https://github.com/penn-graphics-research/ziran2019
Raw File
Tip revision: 8d3d27cd17bbceab18c317820dbe595178f6312a authored by fangy14 on 06 November 2019, 07:20:57 UTC
open source
Tip revision: 8d3d27c
sol.hpp
// The MIT License (MIT)

// Copyright (c) 2013-2017 Rapptz, ThePhD and contributors

// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

// This file was generated with a script.
// Generated 2017-11-11 23:29:02.509687 UTC
// This header was generated with sol v2.18.6 (revision 2d31d84)
// https://github.com/ThePhD/sol2

#ifndef SOL_SINGLE_INCLUDE_HPP
#define SOL_SINGLE_INCLUDE_HPP

// beginning of sol.hpp

#ifndef SOL_HPP
#define SOL_HPP

#if defined(UE_BUILD_DEBUG) || defined(UE_BUILD_DEVELOPMENT) || defined(UE_BUILD_TEST) || defined(UE_BUILD_SHIPPING) || defined(UE_SERVER)
#define SOL_INSIDE_UNREAL
#endif // Unreal Engine 4 bullshit

#ifdef SOL_INSIDE_UNREAL
#ifdef check
#define SOL_INSIDE_UNREAL_REMOVED_CHECK
#undef check
#endif
#endif // Unreal Engine 4 Bullshit

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#pragma GCC diagnostic ignored "-Wconversion"
#if __GNUC__ > 6
#pragma GCC diagnostic ignored "-Wnoexcept-type"
#endif
#elif defined __clang__
#elif defined _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4324) // structure was padded due to alignment specifier
#pragma warning(disable : 4503) // decorated name horse shit
#pragma warning(disable : 4702) // unreachable code
#pragma warning(disable : 4127) // 'conditional expression is constant' yeah that's the point your old compilers don't have `if constexpr` you jerk
#pragma warning(disable : 4505) // some other nonsense warning
#endif // clang++ vs. g++ vs. VC++

// beginning of sol/forward.hpp

// beginning of sol/feature_test.hpp

#if (defined(__cplusplus) && __cplusplus == 201703L) || (defined(_MSC_VER) && _MSC_VER > 1900 && ((defined(_HAS_CXX17) && _HAS_CXX17 == 1) || (defined(_MSVC_LANG) && _MSVC_LANG > 201402)))
#ifndef SOL_CXX17_FEATURES
#define SOL_CXX17_FEATURES 1
#endif // C++17 features macro
#endif // C++17 features check

#if defined(__cpp_noexcept_function_type)
#ifndef SOL_NOEXCEPT_FUNCTION_TYPE
#define SOL_NOEXCEPT_FUNCTION_TYPE 1
#endif // noexcept is part of a function's type
#endif

#if defined(_WIN32) || defined(_MSC_VER)
#ifndef SOL_CODECVT_SUPPORT
#define SOL_CODECVT_SUPPORT 1
#endif // sol codecvt support
#elif defined(__GNUC__)
#if __GNUC__ >= 5
#ifndef SOL_CODECVT_SUPPORT
#define SOL_CODECVT_SUPPORT 1
#endif // codecvt support
#endif // g++ 5.x.x (MinGW too)
#else
#endif // Windows/VC++ vs. g++ vs Others

#ifdef _MSC_VER
#ifdef _DEBUG
#ifndef NDEBUG
#ifndef SOL_CHECK_ARGUMENTS
#endif // Check Arguments
#ifndef SOL_SAFE_USERTYPE
#define SOL_SAFE_USERTYPE 1
#endif // Safe Usertypes
#endif // NDEBUG
#endif // Debug

#ifndef _CPPUNWIND
#ifndef SOL_NO_EXCEPTIONS
#define SOL_NO_EXCEPTIONS 1
#endif
#endif // Automatic Exceptions

#ifndef _CPPRTTI
#ifndef SOL_NO_RTTI
#define SOL_NO_RTTI 1
#endif
#endif // Automatic RTTI
#elif defined(__GNUC__) || defined(__clang__)

#ifndef NDEBUG
#ifndef __OPTIMIZE__
#ifndef SOL_CHECK_ARGUMENTS
#endif // Check Arguments
#ifndef SOL_SAFE_USERTYPE
#define SOL_SAFE_USERTYPE 1
#endif // Safe Usertypes
#endif // g++ optimizer flag
#endif // Not Debug

#ifndef __EXCEPTIONS
#ifndef SOL_NO_EXCEPTIONS
#define SOL_NO_EXCEPTIONS 1
#endif
#endif // No Exceptions

#ifndef __GXX_RTTI
#ifndef SOL_NO_RTII
#define SOL_NO_RTTI 1
#endif
#endif // No RTTI

#endif // vc++ || clang++/g++

#ifndef SOL_SAFE_USERTYPE
#ifdef SOL_CHECK_ARGUMENTS
#define SOL_SAFE_USERTYPE 1
#endif // Turn on Safety for all
#endif // Safe Usertypes

#if defined(__MAC_OS_X_VERSION_MAX_ALLOWED) || defined(__OBJC__) || defined(nil)
#ifndef SOL_NO_NIL
#define SOL_NO_NIL 1
#endif
#endif // avoiding nil defines / keywords

// end of sol/feature_test.hpp

namespace sol {

template <bool b>
class basic_reference;
using reference = basic_reference<false>;
using main_reference = basic_reference<true>;
class stack_reference;

struct proxy_base_tag;
template <typename Super>
struct proxy_base;
template <typename Table, typename Key>
struct proxy;

template <typename T>
class usertype;
template <typename T>
class simple_usertype;
template <bool, typename T>
class basic_table_core;
template <bool b>
using table_core = basic_table_core<b, reference>;
template <bool b>
using main_table_core = basic_table_core<b, main_reference>;
template <bool b>
using stack_table_core = basic_table_core<b, stack_reference>;
template <typename T>
using basic_table = basic_table_core<false, T>;
typedef table_core<false> table;
typedef table_core<true> global_table;
typedef main_table_core<false> main_table;
typedef main_table_core<true> main_global_table;
typedef stack_table_core<false> stack_table;
typedef stack_table_core<true> stack_global_table;
template <typename base_t>
struct basic_environment;
using environment = basic_environment<reference>;
using main_environment = basic_environment<main_reference>;
using stack_environment = basic_environment<stack_reference>;
template <typename T, bool>
class basic_function;
template <typename T, bool, typename H>
class basic_protected_function;
using unsafe_function = basic_function<reference, false>;
using safe_function = basic_protected_function<reference, false, reference>;
using main_unsafe_function = basic_function<main_reference, false>;
using main_safe_function = basic_protected_function<main_reference, false, reference>;
using stack_unsafe_function = basic_function<stack_reference, false>;
using stack_safe_function = basic_protected_function<stack_reference, false, reference>;
using stack_aligned_unsafe_function = basic_function<stack_reference, true>;
using stack_aligned_safe_function = basic_protected_function<stack_reference, true, reference>;
using protected_function = safe_function;
using main_protected_function = main_safe_function;
using stack_protected_function = stack_safe_function;
using stack_aligned_protected_function = stack_aligned_safe_function;
#ifdef SOL_SAFE_FUNCTION
using function = protected_function;
using main_function = main_protected_function;
using stack_function = stack_protected_function;
using stack_aligned_function = stack_aligned_safe_function;
#else
using function = unsafe_function;
using main_function = main_unsafe_function;
using stack_function = stack_unsafe_function;
using stack_aligned_function = stack_aligned_unsafe_function;
#endif
using stack_aligned_stack_handler_function = basic_protected_function<stack_reference, true, stack_reference>;

struct unsafe_function_result;
struct protected_function_result;
using safe_function_result = protected_function_result;
#ifdef SOL_SAFE_FUNCTION
using function_result = safe_function_result;
#else
using function_result = unsafe_function_result;
#endif

template <typename base_t>
class basic_object;
template <typename base_t>
class basic_userdata;
template <typename base_t>
class basic_lightuserdata;
template <typename base_t>
class basic_coroutine;
template <typename base_t>
class basic_thread;

using object = basic_object<reference>;
using userdata = basic_userdata<reference>;
using lightuserdata = basic_lightuserdata<reference>;
using thread = basic_thread<reference>;
using coroutine = basic_coroutine<reference>;
using main_object = basic_object<main_reference>;
using main_userdata = basic_userdata<main_reference>;
using main_lightuserdata = basic_lightuserdata<main_reference>;
using stack_object = basic_object<stack_reference>;
using stack_userdata = basic_userdata<stack_reference>;
using stack_lightuserdata = basic_lightuserdata<stack_reference>;
using stack_thread = basic_thread<stack_reference>;
using stack_coroutine = basic_coroutine<stack_reference>;

struct stack_proxy_base;
struct stack_proxy;
struct variadic_args;
struct variadic_results;
struct stack_count;
struct this_state;
struct this_main_state;
struct this_environment;

template <typename T>
struct as_table_t;
template <typename T>
struct as_container_t;
template <typename T>
struct nested;
template <typename T>
struct light;
template <typename T>
struct user;
template <typename T>
struct as_args_t;
template <typename T>
struct protect_t;
template <typename F, typename... Filters>
struct filter_wrapper;
} // namespace sol

// end of sol/forward.hpp

// beginning of sol/state.hpp

// beginning of sol/state_view.hpp

// beginning of sol/error.hpp

#include <stdexcept>
#include <string>

namespace sol {
namespace detail {
struct direct_error_tag {
};
const auto direct_error = direct_error_tag{};
} // namespace detail

class error : public std::runtime_error {
private:
    // Because VC++ is a fuccboi
    std::string w;

public:
    error(const std::string& str)
        : error(detail::direct_error, "lua: error: " + str)
    {
    }
    error(std::string&& str)
        : error(detail::direct_error, "lua: error: " + std::move(str))
    {
    }
    error(detail::direct_error_tag, const std::string& str)
        : std::runtime_error("")
        , w(str)
    {
    }
    error(detail::direct_error_tag, std::string&& str)
        : std::runtime_error("")
        , w(std::move(str))
    {
    }

    error(const error& e) = default;
    error(error&& e) = default;
    error& operator=(const error& e) = default;
    error& operator=(error&& e) = default;

    virtual const char* what() const noexcept override
    {
        return w.c_str();
    }
};

} // namespace sol

// end of sol/error.hpp

// beginning of sol/table.hpp

// beginning of sol/table_core.hpp

// beginning of sol/proxy.hpp

// beginning of sol/traits.hpp

// beginning of sol/tuple.hpp

#include <tuple>
#include <cstddef>

namespace sol {
namespace detail {
using swallow = std::initializer_list<int>;
} // namespace detail

template <typename... Args>
struct types {
    typedef std::make_index_sequence<sizeof...(Args)> indices;
    static constexpr std::size_t size()
    {
        return sizeof...(Args);
    }
};
namespace meta {
namespace detail {
template <typename... Args>
struct tuple_types_ {
    typedef types<Args...> type;
};

template <typename... Args>
struct tuple_types_<std::tuple<Args...>> {
    typedef types<Args...> type;
};
} // namespace detail

template <typename T>
using unqualified = std::remove_cv<std::remove_reference_t<T>>;

template <typename T>
using unqualified_t = typename unqualified<T>::type;

template <typename... Args>
using tuple_types = typename detail::tuple_types_<Args...>::type;

template <typename Arg>
struct pop_front_type;

template <typename Arg>
using pop_front_type_t = typename pop_front_type<Arg>::type;

template <typename... Args>
struct pop_front_type<types<Args...>> {
    typedef void front_type;
    typedef types<Args...> type;
};

template <typename Arg, typename... Args>
struct pop_front_type<types<Arg, Args...>> {
    typedef Arg front_type;
    typedef types<Args...> type;
};

template <std::size_t N, typename Tuple>
using tuple_element = std::tuple_element<N, unqualified_t<Tuple>>;

template <std::size_t N, typename Tuple>
using tuple_element_t = std::tuple_element_t<N, unqualified_t<Tuple>>;

template <std::size_t N, typename Tuple>
using unqualified_tuple_element = unqualified<tuple_element_t<N, Tuple>>;

template <std::size_t N, typename Tuple>
using unqualified_tuple_element_t = unqualified_t<tuple_element_t<N, Tuple>>;

} // namespace meta
} // namespace sol

// end of sol/tuple.hpp

// beginning of sol/bind_traits.hpp

namespace sol {
namespace meta {
namespace meta_detail {

template <class F>
struct check_deducible_signature {
    struct nat {
    };
    template <class G>
    static auto test(int) -> decltype(&G::operator(), void());
    template <class>
    static auto test(...) -> nat;

    using type = std::is_void<decltype(test<F>(0))>;
};
} // namespace meta_detail

template <class F>
struct has_deducible_signature : meta_detail::check_deducible_signature<F>::type {
};

namespace meta_detail {

template <std::size_t I, typename T>
struct void_tuple_element : meta::tuple_element<I, T> {
};

template <std::size_t I>
struct void_tuple_element<I, std::tuple<>> {
    typedef void type;
};

template <std::size_t I, typename T>
using void_tuple_element_t = typename void_tuple_element<I, T>::type;

template <bool it_is_noexcept, bool has_c_variadic, typename T, typename R, typename... Args>
struct basic_traits {
private:
    typedef std::conditional_t<std::is_void<T>::value, int, T>& first_type;

public:
    static const bool is_noexcept = it_is_noexcept;
    static const bool is_member_function = std::is_void<T>::value;
    static const bool has_c_var_arg = has_c_variadic;
    static const std::size_t arity = sizeof...(Args);
    static const std::size_t free_arity = sizeof...(Args) + static_cast<std::size_t>(!std::is_void<T>::value);
    typedef types<Args...> args_list;
    typedef std::tuple<Args...> args_tuple;
    typedef T object_type;
    typedef R return_type;
    typedef tuple_types<R> returns_list;
    typedef R(function_type)(Args...);
    typedef std::conditional_t<std::is_void<T>::value, args_list, types<first_type, Args...>> free_args_list;
    typedef std::conditional_t<std::is_void<T>::value, R(Args...), R(first_type, Args...)> free_function_type;
    typedef std::conditional_t<std::is_void<T>::value, R (*)(Args...), R (*)(first_type, Args...)> free_function_pointer_type;
    typedef std::remove_pointer_t<free_function_pointer_type> signature_type;
    template <std::size_t i>
    using arg_at = void_tuple_element_t<i, args_tuple>;
};

template <typename Signature, bool b = has_deducible_signature<Signature>::value>
struct fx_traits : basic_traits<false, false, void, void> {
};

// Free Functions
template <typename R, typename... Args>
struct fx_traits<R(Args...), false> : basic_traits<false, false, void, R, Args...> {
    typedef R (*function_pointer_type)(Args...);
};

template <typename R, typename... Args>
struct fx_traits<R (*)(Args...), false> : basic_traits<false, false, void, R, Args...> {
    typedef R (*function_pointer_type)(Args...);
};

template <typename R, typename... Args>
struct fx_traits<R(Args..., ...), false> : basic_traits<false, true, void, R, Args...> {
    typedef R (*function_pointer_type)(Args..., ...);
};

template <typename R, typename... Args>
struct fx_traits<R (*)(Args..., ...), false> : basic_traits<false, true, void, R, Args...> {
    typedef R (*function_pointer_type)(Args..., ...);
};

