (0 |3) + p (1 |2) + p (2 |2) + p (2 |3) + p (3 |2) + p (3 |3)
p (0 |3) + p (1 |2) + p (2 |2) + p (2 |3) + p (3 |2) + p (3 |3) + p (0 |2) + p (1 |3)

(16)

PBS = p (2 |2) + p (2 |3) + p (3 |2) + p (3 |3)
p (0 |3) + p (1 |2) + p (2 |2) + p (2 |3) + p (3 |2) + p (3 |3)

(17)

For the simulations of random agents (Figure 8, Figure 9) we used trajectories long enough900

so the uncertainty in the resulting curves was smaller than the line width.901

Models of decisions during exploration902

The general approach is to develop a model that assigns probabilities to the animal’s next903

action, namely which node it will move to next, based on its recent history of actions. All the904

analysis was restricted to the animal’s ‘exploration’ mode and to the 63 nodes in the maze that905

are T-junctions. During the ‘drink’ and ‘leave’ modes the animal’s next action is predictable.906

Similarly when it finds itself at one of the 64 end nodes it only has one action available.907

For every mouse trajectory we split the data into 5 segments, trained the model on 80% of908

the data, and tested it on 20%, averaging the resulting cross-entropy over the 5 possible splits.909

Each segment was in turn composed of parts of the trajectory sampled evenly throughout the910

7-h experiment, so as to average over the small changes in the course of the night. The model911

was evaluated by the cross-entropy between the predictions and the animal’s true actions. If912

one had an optimal model of behavior, the result would reveal the animal’s true source entropy.913

Fixed depth Markov chain914

To fit a model with fixed history depth k to a measured node sequence (st), we evaluated915

all the substrings in that sequence of length (k + 1). At any given time t, the k-string ht =916

(st−k+1,… , st) identifies the history of the animal’s k most recent locations. The current state917

st is one of 63 T-junctions. Each state is preceded by one of 3 possible states. So the number918

of history strings is 63 ⋅ 3k−1. The 2-string (st, st+1) identifies the next action at+1, which can919

be ‘in left’, ‘in right’, or ‘out’, corresponding to the 3 branches of the T junction. Tallying920

the history strings with the resulting actions leads to a contingency table of size 63 ⋅ 3k−1 × 3,921

containing922

n(h, a) = number of times history h leads to action a (18)
Based on these sample counts we estimated the probability of each action a conditional on the923

history h as924

p (a |h ) = n (h, a) + 1
∑

a′
n (h, a′) + 3

(19)

This amounts to additive smoothing with a pseudocount of 1, also known as “Laplace smooth-925

ing”. These conditional probabilities were then used in the testing phase to predict the action926

at time t based on the preceding history ht. The match to the actually observed actions at was927

measured by the cross-entropy928

H =
⟨

−log2p
(

at ||ht
)⟩

t (20)
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Variable depth Markov chain929

As one pushes to longer histories, i.e. larger k, the analysis quickly becomes data-limited,930

because the number of possible histories grows exponentially with k. Soon one finds that931

the counts for each history-action combination drop to where one can no longer estimate932

probabilities correctly. In an attempt to offset this problem we pruned the history tree such that933

each surviving branch had more than some minimal number of counts in the training data. As934

expected, this model is less prone to over-fitting and degrades more gently as one extends to935

longer histories (Figure 11–figure supplement 1A). The lowest cross-entropy was obtained936

with an average history length of ~4.0 but including some paths of up to length 6. Of all the937

algorithms we tested, this produced the lowest cross-entropies, although the gains relative to938

the fixed-depth model were modest (Figure 11–figure supplement 1C).939

Pooling across symmetric nodes in the maze940

Another attempt to increase the counts for each history involved pooling counts over multiple941

T-junctions in the maze that are closely related by symmetry. For example, all the T-junctions at942

the same level of the binary tree look locally similar, in that they all have corridors of identical943

length leading from the junction. If one supposes that the animal acts the same way at each944

of those junctions, one would be justified in pooling across these nodes, leading to a better945

estimate of the action probabilities, and perhaps less over-fitting. This particular procedure946

was unsuccessful, in that it produced higher cross-entropy than without pooling.947