// Member Functions
/* C-Style Variadics */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...);
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...), false> : basic_traits<false, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...);
};

/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const, false> : basic_traits<false, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const volatile;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile, false> : basic_traits<false, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const volatile;
};

/* Member Function Qualifiers */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...)&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...)&, false> : basic_traits<false, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...)&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const&, false> : basic_traits<false, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const volatile&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile&, false> : basic_traits<false, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const volatile&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...)&&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...)&&, false> : basic_traits<false, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...)&&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const&&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const&&, false> : basic_traits<false, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const&&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const volatile&&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile&&, false> : basic_traits<false, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const volatile&&;
};

#ifdef SOL_NOEXCEPT_FUNCTION_TYPE

template <typename R, typename... Args>
struct fx_traits<R(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
    typedef R (*function_pointer_type)(Args...) noexcept;
};

template <typename R, typename... Args>
struct fx_traits<R (*)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
    typedef R (*function_pointer_type)(Args...) noexcept;
};

template <typename R, typename... Args>
struct fx_traits<R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
    typedef R (*function_pointer_type)(Args..., ...) noexcept;
};

template <typename R, typename... Args>
struct fx_traits<R (*)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
    typedef R (*function_pointer_type)(Args..., ...) noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) noexcept;
};

/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const volatile noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const volatile noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) & noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) & noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const volatile& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const volatile& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) && noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) && noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const&& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const&& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args...) const volatile&& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (T::*function_pointer_type)(Args..., ...) const volatile&& noexcept;
};

#endif // noexcept is part of a function's type

#if defined(_MSC_VER) && defined(_M_IX86)
template <typename R, typename... Args>
struct fx_traits<R __stdcall(Args...), false> : basic_traits<false, false, void, R, Args...> {
    typedef R(__stdcall* function_pointer_type)(Args...);
};

template <typename R, typename... Args>
struct fx_traits<R(__stdcall*)(Args...), false> : basic_traits<false, false, void, R, Args...> {
    typedef R(__stdcall* function_pointer_type)(Args...);
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...);
};

/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile;
};

/* Member Function Qualifiers */
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...)&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...)&&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const&&;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&&;
};

#ifdef SOL_NOEXCEPT_FUNCTION_TYPE

template <typename R, typename... Args>
struct fx_traits<R(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
    typedef R(__stdcall* function_pointer_type)(Args...) noexcept;
};

template <typename R, typename... Args>
struct fx_traits<R (*)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> {
    typedef R(__stdcall* function_pointer_type)(Args...) noexcept;
};

template <typename R, typename... Args>
struct fx_traits<R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
    typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept;
};

template <typename R, typename... Args>
struct fx_traits<R (*)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> {
    typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args..., ...) noexcept;
};

/* Const Volatile */
template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) & noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args..., ...) & noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) && noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args..., ...) && noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const&& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const&& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&& noexcept;
};

template <typename T, typename R, typename... Args>
struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> {
    typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile&& noexcept;
};
#endif // noexcept is part of a function's type
#endif // __stdcall x86 VC++ bug

template <typename Signature>
struct fx_traits<Signature, true> : fx_traits<typename fx_traits<decltype(&Signature::operator())>::function_type, false> {
};

template <typename Signature, bool b = std::is_member_object_pointer<Signature>::value>
struct callable_traits : fx_traits<std::decay_t<Signature>> {
};

template <typename R, typename T>
struct callable_traits<R(T::*), true> {
    typedef R Arg;
    typedef T object_type;
    using signature_type = R(T::*);
    static const bool is_noexcept = false;
    static const bool is_member_function = false;
    static const std::size_t arity = 1;
    static const std::size_t free_arity = 2;
    typedef std::tuple<Arg> args_tuple;
    typedef R return_type;
    typedef types<Arg> args_list;
    typedef types<T, Arg> free_args_list;
    typedef meta::tuple_types<R> returns_list;
    typedef R(function_type)(T&, R);
    typedef R (*function_pointer_type)(T&, R);
    typedef R (*free_function_pointer_type)(T&, R);
    template <std::size_t i>
    using arg_at = void_tuple_element_t<i, args_tuple>;
};

} // namespace meta_detail

template <typename Signature>
struct bind_traits : meta_detail::callable_traits<Signature> {
};

template <typename Signature>
using function_args_t = typename bind_traits<Signature>::args_list;

template <typename Signature>
using function_signature_t = typename bind_traits<Signature>::signature_type;

template <typename Signature>
using function_return_t = typename bind_traits<Signature>::return_type;
}
} // namespace sol::meta

// end of sol/bind_traits.hpp

#include <type_traits>
#include <memory>
#include <functional>
#include <iterator>
#include <iosfwd>
#ifdef SOL_CXX17_FEATURES
#include <string_view>
#endif

namespace sol {
template <std::size_t I>
using index_value = std::integral_constant<std::size_t, I>;

namespace meta {
template <typename T>
struct identity {
    typedef T type;
};

template <typename T>
using identity_t = typename identity<T>::type;

template <typename... Args>
struct is_tuple : std::false_type {
};

template <typename... Args>
struct is_tuple<std::tuple<Args...>> : std::true_type {
};

template <typename T>
struct is_builtin_type : std::integral_constant<bool, std::is_arithmetic<T>::value || std::is_pointer<T>::value || std::is_array<T>::value> {
};

template <typename T>
struct unwrapped {
    typedef T type;
};

template <typename T>
struct unwrapped<std::reference_wrapper<T>> {
    typedef T type;
};

template <typename T>
using unwrapped_t = typename unwrapped<T>::type;

template <typename T>
struct unwrap_unqualified : unwrapped<unqualified_t<T>> {
};

template <typename T>
using unwrap_unqualified_t = typename unwrap_unqualified<T>::type;

template <typename T>
struct remove_member_pointer;

template <typename R, typename T>
struct remove_member_pointer<R T::*> {
    typedef R type;
};

template <typename R, typename T>
struct remove_member_pointer<R T::*const> {
    typedef R type;
};

template <typename T>
using remove_member_pointer_t = remove_member_pointer<T>;

template <template <typename...> class Templ, typename T>
struct is_specialization_of : std::false_type {
};
template <typename... T, template <typename...> class Templ>
struct is_specialization_of<Templ, Templ<T...>> : std::true_type {
};

template <class T, class...>
struct all_same : std::true_type {
};

template <class T, class U, class... Args>
struct all_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value && all_same<T, Args...>::value> {
};

template <class T, class...>
struct any_same : std::false_type {
};

template <class T, class U, class... Args>
struct any_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value || any_same<T, Args...>::value> {
};

template <bool B>
using boolean = std::integral_constant<bool, B>;

template <typename T>
using invoke_t = typename T::type;

template <typename T>
using invoke_b = boolean<T::value>;

template <typename T>
using neg = boolean<!T::value>;

template <typename Condition, typename Then, typename Else>
using condition = std::conditional_t<Condition::value, Then, Else>;

template <typename... Args>
struct all : boolean<true> {
};

template <typename T, typename... Args>
struct all<T, Args...> : condition<T, all<Args...>, boolean<false>> {
};

template <typename... Args>
struct any : boolean<false> {
};

template <typename T, typename... Args>
struct any<T, Args...> : condition<T, boolean<true>, any<Args...>> {
};

enum class enable_t {
    _
};

constexpr const auto enabler = enable_t::_;

template <bool value, typename T = void>
using disable_if_t = std::enable_if_t<!value, T>;

template <typename... Args>
using enable = std::enable_if_t<all<Args...>::value, enable_t>;

template <typename... Args>
using enable_any = std::enable_if_t<any<Args...>::value, enable_t>;

template <typename... Args>
using disable = std::enable_if_t<neg<all<Args...>>::value, enable_t>;

template <typename... Args>
using disable_any = std::enable_if_t<neg<any<Args...>>::value, enable_t>;

template <typename V, typename... Vs>
struct find_in_pack_v : boolean<false> {
};

template <typename V, typename Vs1, typename... Vs>
struct find_in_pack_v<V, Vs1, Vs...> : any<boolean<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> {
};

namespace meta_detail {
template <std::size_t I, typename T, typename... Args>
struct index_in_pack : std::integral_constant<std::size_t, SIZE_MAX> {
};

template <std::size_t I, typename T, typename T1, typename... Args>
struct index_in_pack<I, T, T1, Args...> : std::conditional_t<std::is_same<T, T1>::value, std::integral_constant<std::ptrdiff_t, I>, index_in_pack<I + 1, T, Args...>> {
};
} // namespace meta_detail

template <typename T, typename... Args>
struct index_in_pack : meta_detail::index_in_pack<0, T, Args...> {
};

template <typename T, typename List>
struct index_in : meta_detail::index_in_pack<0, T, List> {
};

template <typename T, typename... Args>
struct index_in<T, types<Args...>> : meta_detail::index_in_pack<0, T, Args...> {
};

template <std::size_t I, typename... Args>
struct at_in_pack {
};

template <std::size_t I, typename... Args>
using at_in_pack_t = typename at_in_pack<I, Args...>::type;

template <std::size_t I, typename Arg, typename... Args>
struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> {
};

template <typename Arg, typename... Args>
struct at_in_pack<0, Arg, Args...> {
    typedef Arg type;
};

namespace meta_detail {
template <std::size_t Limit, std::size_t I, template <typename...> class Pred, typename... Ts>
struct count_for_pack : std::integral_constant<std::size_t, 0> {
};
template <std::size_t Limit, std::size_t I, template <typename...> class Pred, typename T, typename... Ts>
            struct count_for_pack<Limit, I, Pred, T, Ts...> : std::conditional_t < sizeof...(Ts)
        == 0
    || Limit<2,
           std::integral_constant<std::size_t, I + static_cast<std::size_t>(Limit != 0 && Pred<T>::value)>,
           count_for_pack<Limit - 1, I + static_cast<std::size_t>(Pred<T>::value), Pred, Ts...>> {
};
template <std::size_t I, template <typename...> class Pred, typename... Ts>
struct count_2_for_pack : std::integral_constant<std::size_t, 0> {
};
template <std::size_t I, template <typename...> class Pred, typename T, typename U, typename... Ts>
struct count_2_for_pack<I, Pred, T, U, Ts...> : std::conditional_t<sizeof...(Ts) == 0,
                                                    std::integral_constant<std::size_t, I + static_cast<std::size_t>(Pred<T>::value)>,
                                                    count_2_for_pack<I + static_cast<std::size_t>(Pred<T>::value), Pred, Ts...>> {
};
} // namespace meta_detail

template <template <typename...> class Pred, typename... Ts>
struct count_for_pack : meta_detail::count_for_pack<sizeof...(Ts), 0, Pred, Ts...> {
};

template <template <typename...> class Pred, typename List>
struct count_for;

template <template <typename...> class Pred, typename... Args>
struct count_for<Pred, types<Args...>> : count_for_pack<Pred, Args...> {
};

template <std::size_t Limit, template <typename...> class Pred, typename... Ts>
struct count_for_to_pack : meta_detail::count_for_pack<Limit, 0, Pred, Ts...> {
};

template <template <typename...> class Pred, typename... Ts>
struct count_2_for_pack : meta_detail::count_2_for_pack<0, Pred, Ts...> {
};

template <typename... Args>
struct return_type {
    typedef std::tuple<Args...> type;
};

template <typename T>
struct return_type<T> {
    typedef T type;
};

template <>
struct return_type<> {
    typedef void type;
};

template <typename... Args>
using return_type_t = typename return_type<Args...>::type;

namespace meta_detail {
template <typename>
struct always_true : std::true_type {
};
struct is_invokable_tester {
    template <typename Fun, typename... Args>
    always_true<decltype(std::declval<Fun>()(std::declval<Args>()...))> static test(int);
    template <typename...>
    std::false_type static test(...);
};
} // namespace meta_detail

template <typename T>
struct is_invokable;
template <typename Fun, typename... Args>
struct is_invokable<Fun(Args...)> : decltype(meta_detail::is_invokable_tester::test<Fun, Args...>(0)) {
};

namespace meta_detail {

template <typename T, typename = void>
struct is_callable : std::is_function<std::remove_pointer_t<T>> {
};

template <typename T>
struct is_callable<T, std::enable_if_t<std::is_final<unqualified_t<T>>::value
                          && std::is_class<unqualified_t<T>>::value
                          && std::is_same<decltype(void(&T::operator())), void>::value>> {
};

template <typename T>
struct is_callable<T, std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value && std::is_destructible<unqualified_t<T>>::value>> {
    using yes = char;
    using no = struct {
        char s[2];
    };

    struct F {
        void operator()();
    };
    struct Derived : T, F {
    };
    template <typename U, U>
    struct Check;

    template <typename V>
    static no test(Check<void (F::*)(), &V::operator()>*);

    template <typename>
    static yes test(...);

    static const bool value = sizeof(test<Derived>(0)) == sizeof(yes);
};

template <typename T>
struct is_callable<T, std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value && !std::is_destructible<unqualified_t<T>>::value>> {
    using yes = char;
    using no = struct {
        char s[2];
    };

    struct F {
        void operator()();
    };
    struct Derived : T, F {
        ~Derived() = delete;
    };
    template <typename U, U>
    struct Check;

    template <typename V>
    static no test(Check<void (F::*)(), &V::operator()>*);

    template <typename>
    static yes test(...);

    static const bool value = sizeof(test<Derived>(0)) == sizeof(yes);
};

struct has_begin_end_impl {
    template <typename T, typename U = unqualified_t<T>,
        typename B = decltype(std::declval<U&>().begin()),
        typename E = decltype(std::declval<U&>().end())>
    static std::true_type test(int);

    template <typename...>
    static std::false_type test(...);
};

struct has_key_type_impl {
    template <typename T, typename U = unqualified_t<T>,
        typename V = typename U::key_type>
    static std::true_type test(int);

    template <typename...>
    static std::false_type test(...);
};

struct has_mapped_type_impl {
    template <typename T, typename U = unqualified_t<T>,
        typename V = typename U::mapped_type>
    static std::true_type test(int);

    template <typename...>
    static std::false_type test(...);
};

struct has_value_type_impl {
    template <typename T, typename U = unqualified_t<T>,
        typename V = typename U::value_type>
    static std::true_type test(int);

    template <typename...>
    static std::false_type test(...);
};

struct has_iterator_impl {
    template <typename T, typename U = unqualified_t<T>,
        typename V = typename U::iterator>
    static std::true_type test(int);

    template <typename...>
    static std::false_type test(...);
};

struct has_key_value_pair_impl {
    template <typename T, typename U = unqualified_t<T>,
        typename V = typename U::value_type,
        typename F = decltype(std::declval<V&>().first),
        typename S = decltype(std::declval<V&>().second)>
    static std::true_type test(int);

    template <typename...>
    static std::false_type test(...);
};

template <typename T>
struct has_push_back_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(std::declval<C>().push_back(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_insert_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(std::declval<C>().insert(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_insert_after_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(std::declval<C>().insert_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_size_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(std::declval<C>().size())*);
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_to_string_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(std::declval<C>().to_string())*);
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
#if defined(_MSC_VER) && _MSC_VER <= 1910
template <typename T, typename U, typename = decltype(std::declval<T&>() < std::declval<U&>())>
std::true_type supports_op_less_test(std::reference_wrapper<T>, std::reference_wrapper<U>);
std::false_type supports_op_less_test(...);
template <typename T, typename U, typename = decltype(std::declval<T&>() == std::declval<U&>())>
std::true_type supports_op_equal_test(std::reference_wrapper<T>, std::reference_wrapper<U>);
std::false_type supports_op_equal_test(...);
template <typename T, typename U, typename = decltype(std::declval<T&>() <= std::declval<U&>())>
std::true_type supports_op_less_equal_test(std::reference_wrapper<T>, std::reference_wrapper<U>);
std::false_type supports_op_less_equal_test(...);
template <typename T, typename OS, typename = decltype(std::declval<OS&>() << std::declval<T&>())>
std::true_type supports_ostream_op(std::reference_wrapper<T>, std::reference_wrapper<OS>);
std::false_type supports_ostream_op(...);
template <typename T, typename = decltype(to_string(std::declval<T&>()))>
std::true_type supports_adl_to_string(std::reference_wrapper<T>);
std::false_type supports_adl_to_string(...);
#else
template <typename T, typename U, typename = decltype(std::declval<T&>() < std::declval<U&>())>
std::true_type supports_op_less_test(const T&, const U&);
std::false_type supports_op_less_test(...);
template <typename T, typename U, typename = decltype(std::declval<T&>() == std::declval<U&>())>
std::true_type supports_op_equal_test(const T&, const U&);
std::false_type supports_op_equal_test(...);
template <typename T, typename U, typename = decltype(std::declval<T&>() <= std::declval<U&>())>
std::true_type supports_op_less_equal_test(const T&, const U&);
std::false_type supports_op_less_equal_test(...);
template <typename T, typename OS, typename = decltype(std::declval<OS&>() << std::declval<T&>())>
std::true_type supports_ostream_op(const T&, const OS&);
std::false_type supports_ostream_op(...);
template <typename T, typename = decltype(to_string(std::declval<T&>()))>
std::true_type supports_adl_to_string(const T&);
std::false_type supports_adl_to_string(...);
#endif
} // namespace meta_detail