However, one may want to distinguish two types of junctions within a given level: L-nodes948

are reached by a left branch from their parent junction one level lower in the tree, R-nodes949

by a right branch. For example, in Figure 3–figure supplement 1, node 1 is L-type and node950

2 is R-type. When we pooled histories over all the L-nodes at a given level and separately951

over all the R-nodes the cross-entropy indeed dropped, by about 5% on average. This pooling952

greatly reduced the amount of over-fitting (Figure 11–figure supplement 1B), which allowed953

the use of longer histories, which in turn improved the predictions on test data. The benefit of954

distinguishing L- and R-nodes probably relates to the animal’s tendency to alternate left and955

right turns.956

All the Markov model results we report are obtained using pooling over L-nodes and957

R-nodes at each maze level.958

Data availability959

All data and code needed to reproduce the figures and quoted results are available in this public960

repository: https://github.com/markusmeister/Rosenberg-2021-Repository.961
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Figure 1–figure supplement 1. Fraction of time spent in the maze. Mice could move freely
between the home cage and the maze. For each animal (vertical), the fraction of time in the
maze (color scale) is plotted as a function of time since start of the experiment. Time bins
are 500 s. Note that mouse D6 hardly entered the maze; it never progressed beyond the first
junction. This animal was excluded from all subsequent analysis steps.
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Figure 1–figure supplement 2. Average fraction of time spent in the maze by group. This
shows the average fraction of time in the maze asMean± SD over the population of 10 rewarded
and 9 unrewarded animals. Right: expanded axis for early times. The tunnel to the maze
opens at time 0. Rewarded and unrewarded animals used the maze in remarkably similar ways.
Exploration of the maze began around 250 s after tunnel opening. Within the next 250 s the
maze occupancy rose quickly to ~70%, then declined gradually over 7 h to ~30%.
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Exit from the mazeEntry into the mazeA B

Figure 1–figure supplement 3. Rates of transition between cage and maze. (A) The in-
stantaneous probability per unit time rm (t) of entering the maze after having spent time t in
the cage. Note this rate is highest immediately upon entering the cage, then declines by a large
factor. (B) The instantaneous probability per unit time rc (t) of exiting the maze after having
spent time t in the maze.
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Figure 2–figure supplement 1. The speed of locomotion in the maze is approximately
constant. Left: Speed plotted as Mean ± SD over the population of rewarded and unrewarded
animals. Right: expanded axis for early times. To assess the speed of locomotion we divided
the maze into square cells as wide as the corridors and tracked how the nose of the animal
moved through those cells. Then the speed was measured in number of cells traversed per
unit time. Note that the speed is very similar across animals, ~1.56 cells/s = 5.94 cm/s on
average. It rises quickly over the first 50 s in the maze, then varies only little over the 7 h of the
experiment.
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Figure 3–figure supplement 1. Definition of node trajectories. A numbering scheme for
all 127 nodes of the maze. Green: a direct path from the entrance to the water port (“water
run”) with the node sequence (si) = (0, 2, 6, 13, 28, 57, 116), involving 6 decisions. Magenta:
a direct path from end node 83 to the exit (“home run”). Orange: a path from end node 67 to
the exit that includes a reversal. Here the home run starts only from node 8, namely (8, 3, 1, 0).
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Figure 4–figure supplement 1. Navigation before and after maze rotation. Cumulative
number of rewards, visits to the water port, the image of the water port, and the control nodes,
plotted vs time before and after the maze rotation. Display as in Figure 4C, but split for each
of 4 animals.
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Figure 4–figure supplement 2. Speed of the mouse vs time in the maze. Average over 4
animals. Time is plotted relative to the maze rotation.
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Figure 5–figure supplement 1. Sudden changes in behavior for all rewarded animals. For
each of the 10 water-deprived animals this shows the cumulative rate of rewards, of long direct
paths (>6 steps) to the water port, and of similar paths to 3 control nodes. Display as in
Figure 5; panels B-D of that figure are included again here. Dots are data, lines are fits using a
4-parameter sigmoid function for the rate of occurrence of the events.
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Animal Time of step (s) Ratio of rates after/before