#if defined(_MSC_VER) && _MSC_VER <= 1910
template <typename T, typename U = T>
using supports_op_less = decltype(meta_detail::supports_op_less_test(std::ref(std::declval<T&>()), std::ref(std::declval<U&>())));
template <typename T, typename U = T>
using supports_op_equal = decltype(meta_detail::supports_op_equal_test(std::ref(std::declval<T&>()), std::ref(std::declval<U&>())));
template <typename T, typename U = T>
using supports_op_less_equal = decltype(meta_detail::supports_op_less_equal_test(std::ref(std::declval<T&>()), std::ref(std::declval<U&>())));
template <typename T, typename U = std::ostream>
using supports_ostream_op = decltype(meta_detail::supports_ostream_op(std::ref(std::declval<T&>()), std::ref(std::declval<U&>())));
template <typename T>
using supports_adl_to_string = decltype(meta_detail::supports_adl_to_string(std::ref(std::declval<T&>())));
#else
template <typename T, typename U = T>
using supports_op_less = decltype(meta_detail::supports_op_less_test(std::declval<T&>(), std::declval<U&>()));
template <typename T, typename U = T>
using supports_op_equal = decltype(meta_detail::supports_op_equal_test(std::declval<T&>(), std::declval<U&>()));
template <typename T, typename U = T>
using supports_op_less_equal = decltype(meta_detail::supports_op_less_equal_test(std::declval<T&>(), std::declval<U&>()));
template <typename T, typename U = std::ostream>
using supports_ostream_op = decltype(meta_detail::supports_ostream_op(std::declval<T&>(), std::declval<U&>()));
template <typename T>
using supports_adl_to_string = decltype(meta_detail::supports_adl_to_string(std::declval<T&>()));
#endif
template <typename T>
using supports_to_string_member = meta::boolean<meta_detail::has_to_string_test<T>::value>;

template <typename T>
struct is_callable : boolean<meta_detail::is_callable<T>::value> {
};

template <typename T>
struct has_begin_end : decltype(meta_detail::has_begin_end_impl::test<T>(0)) {
};

template <typename T>
struct has_key_value_pair : decltype(meta_detail::has_key_value_pair_impl::test<T>(0)) {
};

template <typename T>
struct has_key_type : decltype(meta_detail::has_key_type_impl::test<T>(0)) {
};

template <typename T>
struct has_mapped_type : decltype(meta_detail::has_mapped_type_impl::test<T>(0)) {
};

template <typename T>
struct has_iterator : decltype(meta_detail::has_iterator_impl::test<T>(0)) {
};

template <typename T>
struct has_value_type : decltype(meta_detail::has_value_type_impl::test<T>(0)) {
};

template <typename T>
using has_push_back = meta::boolean<meta_detail::has_push_back_test<T>::value>;

template <typename T>
using has_insert = meta::boolean<meta_detail::has_insert_test<T>::value>;

template <typename T>
using has_insert_after = meta::boolean<meta_detail::has_insert_after_test<T>::value>;

template <typename T>
using has_size = meta::boolean<meta_detail::has_size_test<T>::value>;

template <typename T>
struct is_associative : meta::all<has_key_type<T>, has_key_value_pair<T>, has_mapped_type<T>> {
};

template <typename T>
struct is_lookup : meta::all<has_key_type<T>, has_value_type<T>> {
};

template <typename T>
using is_string_constructible = any<std::is_same<unqualified_t<T>, const char*>, std::is_same<unqualified_t<T>, char>, std::is_same<unqualified_t<T>, std::string>, std::is_same<unqualified_t<T>, std::initializer_list<char>>
#ifdef SOL_CXX17_FEATURES
    ,
    std::is_same<unqualified_t<T>, std::string_view>
#endif
    >;

template <typename T>
struct is_pair : std::false_type {
};

template <typename T1, typename T2>
struct is_pair<std::pair<T1, T2>> : std::true_type {
};

template <typename T>
using is_c_str = any<std::is_same<std::decay_t<unqualified_t<T>>, const char*>,
    std::is_same<std::decay_t<unqualified_t<T>>, char*>,
    std::is_same<unqualified_t<T>, std::string>>;

template <typename T>
struct is_move_only : all<neg<std::is_reference<T>>,
                          neg<std::is_copy_constructible<unqualified_t<T>>>,
                          std::is_move_constructible<unqualified_t<T>>> {
};

template <typename T>
using is_not_move_only = neg<is_move_only<T>>;

namespace meta_detail {
template <typename T, meta::disable<meta::is_specialization_of<std::tuple, meta::unqualified_t<T>>> = meta::enabler>
decltype(auto) force_tuple(T&& x)
{
    return std::forward_as_tuple(std::forward<T>(x));
}

template <typename T, meta::enable<meta::is_specialization_of<std::tuple, meta::unqualified_t<T>>> = meta::enabler>
decltype(auto) force_tuple(T&& x)
{
    return std::forward<T>(x);
}
} // namespace meta_detail

template <typename... X>
decltype(auto) tuplefy(X&&... x)
{
    return std::tuple_cat(meta_detail::force_tuple(std::forward<X>(x))...);
}

template <typename T, typename = void>
struct iterator_tag {
    using type = std::input_iterator_tag;
};

template <typename T>
struct iterator_tag<T, std::conditional_t<false, typename T::iterator_category, void>> {
    using type = typename T::iterator_category;
};

} // namespace meta

namespace detail {
template <typename T>
struct is_pointer_like : std::is_pointer<T> {
};
template <typename T, typename D>
struct is_pointer_like<std::unique_ptr<T, D>> : std::true_type {
};
template <typename T>
struct is_pointer_like<std::shared_ptr<T>> : std::true_type {
};

template <std::size_t I, typename Tuple>
decltype(auto) forward_get(Tuple&& tuple)
{
    return std::forward<meta::tuple_element_t<I, Tuple>>(std::get<I>(tuple));
}

template <std::size_t... I, typename Tuple>
auto forward_tuple_impl(std::index_sequence<I...>, Tuple&& tuple) -> decltype(std::tuple<decltype(forward_get<I>(tuple))...>(forward_get<I>(tuple)...))
{
    return std::tuple<decltype(forward_get<I>(tuple))...>(std::move(std::get<I>(tuple))...);
}

template <typename Tuple>
auto forward_tuple(Tuple&& tuple)
{
    auto x = forward_tuple_impl(std::make_index_sequence<std::tuple_size<meta::unqualified_t<Tuple>>::value>(), std::forward<Tuple>(tuple));
    return x;
}

template <typename T>
auto unwrap(T&& item) -> decltype(std::forward<T>(item))
{
    return std::forward<T>(item);
}

template <typename T>
T& unwrap(std::reference_wrapper<T> arg)
{
    return arg.get();
}

template <typename T, meta::enable<meta::neg<is_pointer_like<meta::unqualified_t<T>>>> = meta::enabler>
auto deref(T&& item) -> decltype(std::forward<T>(item))
{
    return std::forward<T>(item);
}

template <typename T, meta::enable<is_pointer_like<meta::unqualified_t<T>>> = meta::enabler>
inline auto deref(T&& item) -> decltype(*std::forward<T>(item))
{
    return *std::forward<T>(item);
}

template <typename T>
inline T* ptr(T& val)
{
    return std::addressof(val);
}

template <typename T>
inline T* ptr(std::reference_wrapper<T> val)
{
    return std::addressof(val.get());
}

template <typename T>
inline T* ptr(T* val)
{
    return val;
}
} // namespace detail
} // namespace sol

// end of sol/traits.hpp

// beginning of sol/function.hpp

// beginning of sol/stack.hpp

// beginning of sol/stack_core.hpp

// beginning of sol/types.hpp

// beginning of sol/optional.hpp

// beginning of sol/compatibility.hpp

// beginning of sol/compatibility/version.hpp

#ifdef SOL_USING_CXX_LUA
#include <lua.h>
#include <lualib.h>
#include <lauxlib.h>
#ifdef SOL_USING_CXX_LUAJIT
#include <luajit.h>
#endif // C++ LuaJIT ... whatever that means
#ifndef SOL_EXCEPTIONS_SAFE_PROPAGATION
#define SOL_EXCEPTIONS_SAFE_PROPAGATION
#endif // Exceptions can be propagated safely using C++-compiled Lua
#else
#include <lua.hpp>
#endif // C++ Mangling for Lua

#ifdef LUAJIT_VERSION
#ifndef SOL_LUAJIT
#define SOL_LUAJIT
#define SOL_LUAJIT_VERSION LUAJIT_VERSION_NUM
#endif // sol luajit
#endif // luajit

#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 502
#define SOL_LUA_VERSION LUA_VERSION_NUM
#elif defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501
#define SOL_LUA_VERSION LUA_VERSION_NUM
#elif !defined(LUA_VERSION_NUM)
#define SOL_LUA_VERSION 500
#else
#define SOL_LUA_VERSION 502
#endif // Lua Version 502, 501 || luajit, 500

// end of sol/compatibility/version.hpp

#ifndef SOL_NO_COMPAT

#if defined(SOL_USING_CXX_LUA)
#ifndef COMPAT53_LUA_CPP
#define COMPAT53_LUA_CPP 1
#endif
#endif

// beginning of sol/compatibility/compat-5.3.h

#ifndef COMPAT53_H_
#define COMPAT53_H_

#include <stddef.h>
#include <limits.h>
#include <string.h>
#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
extern "C" {
#endif
#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP)
}
#endif

#undef COMPAT53_INCLUDE_SOURCE
#if defined(COMPAT53_PREFIX)
/* - change the symbol names of functions to avoid linker conflicts
 * - compat-5.3.c needs to be compiled (and linked) separately
 */
#if !defined(COMPAT53_API)
#define COMPAT53_API extern
#endif
#else /* COMPAT53_PREFIX */
/* - make all functions static and include the source.
 * - compat-5.3.c doesn't need to be compiled (and linked) separately
 */
#define COMPAT53_PREFIX compat53
#undef COMPAT53_API
#if defined(__GNUC__) || defined(__clang__)
#define COMPAT53_API __attribute__((__unused__)) static
#else
#define COMPAT53_API static
#endif
#define COMPAT53_INCLUDE_SOURCE
#endif /* COMPAT53_PREFIX */

#define COMPAT53_CONCAT_HELPER(a, b) a##b
#define COMPAT53_CONCAT(a, b) COMPAT53_CONCAT_HELPER(a, b)

/* declarations for Lua 5.1 */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501

/* XXX not implemented:
 * lua_arith (new operators)
 * lua_upvalueid
 * lua_upvaluejoin
 * lua_version
 * lua_yieldk
 */

#ifndef LUA_OK
#define LUA_OK 0
#endif
#ifndef LUA_OPADD
#define LUA_OPADD 0
#endif
#ifndef LUA_OPSUB
#define LUA_OPSUB 1
#endif
#ifndef LUA_OPMUL
#define LUA_OPMUL 2
#endif
#ifndef LUA_OPDIV
#define LUA_OPDIV 3
#endif
#ifndef LUA_OPMOD
#define LUA_OPMOD 4
#endif
#ifndef LUA_OPPOW
#define LUA_OPPOW 5
#endif
#ifndef LUA_OPUNM
#define LUA_OPUNM 6
#endif
#ifndef LUA_OPEQ
#define LUA_OPEQ 0
#endif
#ifndef LUA_OPLT
#define LUA_OPLT 1
#endif
#ifndef LUA_OPLE
#define LUA_OPLE 2
#endif

/* LuaJIT/Lua 5.1 does not have the updated
 * error codes for thread status/function returns (but some patched versions do)
 * define it only if it's not found
 */
#if !defined(LUA_ERRGCMM)
/* Use + 2 because in some versions of Lua (Lua 5.1)
 * LUA_ERRFILE is defined as (LUA_ERRERR+1)
 * so we need to avoid it (LuaJIT might have something at this
 * integer value too)
 */
#define LUA_ERRGCMM (LUA_ERRERR + 2)
#endif /* LUA_ERRGCMM define */

typedef size_t lua_Unsigned;

typedef struct luaL_Buffer_53 {
    luaL_Buffer b; /* make incorrect code crash! */
    char* ptr;
    size_t nelems;
    size_t capacity;
    lua_State* L2;
} luaL_Buffer_53;
#define luaL_Buffer luaL_Buffer_53

/* In PUC-Rio 5.1, userdata is a simple FILE*
 * In LuaJIT, it's a struct where the first member is a FILE*
 * We can't support the `closef` member
 */
typedef struct luaL_Stream {
    FILE* f;
} luaL_Stream;

#define lua_absindex COMPAT53_CONCAT(COMPAT53_PREFIX, _absindex)
COMPAT53_API int lua_absindex(lua_State* L, int i);

#define lua_arith COMPAT53_CONCAT(COMPAT53_PREFIX, _arith)
COMPAT53_API void lua_arith(lua_State* L, int op);

#define lua_compare COMPAT53_CONCAT(COMPAT53_PREFIX, _compare)
COMPAT53_API int lua_compare(lua_State* L, int idx1, int idx2, int op);

#define lua_copy COMPAT53_CONCAT(COMPAT53_PREFIX, _copy)
COMPAT53_API void lua_copy(lua_State* L, int from, int to);

#define lua_getuservalue(L, i) \
    (lua_getfenv((L), (i)), lua_type((L), -1))
#define lua_setuservalue(L, i) \
    (luaL_checktype((L), -1, LUA_TTABLE), lua_setfenv((L), (i)))

#define lua_len COMPAT53_CONCAT(COMPAT53_PREFIX, _len)
COMPAT53_API void lua_len(lua_State* L, int i);

#define lua_pushstring(L, s) \
    (lua_pushstring((L), (s)), lua_tostring((L), -1))

#define lua_pushlstring(L, s, len) \
    ((((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len))), lua_tostring((L), -1))

#ifndef luaL_newlibtable
#define luaL_newlibtable(L, l) \
    (lua_createtable((L), 0, sizeof((l)) / sizeof(*(l)) - 1))
#endif
#ifndef luaL_newlib
#define luaL_newlib(L, l) \
    (luaL_newlibtable((L), (l)), luaL_register((L), NULL, (l)))
#endif

#define lua_pushglobaltable(L) \
    lua_pushvalue((L), LUA_GLOBALSINDEX)

#define lua_rawgetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawgetp)
COMPAT53_API int lua_rawgetp(lua_State* L, int i, const void* p);

#define lua_rawsetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawsetp)
COMPAT53_API void lua_rawsetp(lua_State* L, int i, const void* p);

#define lua_rawlen(L, i) lua_objlen((L), (i))

#define lua_tointegerx COMPAT53_CONCAT(COMPAT53_PREFIX, _tointegerx)
COMPAT53_API lua_Integer lua_tointegerx(lua_State* L, int i, int* isnum);

#define lua_tonumberx COMPAT53_CONCAT(COMPAT53_PREFIX, _tonumberx)
COMPAT53_API lua_Number lua_tonumberx(lua_State* L, int i, int* isnum);

#define luaL_checkversion COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkversion)
COMPAT53_API void luaL_checkversion(lua_State* L);

#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
COMPAT53_API int lua_load(lua_State* L, lua_Reader reader, void* data, const char* source, const char* mode);

#define luaL_loadfilex COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadfilex)
COMPAT53_API int luaL_loadfilex(lua_State* L, const char* filename, const char* mode);

#define luaL_loadbufferx COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadbufferx)
COMPAT53_API int luaL_loadbufferx(lua_State* L, const char* buff, size_t sz, const char* name, const char* mode);

#define luaL_checkstack COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkstack_53)
COMPAT53_API void luaL_checkstack(lua_State* L, int sp, const char* msg);

#define luaL_getsubtable COMPAT53_CONCAT(COMPAT53_PREFIX, L_getsubtable)
COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char* name);

#define luaL_len COMPAT53_CONCAT(COMPAT53_PREFIX, L_len)
COMPAT53_API lua_Integer luaL_len(lua_State* L, int i);

#define luaL_setfuncs COMPAT53_CONCAT(COMPAT53_PREFIX, L_setfuncs)
COMPAT53_API void luaL_setfuncs(lua_State* L, const luaL_Reg* l, int nup);

#define luaL_setmetatable COMPAT53_CONCAT(COMPAT53_PREFIX, L_setmetatable)
COMPAT53_API void luaL_setmetatable(lua_State* L, const char* tname);

#define luaL_testudata COMPAT53_CONCAT(COMPAT53_PREFIX, L_testudata)
COMPAT53_API void* luaL_testudata(lua_State* L, int i, const char* tname);

#define luaL_traceback COMPAT53_CONCAT(COMPAT53_PREFIX, L_traceback)
COMPAT53_API void luaL_traceback(lua_State* L, lua_State* L1, const char* msg, int level);

#define luaL_fileresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_fileresult)
COMPAT53_API int luaL_fileresult(lua_State* L, int stat, const char* fname);

#define luaL_execresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_execresult)
COMPAT53_API int luaL_execresult(lua_State* L, int stat);

#define lua_callk(L, na, nr, ctx, cont) \
    ((void)(ctx), (void)(cont), lua_call((L), (na), (nr)))
#define lua_pcallk(L, na, nr, err, ctx, cont) \
    ((void)(ctx), (void)(cont), lua_pcall((L), (na), (nr), (err)))

#define lua_resume(L, from, nargs) \
    ((void)(from), lua_resume((L), (nargs)))

#define luaL_buffinit COMPAT53_CONCAT(COMPAT53_PREFIX, _buffinit_53)
COMPAT53_API void luaL_buffinit(lua_State* L, luaL_Buffer_53* B);

#define luaL_prepbuffsize COMPAT53_CONCAT(COMPAT53_PREFIX, _prepbufsize_53)
COMPAT53_API char* luaL_prepbuffsize(luaL_Buffer_53* B, size_t s);

#define luaL_addlstring COMPAT53_CONCAT(COMPAT53_PREFIX, _addlstring_53)
COMPAT53_API void luaL_addlstring(luaL_Buffer_53* B, const char* s, size_t l);

#define luaL_addvalue COMPAT53_CONCAT(COMPAT53_PREFIX, _addvalue_53)
COMPAT53_API void luaL_addvalue(luaL_Buffer_53* B);

#define luaL_pushresult COMPAT53_CONCAT(COMPAT53_PREFIX, _pushresult_53)
COMPAT53_API void luaL_pushresult(luaL_Buffer_53* B);

#undef luaL_buffinitsize
#define luaL_buffinitsize(L, B, s) \
    (luaL_buffinit((L), (B)), luaL_prepbuffsize((B), (s)))

#undef luaL_prepbuffer
#define luaL_prepbuffer(B) \
    luaL_prepbuffsize((B), LUAL_BUFFERSIZE)

#undef luaL_addchar
#define luaL_addchar(B, c)                                             \
    ((void)((B)->nelems < (B)->capacity || luaL_prepbuffsize((B), 1)), \
        ((B)->ptr[(B)->nelems++] = (c)))

#undef luaL_addsize
#define luaL_addsize(B, s) \
    ((B)->nelems += (s))

#undef luaL_addstring
#define luaL_addstring(B, s) \
    luaL_addlstring((B), (s), strlen((s)))

#undef luaL_pushresultsize
#define luaL_pushresultsize(B, s) \
    (luaL_addsize((B), (s)), luaL_pushresult((B)))

#if defined(LUA_COMPAT_APIINTCASTS)
#define lua_pushunsigned(L, n) \
    lua_pushinteger((L), (lua_Integer)(n))
#define lua_tounsignedx(L, i, is) \
    ((lua_Unsigned)lua_tointegerx((L), (i), (is)))
#define lua_tounsigned(L, i) \
    lua_tounsignedx((L), (i), NULL)
#define luaL_checkunsigned(L, a) \
    ((lua_Unsigned)luaL_checkinteger((L), (a)))
#define luaL_optunsigned(L, a, d) \
    ((lua_Unsigned)luaL_optinteger((L), (a), (lua_Integer)(d)))
#endif

#endif /* Lua 5.1 only */

/* declarations for Lua 5.1 and 5.2 */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502

typedef int lua_KContext;

typedef int (*lua_KFunction)(lua_State* L, int status, lua_KContext ctx);

#define lua_dump(L, w, d, s) \
    ((void)(s), lua_dump((L), (w), (d)))

#define lua_getfield(L, i, k) \
    (lua_getfield((L), (i), (k)), lua_type((L), -1))

#define lua_gettable(L, i) \
    (lua_gettable((L), (i)), lua_type((L), -1))

#define lua_geti COMPAT53_CONCAT(COMPAT53_PREFIX, _geti)
COMPAT53_API int lua_geti(lua_State* L, int index, lua_Integer i);

#define lua_isinteger COMPAT53_CONCAT(COMPAT53_PREFIX, _isinteger)
COMPAT53_API int lua_isinteger(lua_State* L, int index);

#define lua_numbertointeger(n, p) \
    ((*(p) = (lua_Integer)(n)), 1)

#define lua_rawget(L, i) \
    (lua_rawget((L), (i)), lua_type((L), -1))

#define lua_rawgeti(L, i, n) \
    (lua_rawgeti((L), (i), (n)), lua_type((L), -1))

#define lua_rotate COMPAT53_CONCAT(COMPAT53_PREFIX, _rotate)
COMPAT53_API void lua_rotate(lua_State* L, int idx, int n);

#define lua_seti COMPAT53_CONCAT(COMPAT53_PREFIX, _seti)
COMPAT53_API void lua_seti(lua_State* L, int index, lua_Integer i);

#define lua_stringtonumber COMPAT53_CONCAT(COMPAT53_PREFIX, _stringtonumber)
COMPAT53_API size_t lua_stringtonumber(lua_State* L, const char* s);

#define luaL_tolstring COMPAT53_CONCAT(COMPAT53_PREFIX, L_tolstring)
COMPAT53_API const char* luaL_tolstring(lua_State* L, int idx, size_t* len);

#define luaL_getmetafield(L, o, e) \
    (luaL_getmetafield((L), (o), (e)) ? lua_type((L), -1) : LUA_TNIL)

#define luaL_newmetatable(L, tn) \
    (luaL_newmetatable((L), (tn)) ? (lua_pushstring((L), (tn)), lua_setfield((L), -2, "__name"), 1) : 0)

#define luaL_requiref COMPAT53_CONCAT(COMPAT53_PREFIX, L_requiref_53)
COMPAT53_API void luaL_requiref(lua_State* L, const char* modname,
    lua_CFunction openf, int glb);

#endif /* Lua 5.1 and Lua 5.2 */

/* declarations for Lua 5.2 */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 502

/* XXX not implemented:
 * lua_isyieldable
 * lua_getextraspace
 * lua_arith (new operators)
 * lua_pushfstring (new formats)
 */

#define lua_getglobal(L, n) \
    (lua_getglobal((L), (n)), lua_type((L), -1))

#define lua_getuservalue(L, i) \
    (lua_getuservalue((L), (i)), lua_type((L), -1))

#define lua_pushlstring(L, s, len) \
    (((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len)))

#define lua_rawgetp(L, i, p) \
    (lua_rawgetp((L), (i), (p)), lua_type((L), -1))

#define LUA_KFUNCTION(_name)                                        \
    static int(_name)(lua_State * L, int status, lua_KContext ctx); \
    static int(_name##_52)(lua_State * L)                           \
    {                                                               \
        lua_KContext ctx;                                           \
        int status = lua_getctx(L, &ctx);                           \
        return (_name)(L, status, ctx);                             \
    }                                                               \
    static int(_name)(lua_State * L, int status, lua_KContext ctx)

#define lua_pcallk(L, na, nr, err, ctx, cont) \
    lua_pcallk((L), (na), (nr), (err), (ctx), cont##_52)

#define lua_callk(L, na, nr, ctx, cont) \
    lua_callk((L), (na), (nr), (ctx), cont##_52)

#define lua_yieldk(L, nr, ctx, cont) \
    lua_yieldk((L), (nr), (ctx), cont##_52)

#ifdef lua_call
#undef lua_call
#define lua_call(L, na, nr) \
    (lua_callk)((L), (na), (nr), 0, NULL)
#endif

#ifdef lua_pcall
#undef lua_pcall
#define lua_pcall(L, na, nr, err) \
    (lua_pcallk)((L), (na), (nr), (err), 0, NULL)
#endif

#ifdef lua_yield
#undef lua_yield
#define lua_yield(L, nr) \
    (lua_yieldk)((L), (nr), 0, NULL)
#endif

#endif /* Lua 5.2 only */

/* other Lua versions */
#if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM < 501 || LUA_VERSION_NUM > 503

#error "unsupported Lua version (i.e. not Lua 5.1, 5.2, or 5.3)"

#endif /* other Lua versions except 5.1, 5.2, and 5.3 */

/* helper macro for defining continuation functions (for every version
 * *except* Lua 5.2) */
#ifndef LUA_KFUNCTION
#define LUA_KFUNCTION(_name) \
    static int(_name)(lua_State * L, int status, lua_KContext ctx)
#endif

#if defined(COMPAT53_INCLUDE_SOURCE)
// beginning of sol/compatibility/compat-5.3.c

#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <stdio.h>

/* don't compile it again if it already is included via compat53.h */
#ifndef COMPAT53_C_
#define COMPAT53_C_

/* definitions for Lua 5.1 only */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501

#ifndef COMPAT53_FOPEN_NO_LOCK
#if defined(_MSC_VER)
#define COMPAT53_FOPEN_NO_LOCK 1
#else /* otherwise */
#define COMPAT53_FOPEN_NO_LOCK 0
#endif /* VC++ only so far */
#endif /* No-lock fopen_s usage if possible */

#if defined(_MSC_VER) && COMPAT53_FOPEN_NO_LOCK
#include <share.h>
#endif /* VC++ _fsopen for share-allowed file read */

#ifndef COMPAT53_HAVE_STRERROR_R
#if defined(__GLIBC__) || defined(_POSIX_VERSION) || defined(__APPLE__) || (!defined(__MINGW32__) && defined(__GNUC__) && (__GNUC__ < 6))
#define COMPAT53_HAVE_STRERROR_R 1
#else /* none of the defines matched: define to 0 */
#define COMPAT53_HAVE_STRERROR_R 0
#endif /* have strerror_r of some form */
#endif /* strerror_r */

#ifndef COMPAT53_HAVE_STRERROR_S
#if defined(_MSC_VER) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || (defined(__STDC_LIB_EXT1__) && __STDC_LIB_EXT1__)
#define COMPAT53_HAVE_STRERROR_S 1
#else /* not VC++ or C11 */
#define COMPAT53_HAVE_STRERROR_S 0
#endif /* strerror_s from VC++ or C11 */
#endif /* strerror_s */

#ifndef COMPAT53_LUA_FILE_BUFFER_SIZE
#define COMPAT53_LUA_FILE_BUFFER_SIZE 4096
#endif /* Lua File Buffer Size */

static char* compat53_strerror(int en, char* buff, size_t sz)
{
#if COMPAT53_HAVE_STRERROR_R
    /* use strerror_r here, because it's available on these specific platforms */
    if (sz > 0) {
        buff[0] = '\0';
        /* we don't care whether the GNU version or the XSI version is used: */
        if (strerror_r(en, buff, sz)) {
            /* Yes, we really DO want to ignore the return value!
       * GCC makes that extra hard, not even a (void) cast will do. */
        }
        if (buff[0] == '\0') {
            /* Buffer is unchanged, so we probably have called GNU strerror_r which
       * returned a static constant string. Chances are that strerror will
       * return the same static constant string and therefore be thread-safe. */
            return strerror(en);
        }
    }
    return buff; /* sz is 0 *or* strerror_r wrote into the buffer */
#elif COMPAT53_HAVE_STRERROR_S
    /* for MSVC and other C11 implementations, use strerror_s since it's
   * provided by default by the libraries */
    strerror_s(buff, sz, en);
    return buff;
#else
    /* fallback, but strerror is not guaranteed to be threadsafe due to modifying
   * errno itself and some impls not locking a static buffer for it ... but most
   * known systems have threadsafe errno: this might only change if the locale
   * is changed out from under someone while this function is being called */
    (void)buff;
    (void)sz;
    return strerror(en);
#endif
}