B1 2580± 110 36.4
B2 2350± 220 30.3
C1 2070± 310 5.49
C3 1280± 80 1640
C7 1680± 280 16.9

1

Figure 5–figure supplement 2. Statistics of sudden changes in behavior. Summary of the
steps in the rate of long paths to water detected in 5 of the 10 rewarded animals. Mean and
standard deviation of the step time are derived from maximum likelihood fits of a step model
to the data.
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BA

Group

rewarded: 0.77 ± 0.03 0.72 ± 0.02 0.82 ± 0.03 0.64 ± 0.02

unrewarded: 0.78 ± 0.02 0.71 ± 0.02 0.81 ± 0.03 0.63 ± 0.02

Bias rewarded unrewarded
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0.72 ± 0.02 0.71 ± 0.02
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0.64 ± 0.02 0.63 ± 0.02

Mode rewarded unrewarded

leave 0.053 ± 0.014 0.054 ± 0.013

drink 0.103 ± 0.026

explore 0.844 ± 0.032 0.946 ± 0.013

leave drink explore

leave 0.51 ± 0.14 0.49 ± 0.14

drink 0.10 ± 0.05 0.90 ± 0.05

explore 0.40 ± 0.11 0.60 ± 0.11

from / to: leave drink explore

leave 0.51 ± 0.14 0.49 ± 0.14

drink 0.10 ± 0.05 0.90 ± 0.05

explore 0.40 ± 0.11 0.60 ± 0.11
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Group

rewarded: 0.77 ± 0.03 0.72 ± 0.02 0.82 ± 0.03 0.64 ± 0.02

unrewarded: 0.78 ± 0.02 0.71 ± 0.02 0.81 ± 0.03 0.63 ± 0.02

Bias rewarded unrewarded
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Figure 7–figure supplement 1. Three modes of behavior. (A) The fraction of time mice
spent in each of the three modes while in the maze. Mean ± SD for 10 rewarded and 9
unrewarded animals. (B) Probability of transitioning from the mode on the left to the mode at
the top. Transitions from ‘leave’ represent what the animal does at the start of the next bout
into the maze.
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A B

C

Figure 8–figure supplement 1. Functional fits tomeasure exploration efficiency (A) Fitting
Equation 12 to the data from the mouse’s exploration. Animals with best fit (top) and worst fit
(bottom). The relative uncertainty in the two fit parameters a and b was only 0.0038 ± 0.0020
(mean ± SD across animals). (B) The fit parameter b for all animals, comparing the first to
the second half of the night. (C) The efficiency E (Equation 1) predicted from two models of
the mouse’s trajectory: The 4-bias random walk (Figure 11D) and the optimal Markov chain
(Figure 11C).
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Figure 9–figure supplement 1. Statistics of the four turning biases. Mean and standard
deviation of the 4 biases of Figure 9A-B across animals in the rewarded and unrewarded
groups.
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C
Markov chain training vs testing Cross-entropy

A Selective pooling of historiesIndividual histories B

Figure 11–figure supplement 1. Fitting Markov models of behavior. (A) Results of fitting
the node sequence of a single animal (C3) with Markov models having a fixed depth (‘fix’)
or variable depth (‘var’). The cross-entropy of the model’s prediction is plotted as a function
of the average depth of history. In both cases we compare the results obtained on the training
data (‘train’) vs those on separate testing data (‘test’). Note that at larger depth the ‘test’ and
‘train’ estimates diverge, a sign of over-fitting the limited data available. (B) As in (A) but to
combat the data limitation we pooled the counts obtained at all nodes that were equivalent
under the symmetry of the maze (see Methods). Note considerably less divergence between
‘train’ and ‘test’ results, and a slightly lower cross-entropy during ‘test’ than in (A). (C) The
minimal cross-entropy (circles in (B)) produced by variable vs fixed history models for each of
the 19 animals. Note the variable history model always produces a better fit to the behavior.
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