COMPAT53_API int lua_absindex(lua_State* L, int i)
{
    if (i < 0 && i > LUA_REGISTRYINDEX)
        i += lua_gettop(L) + 1;
    return i;
}

static void compat53_call_lua(lua_State* L, char const code[], size_t len,
    int nargs, int nret)
{
    lua_rawgetp(L, LUA_REGISTRYINDEX, (void*)code);
    if (lua_type(L, -1) != LUA_TFUNCTION) {
        lua_pop(L, 1);
        if (luaL_loadbuffer(L, code, len, "=none"))
            lua_error(L);
        lua_pushvalue(L, -1);
        lua_rawsetp(L, LUA_REGISTRYINDEX, (void*)code);
    }
    lua_insert(L, -nargs - 1);
    lua_call(L, nargs, nret);
}

static const char compat53_arith_code[] = "local op,a,b=...\n"
                                          "if op==0 then return a+b\n"
                                          "elseif op==1 then return a-b\n"
                                          "elseif op==2 then return a*b\n"
                                          "elseif op==3 then return a/b\n"
                                          "elseif op==4 then return a%b\n"
                                          "elseif op==5 then return a^b\n"
                                          "elseif op==6 then return -a\n"
                                          "end\n";

COMPAT53_API void lua_arith(lua_State* L, int op)
{
    if (op < LUA_OPADD || op > LUA_OPUNM)
        luaL_error(L, "invalid 'op' argument for lua_arith");
    luaL_checkstack(L, 5, "not enough stack slots");
    if (op == LUA_OPUNM)
        lua_pushvalue(L, -1);
    lua_pushnumber(L, op);
    lua_insert(L, -3);
    compat53_call_lua(L, compat53_arith_code,
        sizeof(compat53_arith_code) - 1, 3, 1);
}

static const char compat53_compare_code[] = "local a,b=...\n"
                                            "return a<=b\n";

COMPAT53_API int lua_compare(lua_State* L, int idx1, int idx2, int op)
{
    int result = 0;
    switch (op) {
    case LUA_OPEQ:
        return lua_equal(L, idx1, idx2);
    case LUA_OPLT:
        return lua_lessthan(L, idx1, idx2);
    case LUA_OPLE:
        luaL_checkstack(L, 5, "not enough stack slots");
        idx1 = lua_absindex(L, idx1);
        idx2 = lua_absindex(L, idx2);
        lua_pushvalue(L, idx1);
        lua_pushvalue(L, idx2);
        compat53_call_lua(L, compat53_compare_code,
            sizeof(compat53_compare_code) - 1, 2, 1);
        result = lua_toboolean(L, -1);
        lua_pop(L, 1);
        return result;
    default:
        luaL_error(L, "invalid 'op' argument for lua_compare");
    }
    return 0;
}

COMPAT53_API void lua_copy(lua_State* L, int from, int to)
{
    int abs_to = lua_absindex(L, to);
    luaL_checkstack(L, 1, "not enough stack slots");
    lua_pushvalue(L, from);
    lua_replace(L, abs_to);
}

COMPAT53_API void lua_len(lua_State* L, int i)
{
    switch (lua_type(L, i)) {
    case LUA_TSTRING:
        lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
        break;
    case LUA_TTABLE:
        if (!luaL_callmeta(L, i, "__len"))
            lua_pushnumber(L, (lua_Number)lua_objlen(L, i));
        break;
    case LUA_TUSERDATA:
        if (luaL_callmeta(L, i, "__len"))
            break;
    /* FALLTHROUGH */
    default:
        luaL_error(L, "attempt to get length of a %s value",
            lua_typename(L, lua_type(L, i)));
    }
}

COMPAT53_API int lua_rawgetp(lua_State* L, int i, const void* p)
{
    int abs_i = lua_absindex(L, i);
    lua_pushlightuserdata(L, (void*)p);
    lua_rawget(L, abs_i);
    return lua_type(L, -1);
}

COMPAT53_API void lua_rawsetp(lua_State* L, int i, const void* p)
{
    int abs_i = lua_absindex(L, i);
    luaL_checkstack(L, 1, "not enough stack slots");
    lua_pushlightuserdata(L, (void*)p);
    lua_insert(L, -2);
    lua_rawset(L, abs_i);
}

COMPAT53_API lua_Integer lua_tointegerx(lua_State* L, int i, int* isnum)
{
    lua_Integer n = lua_tointeger(L, i);
    if (isnum != NULL) {
        *isnum = (n != 0 || lua_isnumber(L, i));
    }
    return n;
}

COMPAT53_API lua_Number lua_tonumberx(lua_State* L, int i, int* isnum)
{
    lua_Number n = lua_tonumber(L, i);
    if (isnum != NULL) {
        *isnum = (n != 0 || lua_isnumber(L, i));
    }
    return n;
}

COMPAT53_API void luaL_checkversion(lua_State* L)
{
    (void)L;
}

COMPAT53_API void luaL_checkstack(lua_State* L, int sp, const char* msg)
{
    if (!lua_checkstack(L, sp + LUA_MINSTACK)) {
        if (msg != NULL)
            luaL_error(L, "stack overflow (%s)", msg);
        else {
            lua_pushliteral(L, "stack overflow");
            lua_error(L);
        }
    }
}

COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char* name)
{
    int abs_i = lua_absindex(L, i);
    luaL_checkstack(L, 3, "not enough stack slots");
    lua_pushstring(L, name);
    lua_gettable(L, abs_i);
    if (lua_istable(L, -1))
        return 1;
    lua_pop(L, 1);
    lua_newtable(L);
    lua_pushstring(L, name);
    lua_pushvalue(L, -2);
    lua_settable(L, abs_i);
    return 0;
}

COMPAT53_API lua_Integer luaL_len(lua_State* L, int i)
{
    lua_Integer res = 0;
    int isnum = 0;
    luaL_checkstack(L, 1, "not enough stack slots");
    lua_len(L, i);
    res = lua_tointegerx(L, -1, &isnum);
    lua_pop(L, 1);
    if (!isnum)
        luaL_error(L, "object length is not an integer");
    return res;
}

COMPAT53_API void luaL_setfuncs(lua_State* L, const luaL_Reg* l, int nup)
{
    luaL_checkstack(L, nup + 1, "too many upvalues");
    for (; l->name != NULL; l++) { /* fill the table with given functions */
        int i;
        lua_pushstring(L, l->name);
        for (i = 0; i < nup; i++) /* copy upvalues to the top */
            lua_pushvalue(L, -(nup + 1));
        lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */
        lua_settable(L, -(nup + 3)); /* table must be below the upvalues, the name and the closure */
    }
    lua_pop(L, nup); /* remove upvalues */
}

COMPAT53_API void luaL_setmetatable(lua_State* L, const char* tname)
{
    luaL_checkstack(L, 1, "not enough stack slots");
    luaL_getmetatable(L, tname);
    lua_setmetatable(L, -2);
}

COMPAT53_API void* luaL_testudata(lua_State* L, int i, const char* tname)
{
    void* p = lua_touserdata(L, i);
    luaL_checkstack(L, 2, "not enough stack slots");
    if (p == NULL || !lua_getmetatable(L, i))
        return NULL;
    else {
        int res = 0;
        luaL_getmetatable(L, tname);
        res = lua_rawequal(L, -1, -2);
        lua_pop(L, 2);
        if (!res)
            p = NULL;
    }
    return p;
}

static int compat53_countlevels(lua_State* L)
{
    lua_Debug ar;
    int li = 1, le = 1;
    /* find an upper bound */
    while (lua_getstack(L, le, &ar)) {
        li = le;
        le *= 2;
    }
    /* do a binary search */
    while (li < le) {
        int m = (li + le) / 2;
        if (lua_getstack(L, m, &ar))
            li = m + 1;
        else
            le = m;
    }
    return le - 1;
}

static int compat53_findfield(lua_State* L, int objidx, int level)
{
    if (level == 0 || !lua_istable(L, -1))
        return 0; /* not found */
    lua_pushnil(L); /* start 'next' loop */
    while (lua_next(L, -2)) { /* for each pair in table */
        if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */
            if (lua_rawequal(L, objidx, -1)) { /* found object? */
                lua_pop(L, 1); /* remove value (but keep name) */
                return 1;
            }
            else if (compat53_findfield(L, objidx, level - 1)) { /* try recursively */
                lua_remove(L, -2); /* remove table (but keep name) */
                lua_pushliteral(L, ".");
                lua_insert(L, -2); /* place '.' between the two names */
                lua_concat(L, 3);
                return 1;
            }
        }
        lua_pop(L, 1); /* remove value */
    }
    return 0; /* not found */
}

static int compat53_pushglobalfuncname(lua_State* L, lua_Debug* ar)
{
    int top = lua_gettop(L);
    lua_getinfo(L, "f", ar); /* push function */
    lua_pushvalue(L, LUA_GLOBALSINDEX);
    if (compat53_findfield(L, top + 1, 2)) {
        lua_copy(L, -1, top + 1); /* move name to proper place */
        lua_pop(L, 2); /* remove pushed values */
        return 1;
    }
    else {
        lua_settop(L, top); /* remove function and global table */
        return 0;
    }
}

static void compat53_pushfuncname(lua_State* L, lua_Debug* ar)
{
    if (*ar->namewhat != '\0') /* is there a name? */
        lua_pushfstring(L, "function " LUA_QS, ar->name);
    else if (*ar->what == 'm') /* main? */
        lua_pushliteral(L, "main chunk");
    else if (*ar->what == 'C') {
        if (compat53_pushglobalfuncname(L, ar)) {
            lua_pushfstring(L, "function " LUA_QS, lua_tostring(L, -1));
            lua_remove(L, -2); /* remove name */
        }
        else
            lua_pushliteral(L, "?");
    }
    else
        lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined);
}

#define COMPAT53_LEVELS1 12 /* size of the first part of the stack */
#define COMPAT53_LEVELS2 10 /* size of the second part of the stack */

COMPAT53_API void luaL_traceback(lua_State* L, lua_State* L1,
    const char* msg, int level)
{
    lua_Debug ar;
    int top = lua_gettop(L);
    int numlevels = compat53_countlevels(L1);
    int mark = (numlevels > COMPAT53_LEVELS1 + COMPAT53_LEVELS2) ? COMPAT53_LEVELS1 : 0;
    if (msg)
        lua_pushfstring(L, "%s\n", msg);
    lua_pushliteral(L, "stack traceback:");
    while (lua_getstack(L1, level++, &ar)) {
        if (level == mark) { /* too many levels? */
            lua_pushliteral(L, "\n\t..."); /* add a '...' */
            level = numlevels - COMPAT53_LEVELS2; /* and skip to last ones */
        }
        else {
            lua_getinfo(L1, "Slnt", &ar);
            lua_pushfstring(L, "\n\t%s:", ar.short_src);
            if (ar.currentline > 0)
                lua_pushfstring(L, "%d:", ar.currentline);
            lua_pushliteral(L, " in ");
            compat53_pushfuncname(L, &ar);
            lua_concat(L, lua_gettop(L) - top);
        }
    }
    lua_concat(L, lua_gettop(L) - top);
}

COMPAT53_API int luaL_fileresult(lua_State* L, int stat, const char* fname)
{
    const char* serr = NULL;
    int en = errno; /* calls to Lua API may change this value */
    char buf[512] = { 0 };
    if (stat) {
        lua_pushboolean(L, 1);
        return 1;
    }
    else {
        lua_pushnil(L);
        serr = compat53_strerror(en, buf, sizeof(buf));
        if (fname)
            lua_pushfstring(L, "%s: %s", fname, serr);
        else
            lua_pushstring(L, serr);
        lua_pushnumber(L, (lua_Number)en);
        return 3;
    }
}

static int compat53_checkmode(lua_State* L, const char* mode, const char* modename, int err)
{
    if (mode && strchr(mode, modename[0]) == NULL) {
        lua_pushfstring(L, "attempt to load a %s chunk (mode is '%s')", modename, mode);
        return err;
    }
    return LUA_OK;
}

typedef struct {
    lua_Reader reader;
    void* ud;
    int has_peeked_data;
    const char* peeked_data;
    size_t peeked_data_size;
} compat53_reader_data;

static const char* compat53_reader(lua_State* L, void* ud, size_t* size)
{
    compat53_reader_data* data = (compat53_reader_data*)ud;
    if (data->has_peeked_data) {
        data->has_peeked_data = 0;
        *size = data->peeked_data_size;
        return data->peeked_data;
    }
    else
        return data->reader(L, data->ud, size);
}

COMPAT53_API int lua_load(lua_State* L, lua_Reader reader, void* data, const char* source, const char* mode)
{
    int status = LUA_OK;
    compat53_reader_data compat53_data = { reader, data, 1, 0, 0 };
    compat53_data.peeked_data = reader(L, data, &(compat53_data.peeked_data_size));
    if (compat53_data.peeked_data && compat53_data.peeked_data_size && compat53_data.peeked_data[0] == LUA_SIGNATURE[0]) /* binary file? */
        status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
    else
        status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
    if (status != LUA_OK)
        return status;
/* we need to call the original 5.1 version of lua_load! */
#undef lua_load
    return lua_load(L, compat53_reader, &compat53_data, source);
#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53)
}

typedef struct {
    int n; /* number of pre-read characters */
    FILE* f; /* file being read */
    char buff[COMPAT53_LUA_FILE_BUFFER_SIZE]; /* area for reading file */
} compat53_LoadF;

static const char* compat53_getF(lua_State* L, void* ud, size_t* size)
{
    compat53_LoadF* lf = (compat53_LoadF*)ud;
    (void)L; /* not used */
    if (lf->n > 0) { /* are there pre-read characters to be read? */
        *size = lf->n; /* return them (chars already in buffer) */
        lf->n = 0; /* no more pre-read characters */
    }
    else { /* read a block from file */
        /* 'fread' can return > 0 *and* set the EOF flag. If next call to
       'compat53_getF' called 'fread', it might still wait for user input.
       The next check avoids this problem. */
        if (feof(lf->f))
            return NULL;
        *size = fread(lf->buff, 1, sizeof(lf->buff), lf->f); /* read block */
    }
    return lf->buff;
}

static int compat53_errfile(lua_State* L, const char* what, int fnameindex)
{
    char buf[512] = { 0 };
    const char* serr = compat53_strerror(errno, buf, sizeof(buf));
    const char* filename = lua_tostring(L, fnameindex) + 1;
    lua_pushfstring(L, "cannot %s %s: %s", what, filename, serr);
    lua_remove(L, fnameindex);
    return LUA_ERRFILE;
}

static int compat53_skipBOM(compat53_LoadF* lf)
{
    const char* p = "\xEF\xBB\xBF"; /* UTF-8 BOM mark */
    int c;
    lf->n = 0;
    do {
        c = getc(lf->f);
        if (c == EOF || c != *(const unsigned char*)p++)
            return c;
        lf->buff[lf->n++] = (char)c; /* to be read by the parser */
    } while (*p != '\0');
    lf->n = 0; /* prefix matched; discard it */
    return getc(lf->f); /* return next character */
}

/*
** reads the first character of file 'f' and skips an optional BOM mark
** in its beginning plus its first line if it starts with '#'. Returns
** true if it skipped the first line.  In any case, '*cp' has the
** first "valid" character of the file (after the optional BOM and
** a first-line comment).
*/
static int compat53_skipcomment(compat53_LoadF* lf, int* cp)
{
    int c = *cp = compat53_skipBOM(lf);
    if (c == '#') { /* first line is a comment (Unix exec. file)? */
        do { /* skip first line */
            c = getc(lf->f);
        } while (c != EOF && c != '\n');
        *cp = getc(lf->f); /* skip end-of-line, if present */
        return 1; /* there was a comment */
    }
    else
        return 0; /* no comment */
}

COMPAT53_API int luaL_loadfilex(lua_State* L, const char* filename, const char* mode)
{
    compat53_LoadF lf;
    int status, readstatus;
    int c;
    int fnameindex = lua_gettop(L) + 1; /* index of filename on the stack */
    if (filename == NULL) {
        lua_pushliteral(L, "=stdin");
        lf.f = stdin;
    }
    else {
        lua_pushfstring(L, "@%s", filename);
#if defined(_MSC_VER)
/* This code is here to stop a deprecation error that stops builds
     * if a certain macro is defined. While normally not caring would
     * be best, some header-only libraries and builds can't afford to
     * dictate this to the user. A quick check shows that fopen_s this
     * goes back to VS 2005, and _fsopen goes back to VS 2003 .NET,
     * possibly even before that so we don't need to do any version
     * number checks, since this has been there since forever.  */

/* TO USER: if you want the behavior of typical fopen_s/fopen,
     * which does lock the file on VC++, define the macro used below to 0 */
#if COMPAT53_FOPEN_NO_LOCK
        lf.f = _fsopen(filename, "r", _SH_DENYNO); /* do not lock the file in any way */
        if (lf.f == NULL)
            return compat53_errfile(L, "open", fnameindex);
#else /* use default locking version */
        if (fopen_s(&lf.f, filename, "r") != 0)
            return compat53_errfile(L, "open", fnameindex);
#endif /* Locking vs. No-locking fopen variants */
#else
        lf.f = fopen(filename, "r"); /* default stdlib doesn't forcefully lock files here */
        if (lf.f == NULL)
            return compat53_errfile(L, "open", fnameindex);
#endif
    }
    if (compat53_skipcomment(&lf, &c)) /* read initial portion */
        lf.buff[lf.n++] = '\n'; /* add line to correct line numbers */
    if (c == LUA_SIGNATURE[0] && filename) { /* binary file? */
#if defined(_MSC_VER)
        if (freopen_s(&lf.f, filename, "rb", lf.f) != 0)
            return compat53_errfile(L, "reopen", fnameindex);
#else
        lf.f = freopen(filename, "rb", lf.f); /* reopen in binary mode */
        if (lf.f == NULL)
            return compat53_errfile(L, "reopen", fnameindex);
#endif
        compat53_skipcomment(&lf, &c); /* re-read initial portion */
    }
    if (c != EOF)
        lf.buff[lf.n++] = (char)c; /* 'c' is the first character of the stream */
    status = lua_load(L, &compat53_getF, &lf, lua_tostring(L, -1), mode);
    readstatus = ferror(lf.f);
    if (filename)
        fclose(lf.f); /* close file (even in case of errors) */
    if (readstatus) {
        lua_settop(L, fnameindex); /* ignore results from 'lua_load' */
        return compat53_errfile(L, "read", fnameindex);
    }
    lua_remove(L, fnameindex);
    return status;
}

COMPAT53_API int luaL_loadbufferx(lua_State* L, const char* buff, size_t sz, const char* name, const char* mode)
{
    int status = LUA_OK;
    if (sz > 0 && buff[0] == LUA_SIGNATURE[0]) {
        status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX);
    }
    else {
        status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX);
    }
    if (status != LUA_OK)
        return status;
    return luaL_loadbuffer(L, buff, sz, name);
}

#if !defined(l_inspectstat) && (defined(unix) || defined(__unix) || defined(__unix__) || defined(__TOS_AIX__) || defined(_SYSTYPE_BSD) || (defined(__APPLE__) && defined(__MACH__)))
/* some form of unix; check feature macros in unistd.h for details */
#include <unistd.h>
/* check posix version; the relevant include files and macros probably
 * were available before 2001, but I'm not sure */
#if defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L
#include <sys/wait.h>
#define l_inspectstat(stat, what) \
    if (WIFEXITED(stat)) {        \
        stat = WEXITSTATUS(stat); \
    }                             \
    else if (WIFSIGNALED(stat)) { \
        stat = WTERMSIG(stat);    \
        what = "signal";          \
    }
#endif
#endif

/* provide default (no-op) version */
#if !defined(l_inspectstat)
#define l_inspectstat(stat, what) ((void)0)
#endif

COMPAT53_API int luaL_execresult(lua_State* L, int stat)
{
    const char* what = "exit";
    if (stat == -1)
        return luaL_fileresult(L, 0, NULL);
    else {
        l_inspectstat(stat, what);
        if (*what == 'e' && stat == 0)
            lua_pushboolean(L, 1);
        else
            lua_pushnil(L);
        lua_pushstring(L, what);
        lua_pushinteger(L, stat);
        return 3;
    }
}

COMPAT53_API void luaL_buffinit(lua_State* L, luaL_Buffer_53* B)
{
    /* make it crash if used via pointer to a 5.1-style luaL_Buffer */
    B->b.p = NULL;
    B->b.L = NULL;
    B->b.lvl = 0;
    /* reuse the buffer from the 5.1-style luaL_Buffer though! */
    B->ptr = B->b.buffer;
    B->capacity = LUAL_BUFFERSIZE;
    B->nelems = 0;
    B->L2 = L;
}

COMPAT53_API char* luaL_prepbuffsize(luaL_Buffer_53* B, size_t s)
{
    if (B->capacity - B->nelems < s) { /* needs to grow */
        char* newptr = NULL;
        size_t newcap = B->capacity * 2;
        if (newcap - B->nelems < s)
            newcap = B->nelems + s;
        if (newcap < B->capacity) /* overflow */
            luaL_error(B->L2, "buffer too large");
        newptr = (char*)lua_newuserdata(B->L2, newcap);
        memcpy(newptr, B->ptr, B->nelems);
        if (B->ptr != B->b.buffer)
            lua_replace(B->L2, -2); /* remove old buffer */
        B->ptr = newptr;
        B->capacity = newcap;
    }
    return B->ptr + B->nelems;
}

COMPAT53_API void luaL_addlstring(luaL_Buffer_53* B, const char* s, size_t l)
{
    memcpy(luaL_prepbuffsize(B, l), s, l);
    luaL_addsize(B, l);
}

COMPAT53_API void luaL_addvalue(luaL_Buffer_53* B)
{
    size_t len = 0;
    const char* s = lua_tolstring(B->L2, -1, &len);
    if (!s)
        luaL_error(B->L2, "cannot convert value to string");
    if (B->ptr != B->b.buffer)
        lua_insert(B->L2, -2); /* userdata buffer must be at stack top */
    luaL_addlstring(B, s, len);
    lua_remove(B->L2, B->ptr != B->b.buffer ? -2 : -1);
}

void luaL_pushresult(luaL_Buffer_53* B)
{
    lua_pushlstring(B->L2, B->ptr, B->nelems);
    if (B->ptr != B->b.buffer)
        lua_replace(B->L2, -2); /* remove userdata buffer */
}

#endif /* Lua 5.1 */

/* definitions for Lua 5.1 and Lua 5.2 */
#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502

COMPAT53_API int lua_geti(lua_State* L, int index, lua_Integer i)
{
    index = lua_absindex(L, index);
    lua_pushinteger(L, i);
    lua_gettable(L, index);
    return lua_type(L, -1);
}

COMPAT53_API int lua_isinteger(lua_State* L, int index)
{
    if (lua_type(L, index) == LUA_TNUMBER) {
        lua_Number n = lua_tonumber(L, index);
        lua_Integer i = lua_tointeger(L, index);
        if (i == n)
            return 1;
    }
    return 0;
}

static void compat53_reverse(lua_State* L, int a, int b)
{
    for (; a < b; ++a, --b) {
        lua_pushvalue(L, a);
        lua_pushvalue(L, b);
        lua_replace(L, a);
        lua_replace(L, b);
    }
}

COMPAT53_API void lua_rotate(lua_State* L, int idx, int n)
{
    int n_elems = 0;
    idx = lua_absindex(L, idx);
    n_elems = lua_gettop(L) - idx + 1;
    if (n < 0)
        n += n_elems;
    if (n > 0 && n < n_elems) {
        luaL_checkstack(L, 2, "not enough stack slots available");
        n = n_elems - n;
        compat53_reverse(L, idx, idx + n - 1);
        compat53_reverse(L, idx + n, idx + n_elems - 1);
        compat53_reverse(L, idx, idx + n_elems - 1);
    }
}

COMPAT53_API void lua_seti(lua_State* L, int index, lua_Integer i)
{
    luaL_checkstack(L, 1, "not enough stack slots available");
    index = lua_absindex(L, index);
    lua_pushinteger(L, i);
    lua_insert(L, -2);
    lua_settable(L, index);
}

#if !defined(lua_str2number)
#define lua_str2number(s, p) strtod((s), (p))
#endif

COMPAT53_API size_t lua_stringtonumber(lua_State* L, const char* s)
{
    char* endptr;
    lua_Number n = lua_str2number(s, &endptr);
    if (endptr != s) {
        while (*endptr != '\0' && isspace((unsigned char)*endptr))
            ++endptr;
        if (*endptr == '\0') {
            lua_pushnumber(L, n);
            return endptr - s + 1;
        }
    }
    return 0;
}

COMPAT53_API const char* luaL_tolstring(lua_State* L, int idx, size_t* len)
{
    if (!luaL_callmeta(L, idx, "__tostring")) {
        int t = lua_type(L, idx), tt = 0;
        char const* name = NULL;
        switch (t) {
        case LUA_TNIL:
            lua_pushliteral(L, "nil");
            break;
        case LUA_TSTRING:
        case LUA_TNUMBER:
            lua_pushvalue(L, idx);
            break;
        case LUA_TBOOLEAN:
            if (lua_toboolean(L, idx))
                lua_pushliteral(L, "true");
            else
                lua_pushliteral(L, "false");
            break;
        default:
            tt = luaL_getmetafield(L, idx, "__name");
            name = (tt == LUA_TSTRING) ? lua_tostring(L, -1) : lua_typename(L, t);
            lua_pushfstring(L, "%s: %p", name, lua_topointer(L, idx));
            if (tt != LUA_TNIL)
                lua_replace(L, -2);
            break;
        }
    }
    else {
        if (!lua_isstring(L, -1))
            luaL_error(L, "'__tostring' must return a string");
    }
    return lua_tolstring(L, -1, len);
}

COMPAT53_API void luaL_requiref(lua_State* L, const char* modname,
    lua_CFunction openf, int glb)
{
    luaL_checkstack(L, 3, "not enough stack slots available");
    luaL_getsubtable(L, LUA_REGISTRYINDEX, "_LOADED");
    if (lua_getfield(L, -1, modname) == LUA_TNIL) {
        lua_pop(L, 1);
        lua_pushcfunction(L, openf);
        lua_pushstring(L, modname);
        lua_call(L, 1, 1);
        lua_pushvalue(L, -1);
        lua_setfield(L, -3, modname);
    }
    if (glb) {
        lua_pushvalue(L, -1);
        lua_setglobal(L, modname);
    }
    lua_replace(L, -2);
}

#endif /* Lua 5.1 and 5.2 */

#endif /* COMPAT53_C_ */

/*********************************************************************
* This file contains parts of Lua 5.2's and Lua 5.3's source code:
*
* Copyright (C) 1994-2014 Lua.org, PUC-Rio.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*********************************************************************/

// end of sol/compatibility/compat-5.3.c

#endif

#endif /* COMPAT53_H_ */

// end of sol/compatibility/compat-5.3.h

#endif // SOL_NO_COMPAT

// end of sol/compatibility.hpp

// beginning of sol/in_place.hpp

#include <utility>

namespace sol {

#ifdef SOL_CXX17_FEATURES
using in_place_t = std::in_place_t;
constexpr std::in_place_t in_place{};
constexpr std::in_place_t in_place_of{};

template <typename T>
using in_place_type_t = std::in_place_type_t<T>;
template <typename T>
constexpr std::in_place_type_t<T> in_place_type{};

template <size_t I>
using in_place_index_t = std::in_place_index_t<I>;
template <size_t I>
constexpr in_place_index_t<I> in_place_index{};
#else
namespace detail {
struct in_place_of_tag {
};
template <std::size_t I>
struct in_place_of_i {
};
template <typename T>
struct in_place_of_t {
};
} // namespace detail

struct in_place_tag {
    constexpr in_place_tag() = default;
};

constexpr inline in_place_tag in_place(detail::in_place_of_tag)
{
    return in_place_tag();
}
template <typename T>
constexpr inline in_place_tag in_place(detail::in_place_of_t<T>)
{
    return in_place_tag();
}
template <std::size_t I>
constexpr inline in_place_tag in_place(detail::in_place_of_i<I>)
{
    return in_place_tag();
}

constexpr inline in_place_tag in_place_of(detail::in_place_of_tag)
{
    return in_place_tag();
}
template <typename T>
constexpr inline in_place_tag in_place_type(detail::in_place_of_t<T>)
{
    return in_place_tag();
}
template <std::size_t I>
constexpr inline in_place_tag in_place_index(detail::in_place_of_i<I>)
{
    return in_place_tag();
}

using in_place_t = in_place_tag (&)(detail::in_place_of_tag);
template <typename T>
using in_place_type_t = in_place_tag (&)(detail::in_place_of_t<T>);
template <std::size_t I>
using in_place_index_t = in_place_tag (&)(detail::in_place_of_i<I>);
#endif

} // namespace sol

// end of sol/in_place.hpp

#if defined(SOL_USE_BOOST)
#include <boost/optional.hpp>
#else
// beginning of sol/optional_implementation.hpp

#include <initializer_list>
#include <cassert>
#ifdef SOL_NO_EXCEPTIONS
#include <cstdlib>
#endif // Exceptions

#define TR2_OPTIONAL_REQUIRES(...) typename ::std::enable_if<__VA_ARGS__::value, bool>::type = false

#if defined __GNUC__ // NOTE: GNUC is also defined for Clang
#if (__GNUC__ >= 5)
#define TR2_OPTIONAL_GCC_5_0_AND_HIGHER___
#define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
#elif (__GNUC__ == 4) && (__GNUC_MINOR__ >= 8)
#define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
#elif (__GNUC__ > 4)
#define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
#endif
#
#if (__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)
#define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___
#elif (__GNUC__ > 4)
#define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___
#endif
#
#if (__GNUC__ == 4) && (__GNUC_MINOR__ == 8) && (__GNUC_PATCHLEVEL__ >= 1)
#define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
#elif (__GNUC__ == 4) && (__GNUC_MINOR__ >= 9)
#define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
#elif (__GNUC__ > 4)
#define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
#endif
#endif
#
#if defined __clang_major__
#if (__clang_major__ == 3 && __clang_minor__ >= 5)
#define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
#elif (__clang_major__ > 3)
#define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
#endif
#if defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_
#define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
#elif (__clang_major__ == 3 && __clang_minor__ == 4 && __clang_patchlevel__ >= 2)
#define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
#endif
#endif
#
#if defined _MSC_VER
#if (_MSC_VER >= 1900)
#define TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
#endif
#endif

#if defined __clang__
#if (__clang_major__ > 2) || (__clang_major__ == 2) && (__clang_minor__ >= 9)
#define OPTIONAL_HAS_THIS_RVALUE_REFS 1
#else
#define OPTIONAL_HAS_THIS_RVALUE_REFS 0
#endif
#elif defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
#define OPTIONAL_HAS_THIS_RVALUE_REFS 1
#elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
#define OPTIONAL_HAS_THIS_RVALUE_REFS 1
#else
#define OPTIONAL_HAS_THIS_RVALUE_REFS 0
#endif

#if defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___
#define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 1
#define OPTIONAL_CONSTEXPR_INIT_LIST constexpr
#else
#define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 0
#define OPTIONAL_CONSTEXPR_INIT_LIST
#endif

#if defined(TR2_OPTIONAL_MSVC_2015_AND_HIGHER___) || (defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ && (defined __cplusplus) && (__cplusplus != 201103L))
#define OPTIONAL_HAS_MOVE_ACCESSORS 1
#else
#define OPTIONAL_HAS_MOVE_ACCESSORS 0
#endif

#// In C++11 constexpr implies const, so we need to make non-const members also non-constexpr
#if defined(TR2_OPTIONAL_MSVC_2015_AND_HIGHER___) || ((defined __cplusplus) && (__cplusplus == 201103L))
#define OPTIONAL_MUTABLE_CONSTEXPR
#else
#define OPTIONAL_MUTABLE_CONSTEXPR constexpr
#endif

#if defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
#pragma warning(push)
#pragma warning(disable : 4814)
#endif

namespace sol {

// BEGIN workaround for missing is_trivially_destructible
#if defined TR2_OPTIONAL_GCC_4_8_AND_HIGHER___
// leave it: it is already there
#elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
// leave it: it is already there
#elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
// leave it: it is already there
#elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS
// leave it: the user doesn't want it
#else
template <typename T>
using is_trivially_destructible = ::std::has_trivial_destructor<T>;
#endif
// END workaround for missing is_trivially_destructible

#if (defined TR2_OPTIONAL_GCC_4_7_AND_HIGHER___)
// leave it; our metafunctions are already defined.
#elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_
// leave it; our metafunctions are already defined.
#elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
// leave it: it is already there
#elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS
// leave it: the user doesn't want it
#else

// workaround for missing traits in GCC and CLANG
template <class T>
struct is_nothrow_move_constructible {
    constexpr static bool value = ::std::is_nothrow_constructible<T, T&&>::value;
};

template <class T, class U>
struct is_assignable {
    template <class X, class Y>
    constexpr static bool has_assign(...)
    {
        return false;
    }

    template <class X, class Y, size_t S = sizeof((::std::declval<X>() = ::std::declval<Y>(), true))>
    // the comma operator is necessary for the cases where operator= returns void
    constexpr static bool has_assign(bool)
    {
        return true;
    }

    constexpr static bool value = has_assign<T, U>(true);
};

template <class T>
struct is_nothrow_move_assignable {
    template <class X, bool has_any_move_assign>
    struct has_nothrow_move_assign {
        constexpr static bool value = false;
    };

    template <class X>
    struct has_nothrow_move_assign<X, true> {
        constexpr static bool value = noexcept(::std::declval<X&>() = ::std::declval<X&&>());
    };

    constexpr static bool value = has_nothrow_move_assign<T, is_assignable<T&, T&&>::value>::value;
};
// end workaround

#endif

// 20.5.4, optional for object types
template <class T>
class optional;

// 20.5.5, optional for lvalue reference types
template <class T>
class optional<T&>;

// workaround: std utility functions aren't constexpr yet
template <class T>
inline constexpr T&& constexpr_forward(typename ::std::remove_reference<T>::type& t) noexcept
{
    return static_cast<T&&>(t);
}

template <class T>
inline constexpr T&& constexpr_forward(typename ::std::remove_reference<T>::type&& t) noexcept
{
    static_assert(!::std::is_lvalue_reference<T>::value, "!!");
    return static_cast<T&&>(t);
}

template <class T>
inline constexpr typename ::std::remove_reference<T>::type&& constexpr_move(T&& t) noexcept
{
    return static_cast<typename ::std::remove_reference<T>::type&&>(t);
}

#if defined NDEBUG
#define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) (EXPR)
#else
#define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) ((CHECK) ? (EXPR) : ([] { assert(!#CHECK); }(), (EXPR)))
#endif

namespace detail_ {

// static_addressof: a constexpr version of addressof
template <typename T>
struct has_overloaded_addressof {
    template <class X>
    constexpr static bool has_overload(...)
    {
        return false;
    }

    template <class X, size_t S = sizeof(::std::declval<X&>().operator&())>
    constexpr static bool has_overload(bool)
    {
        return true;
    }

    constexpr static bool value = has_overload<T>(true);
};

template <typename T, TR2_OPTIONAL_REQUIRES(!has_overloaded_addressof<T>)>
constexpr T* static_addressof(T& ref)
{
    return &ref;
}

template <typename T, TR2_OPTIONAL_REQUIRES(has_overloaded_addressof<T>)>
T* static_addressof(T& ref)
{
    return ::std::addressof(ref);
}

// the call to convert<A>(b) has return type A and converts b to type A iff b decltype(b) is implicitly convertible to A
template <class U>
constexpr U convert(U v)
{
    return v;
}

} // namespace detail_

constexpr struct trivial_init_t {
} trivial_init{};

// 20.5.7, Disengaged state indicator
struct nullopt_t {
    struct init {
    };
    constexpr explicit nullopt_t(init)
    {
    }
};
constexpr nullopt_t nullopt{ nullopt_t::init() };

// 20.5.8, class bad_optional_access
class bad_optional_access : public ::std::logic_error {
public:
    explicit bad_optional_access(const ::std::string& what_arg)
        : ::std::logic_error{ what_arg }
    {
    }
    explicit bad_optional_access(const char* what_arg)
        : ::std::logic_error{ what_arg }
    {
    }
};

template <class T>
struct alignas(T) optional_base {
    char storage_[sizeof(T)];
    bool init_;

    constexpr optional_base() noexcept
        : storage_(),
          init_(false){};

    explicit optional_base(const T& v)
        : storage_()
        , init_(true)
    {
        new (&storage()) T(v);
    }

    explicit optional_base(T&& v)
        : storage_()
        , init_(true)
    {
        new (&storage()) T(constexpr_move(v));
    }

    template <class... Args>
    explicit optional_base(in_place_t, Args&&... args)
        : init_(true)
        , storage_()
    {
        new (&storage()) T(constexpr_forward<Args>(args)...);
    }

    template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
    explicit optional_base(in_place_t, ::std::initializer_list<U> il, Args&&... args)
        : init_(true)
        , storage_()
    {
        new (&storage()) T(il, constexpr_forward<Args>(args)...);
    }
#if defined __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
    T& storage()
    {
        return *reinterpret_cast<T*>(&storage_[0]);
    }

    constexpr const T& storage() const
    {
        return *reinterpret_cast<T const*>(&storage_[0]);
    }
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif

    ~optional_base()
    {
        if (init_) {
            storage().T::~T();
        }
    }
};

#if defined __GNUC__ && !defined TR2_OPTIONAL_GCC_5_0_AND_HIGHER___
// Sorry, GCC 4.x; you're just a piece of shit
template <typename T>
using constexpr_optional_base = optional_base<T>;
#else
template <class T>
struct alignas(T) constexpr_optional_base {
    char storage_[sizeof(T)];
    bool init_;
    constexpr constexpr_optional_base() noexcept
        : storage_(),
          init_(false)
    {
    }

    explicit constexpr constexpr_optional_base(const T& v)
        : storage_()
        , init_(true)
    {
        new (&storage()) T(v);
    }

    explicit constexpr constexpr_optional_base(T&& v)
        : storage_()
        , init_(true)
    {
        new (&storage()) T(constexpr_move(v));
    }

    template <class... Args>
    explicit constexpr constexpr_optional_base(in_place_t, Args&&... args)
        : init_(true)
        , storage_()
    {
        new (&storage()) T(constexpr_forward<Args>(args)...);
    }

    template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
    OPTIONAL_CONSTEXPR_INIT_LIST explicit constexpr_optional_base(in_place_t, ::std::initializer_list<U> il, Args&&... args)
        : init_(true)
        , storage_()
    {
        new (&storage()) T(il, constexpr_forward<Args>(args)...);
    }

#if defined __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
    T& storage()
    {
        return (*reinterpret_cast<T*>(&storage_[0]));
    }

    constexpr const T& storage() const
    {
        return (*reinterpret_cast<T const*>(&storage_[0]));
    }
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif

    ~constexpr_optional_base() = default;
};
#endif

template <class T>
using OptionalBase = typename ::std::conditional<::std::is_trivially_destructible<T>::value,
    constexpr_optional_base<typename ::std::remove_const<T>::type>,
    optional_base<typename ::std::remove_const<T>::type>>::type;

template <class T>
class optional : private OptionalBase<T> {
    static_assert(!::std::is_same<typename ::std::decay<T>::type, nullopt_t>::value, "bad T");
    static_assert(!::std::is_same<typename ::std::decay<T>::type, in_place_t>::value, "bad T");

    constexpr bool initialized() const noexcept
    {
        return OptionalBase<T>::init_;
    }
    typename ::std::remove_const<T>::type* dataptr()
    {
        return ::std::addressof(OptionalBase<T>::storage());
    }
    constexpr const T* dataptr() const
    {
        return detail_::static_addressof(OptionalBase<T>::storage());
    }

#if OPTIONAL_HAS_THIS_RVALUE_REFS == 1
    constexpr const T& contained_val() const&
    {
        return OptionalBase<T>::storage();
    }
#if OPTIONAL_HAS_MOVE_ACCESSORS == 1
    OPTIONAL_MUTABLE_CONSTEXPR T&& contained_val() &&
    {
        return ::std::move(OptionalBase<T>::storage());
    }
    OPTIONAL_MUTABLE_CONSTEXPR T& contained_val() &
    {
        return OptionalBase<T>::storage();
    }
#else
    T& contained_val() &
    {
        return OptionalBase<T>::storage();
    }
    T&& contained_val() &&
    {
        return ::std::move(OptionalBase<T>::storage());
    }
#endif
#else
    constexpr const T& contained_val() const
    {
        return OptionalBase<T>::storage();
    }
    T& contained_val()
    {
        return OptionalBase<T>::storage();
    }
#endif

    void clear() noexcept
    {
        if (initialized())
            dataptr()->T::~T();
        OptionalBase<T>::init_ = false;
    }

    template <class... Args>
    void initialize(Args&&... args) noexcept(noexcept(T(::std::forward<Args>(args)...)))
    {
        assert(!OptionalBase<T>::init_);
        ::new (static_cast<void*>(dataptr())) T(::std::forward<Args>(args)...);
        OptionalBase<T>::init_ = true;
    }

    template <class U, class... Args>
    void initialize(::std::initializer_list<U> il, Args&&... args) noexcept(noexcept(T(il, ::std::forward<Args>(args)...)))
    {
        assert(!OptionalBase<T>::init_);
        ::new (static_cast<void*>(dataptr())) T(il, ::std::forward<Args>(args)...);
        OptionalBase<T>::init_ = true;
    }

public:
    typedef T value_type;

    // 20.5.5.1, constructors
    constexpr optional() noexcept
        : OptionalBase<T>(){};
    constexpr optional(nullopt_t) noexcept
        : OptionalBase<T>(){};

    optional(const optional& rhs)
        : OptionalBase<T>()
    {
        if (rhs.initialized()) {
            ::new (static_cast<void*>(dataptr())) T(*rhs);
            OptionalBase<T>::init_ = true;
        }
    }

    optional(const optional<T&>& rhs)
        : optional()
    {
        if (rhs) {
            ::new (static_cast<void*>(dataptr())) T(*rhs);
            OptionalBase<T>::init_ = true;
        }
    }

    optional(optional&& rhs) noexcept(::std::is_nothrow_move_constructible<T>::value)
        : OptionalBase<T>()
    {
        if (rhs.initialized()) {
            ::new (static_cast<void*>(dataptr())) T(::std::move(*rhs));
            OptionalBase<T>::init_ = true;
        }
    }

    constexpr optional(const T& v)
        : OptionalBase<T>(v)
    {
    }

    constexpr optional(T&& v)
        : OptionalBase<T>(constexpr_move(v))
    {
    }

    template <class... Args>
    explicit constexpr optional(in_place_t, Args&&... args)
        : OptionalBase<T>(in_place, constexpr_forward<Args>(args)...)
    {
    }

    template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)>
    OPTIONAL_CONSTEXPR_INIT_LIST explicit optional(in_place_t, ::std::initializer_list<U> il, Args&&... args)
        : OptionalBase<T>(in_place, il, constexpr_forward<Args>(args)...)
    {
    }

    // 20.5.4.2, Destructor
    ~optional() = default;

    // 20.5.4.3, assignment
    optional& operator=(nullopt_t) noexcept
    {
        clear();
        return *this;
    }

    optional& operator=(const optional& rhs)
    {
        if (initialized() == true && rhs.initialized() == false)
            clear();
        else if (initialized() == false && rhs.initialized() == true)
            initialize(*rhs);
        else if (initialized() == true && rhs.initialized() == true)
            contained_val() = *rhs;
        return *this;
    }

    optional& operator=(optional&& rhs) noexcept(::std::is_nothrow_move_assignable<T>::value&& ::std::is_nothrow_move_constructible<T>::value)
    {
        if (initialized() == true && rhs.initialized() == false)
            clear();
        else if (initialized() == false && rhs.initialized() == true)
            initialize(::std::move(*rhs));
        else if (initialized() == true && rhs.initialized() == true)
            contained_val() = ::std::move(*rhs);
        return *this;
    }

    template <class U>
    auto operator=(U&& v)
        -> typename ::std::enable_if<::std::is_same<typename ::std::decay<U>::type, T>::value,
            optional&>::type
    {
        if (initialized()) {
            contained_val() = ::std::forward<U>(v);
        }
        else {
            initialize(::std::forward<U>(v));
        }
        return *this;
    }

    template <class... Args>
    void emplace(Args&&... args)
    {
        clear();
        initialize(::std::forward<Args>(args)...);
    }

    template <class U, class... Args>
    void emplace(::std::initializer_list<U> il, Args&&... args)
    {
        clear();
        initialize<U, Args...>(il, ::std::forward<Args>(args)...);
    }

    // 20.5.4.4, Swap
    void swap(optional<T>& rhs) noexcept(::std::is_nothrow_move_constructible<T>::value&& noexcept(swap(::std::declval<T&>(), ::std::declval<T&>())))
    {
        if (initialized() == true && rhs.initialized() == false) {
            rhs.initialize(::std::move(**this));
            clear();
        }
        else if (initialized() == false && rhs.initialized() == true) {
            initialize(::std::move(*rhs));
            rhs.clear();
        }
        else if (initialized() == true && rhs.initialized() == true) {
            using ::std::swap;
            swap(**this, *rhs);
        }
    }

    // 20.5.4.5, Observers

    explicit constexpr operator bool() const noexcept
    {
        return initialized();
    }

    constexpr T const* operator->() const
    {
        return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), dataptr());
    }

#if OPTIONAL_HAS_MOVE_ACCESSORS == 1

    OPTIONAL_MUTABLE_CONSTEXPR T* operator->()
    {
        assert(initialized());
        return dataptr();
    }

    constexpr T const& operator*() const&
    {
        return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val());
    }

    OPTIONAL_MUTABLE_CONSTEXPR T& operator*() &
    {
        assert(initialized());
        return contained_val();
    }

    OPTIONAL_MUTABLE_CONSTEXPR T&& operator*() &&
    {
        assert(initialized());
        return constexpr_move(contained_val());
    }

    constexpr T const& value() const&
    {
        return initialized() ? contained_val()
#ifdef SOL_NO_EXCEPTIONS
                             // we can't abort here
                             // because there's no constexpr abort
                             : *(T*)nullptr;
#else
                             : (throw bad_optional_access("bad optional access"), contained_val());
#endif
    }

    OPTIONAL_MUTABLE_CONSTEXPR T& value() &
    {
        return initialized() ? contained_val()
#ifdef SOL_NO_EXCEPTIONS
                             : *(T*)nullptr;
#else
                             : (throw bad_optional_access("bad optional access"), contained_val());
#endif
    }

    OPTIONAL_MUTABLE_CONSTEXPR T&& value() &&
    {
        return initialized() ? contained_val()
#ifdef SOL_NO_EXCEPTIONS
                             // we can't abort here
                             // because there's no constexpr abort
                             : std::move(*(T*)nullptr);
#else
                             : (throw bad_optional_access("bad optional access"), contained_val());
#endif
    }

#else

    T* operator->()
    {
        assert(initialized());
        return dataptr();
    }

    constexpr T const& operator*() const
    {
        return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val());
    }

    T& operator*()
    {
        assert(initialized());
        return contained_val();
    }

    constexpr T const& value() const
    {
        return initialized() ? contained_val()
#ifdef SOL_NO_EXCEPTIONS
                             // we can't abort here
                             // because there's no constexpr abort
                             : *(T*)nullptr;
#else
                             : (throw bad_optional_access("bad optional access"), contained_val());
#endif
    }

    T& value()
    {
        return initialized() ? contained_val()
#ifdef SOL_NO_EXCEPTIONS
                             // we can abort here
                             // but the others are constexpr, so we can't...
                             : (std::abort(), *(T*)nullptr);
#else
                             : (throw bad_optional_access("bad optional access"), contained_val());
#endif
    }

#endif

#if OPTIONAL_HAS_THIS_RVALUE_REFS == 1

    template <class V>
    constexpr T value_or(V&& v) const&
    {
        return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v));
    }

#if OPTIONAL_HAS_MOVE_ACCESSORS == 1

    template <class V>
    OPTIONAL_MUTABLE_CONSTEXPR T value_or(V&& v) &&
    {
        return *this ? constexpr_move(const_cast<optional<T>&>(*this).contained_val()) : detail_::convert<T>(constexpr_forward<V>(v));
    }

#else

    template <class V>
    T value_or(V&& v) &&
    {
        return *this ? constexpr_move(const_cast<optional<T>&>(*this).contained_val()) : detail_::convert<T>(constexpr_forward<V>(v));
    }

#endif

#else

    template <class V>
    constexpr T value_or(V&& v) const
    {
        return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v));
    }

#endif
};

template <class T>
class optional<T&> {
    static_assert(!::std::is_same<T, nullopt_t>::value, "bad T");
    static_assert(!::std::is_same<T, in_place_t>::value, "bad T");
    T* ref;

public:
    // 20.5.5.1, construction/destruction
    constexpr optional() noexcept
        : ref(nullptr)
    {
    }

    constexpr optional(nullopt_t) noexcept
        : ref(nullptr)
    {
    }

    constexpr optional(T& v) noexcept
        : ref(detail_::static_addressof(v))
    {
    }

    optional(T&&) = delete;

    constexpr optional(const optional& rhs) noexcept
        : ref(rhs.ref)
    {
    }

    explicit constexpr optional(in_place_t, T& v) noexcept
        : ref(detail_::static_addressof(v))
    {
    }

    explicit optional(in_place_t, T&&) = delete;

    ~optional() = default;

    // 20.5.5.2, mutation
    optional& operator=(nullopt_t) noexcept
    {
        ref = nullptr;
        return *this;
    }

    // optional& operator=(const optional& rhs) noexcept {
    // ref = rhs.ref;
    // return *this;
    // }

    // optional& operator=(optional&& rhs) noexcept {
    // ref = rhs.ref;
    // return *this;
    // }

    template <typename U>
    auto operator=(U&& rhs) noexcept
        -> typename ::std::enable_if<::std::is_same<typename ::std::decay<U>::type, optional<T&>>::value,
            optional&>::type
    {
        ref = rhs.ref;
        return *this;
    }

    template <typename U>
    auto operator=(U&& rhs) noexcept
        -> typename ::std::enable_if<!::std::is_same<typename ::std::decay<U>::type, optional<T&>>::value,
            optional&>::type = delete;

    void emplace(T& v) noexcept
    {
        ref = detail_::static_addressof(v);
    }

    void emplace(T&&) = delete;

    void swap(optional<T&>& rhs) noexcept
    {
        ::std::swap(ref, rhs.ref);
    }

    // 20.5.5.3, observers
    constexpr T* operator->() const
    {
        return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, ref);
    }

    constexpr T& operator*() const
    {
        return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, *ref);
    }

    constexpr T& value() const
    {
#ifdef SOL_NO_EXCEPTIONS
        return *ref;
#else
        return ref ? *ref
                   : (throw bad_optional_access("bad optional access"), *ref);
#endif // Exceptions
    }

    explicit constexpr operator bool() const noexcept
    {
        return ref != nullptr;
    }

    template <typename V>
    constexpr T& value_or(V&& v) const
    {
        return *this ? **this : detail_::convert<T&>(constexpr_forward<V>(v));
    }
};

template <class T>
class optional<T&&> {
    static_assert(sizeof(T) == 0, "optional rvalue references disallowed");
};

// 20.5.8, Relational operators
template <class T>
constexpr bool operator==(const optional<T>& x, const optional<T>& y)
{
    return bool(x) != bool(y) ? false : bool(x) == false ? true : *x == *y;
}

template <class T>
constexpr bool operator!=(const optional<T>& x, const optional<T>& y)
{
    return !(x == y);
}

template <class T>
constexpr bool operator<(const optional<T>& x, const optional<T>& y)
{
    return (!y) ? false : (!x) ? true : *x < *y;
}

template <class T>
constexpr bool operator>(const optional<T>& x, const optional<T>& y)
{
    return (y < x);
}

template <class T>
constexpr bool operator<=(const optional<T>& x, const optional<T>& y)
{
    return !(y < x);
}

template <class T>
constexpr bool operator>=(const optional<T>& x, const optional<T>& y)
{
    return !(x < y);
}

// 20.5.9, Comparison with nullopt
template <class T>
constexpr bool operator==(const optional<T>& x, nullopt_t) noexcept
{
    return (!x);
}

template <class T>
constexpr bool operator==(nullopt_t, const optional<T>& x) noexcept
{
    return (!x);
}

template <class T>
constexpr bool operator!=(const optional<T>& x, nullopt_t) noexcept
{
    return bool(x);
}

template <class T>
constexpr bool operator!=(nullopt_t, const optional<T>& x) noexcept
{
    return bool(x);
}

template <class T>
constexpr bool operator<(const optional<T>&, nullopt_t) noexcept
{
    return false;
}

template <class T>
constexpr bool operator<(nullopt_t, const optional<T>& x) noexcept
{
    return bool(x);
}

template <class T>
constexpr bool operator<=(const optional<T>& x, nullopt_t) noexcept
{
    return (!x);
}

template <class T>
constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept
{
    return true;
}

template <class T>
constexpr bool operator>(const optional<T>& x, nullopt_t) noexcept
{
    return bool(x);
}

template <class T>
constexpr bool operator>(nullopt_t, const optional<T>&) noexcept
{
    return false;
}

template <class T>
constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept
{
    return true;
}

template <class T>
constexpr bool operator>=(nullopt_t, const optional<T>& x) noexcept
{
    return (!x);
}

// 20.5.10, Comparison with T
template <class T>
constexpr bool operator==(const optional<T>& x, const T& v)
{
    return bool(x) ? *x == v : false;
}

template <class T>
constexpr bool operator==(const T& v, const optional<T>& x)
{
    return bool(x) ? v == *x : false;
}

template <class T>
constexpr bool operator!=(const optional<T>& x, const T& v)
{
    return bool(x) ? *x != v : true;
}

template <class T>
constexpr bool operator!=(const T& v, const optional<T>& x)
{
    return bool(x) ? v != *x : true;
}

template <class T>
constexpr bool operator<(const optional<T>& x, const T& v)
{
    return bool(x) ? *x < v : true;
}

template <class T>
constexpr bool operator>(const T& v, const optional<T>& x)
{
    return bool(x) ? v > *x : true;
}

template <class T>
constexpr bool operator>(const optional<T>& x, const T& v)
{
    return bool(x) ? *x > v : false;
}

template <class T>
constexpr bool operator<(const T& v, const optional<T>& x)
{
    return bool(x) ? v < *x : false;
}

template <class T>
constexpr bool operator>=(const optional<T>& x, const T& v)
{
    return bool(x) ? *x >= v : false;
}

template <class T>
constexpr bool operator<=(const T& v, const optional<T>& x)
{
    return bool(x) ? v <= *x : false;
}

template <class T>
constexpr bool operator<=(const optional<T>& x, const T& v)
{
    return bool(x) ? *x <= v : true;
}

template <class T>
constexpr bool operator>=(const T& v, const optional<T>& x)
{
    return bool(x) ? v >= *x : true;
}

// Comparison of optional<T&> with T
template <class T>
constexpr bool operator==(const optional<T&>& x, const T& v)
{
    return bool(x) ? *x == v : false;
}

template <class T>
constexpr bool operator==(const T& v, const optional<T&>& x)
{
    return bool(x) ? v == *x : false;
}

template <class T>
constexpr bool operator!=(const optional<T&>& x, const T& v)
{
    return bool(x) ? *x != v : true;
}

template <class T>
constexpr bool operator!=(const T& v, const optional<T&>& x)
{
    return bool(x) ? v != *x : true;
}

template <class T>
constexpr bool operator<(const optional<T&>& x, const T& v)
{
    return bool(x) ? *x < v : true;
}

template <class T>
constexpr bool operator>(const T& v, const optional<T&>& x)
{
    return bool(x) ? v > *x : true;
}

template <class T>
constexpr bool operator>(const optional<T&>& x, const T& v)
{
    return bool(x) ? *x > v : false;
}

template <class T>
constexpr bool operator<(const T& v, const optional<T&>& x)
{
    return bool(x) ? v < *x : false;
}

template <class T>
constexpr bool operator>=(const optional<T&>& x, const T& v)
{
    return bool(x) ? *x >= v : false;
}

template <class T>
constexpr bool operator<=(const T& v, const optional<T&>& x)
{
    return bool(x) ? v <= *x : false;
}

template <class T>
constexpr bool operator<=(const optional<T&>& x, const T& v)
{
    return bool(x) ? *x <= v : true;
}

template <class T>
constexpr bool operator>=(const T& v, const optional<T&>& x)
{
    return bool(x) ? v >= *x : true;
}

// Comparison of optional<T const&> with T
template <class T>
constexpr bool operator==(const optional<const T&>& x, const T& v)
{
    return bool(x) ? *x == v : false;
}

template <class T>
constexpr bool operator==(const T& v, const optional<const T&>& x)
{
    return bool(x) ? v == *x : false;
}

template <class T>
constexpr bool operator!=(const optional<const T&>& x, const T& v)
{
    return bool(x) ? *x != v : true;
}

template <class T>
constexpr bool operator!=(const T& v, const optional<const T&>& x)
{
    return bool(x) ? v != *x : true;
}

template <class T>
constexpr bool operator<(const optional<const T&>& x, const T& v)
{
    return bool(x) ? *x < v : true;
}

template <class T>
constexpr bool operator>(const T& v, const optional<const T&>& x)
{
    return bool(x) ? v > *x : true;
}

template <class T>
constexpr bool operator>(const optional<const T&>& x, const T& v)
{
    return bool(x) ? *x > v : false;
}

template <class T>
constexpr bool operator<(const T& v, const optional<const T&>& x)
{
    return bool(x) ? v < *x : false;
}

template <class T>
constexpr bool operator>=(const optional<const T&>& x, const T& v)
{
    return bool(x) ? *x >= v : false;
}

template <class T>
constexpr bool operator<=(const T& v, const optional<const T&>& x)
{
    return bool(x) ? v <= *x : false;
}

template <class T>
constexpr bool operator<=(const optional<const T&>& x, const T& v)
{
    return bool(x) ? *x <= v : true;
}

template <class T>
constexpr bool operator>=(const T& v, const optional<const T&>& x)
{
    return bool(x) ? v >= *x : true;
}

// 20.5.12, Specialized algorithms
template <class T>
void swap(optional<T>& x, optional<T>& y) noexcept(noexcept(x.swap(y)))
{
    x.swap(y);
}

template <class T>
constexpr optional<typename ::std::decay<T>::type> make_optional(T&& v)
{
    return optional<typename ::std::decay<T>::type>(constexpr_forward<T>(v));
}

template <class X>
constexpr optional<X&> make_optional(::std::reference_wrapper<X> v)
{
    return optional<X&>(v.get());
}

} // namespace sol

namespace std {
template <typename T>
struct hash<sol::optional<T>> {
    typedef typename hash<T>::result_type result_type;
    typedef sol::optional<T> argument_type;

    constexpr result_type operator()(argument_type const& arg) const
    {
        return arg ? ::std::hash<T>{}(*arg) : result_type{};
    }
};

template <typename T>
struct hash<sol::optional<T&>> {
    typedef typename hash<T>::result_type result_type;
    typedef sol::optional<T&> argument_type;

    constexpr result_type operator()(argument_type const& arg) const
    {
        return arg ? ::std::hash<T>{}(*arg) : result_type{};
    }
};
} // namespace std

#if defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___
#pragma warning(pop)
#endif

#undef TR2_OPTIONAL_REQUIRES
#undef TR2_OPTIONAL_ASSERTED_EXPRESSION

// end of sol/optional_implementation.hpp

#endif // Boost vs. Better optional

namespace sol {

#if defined(SOL_USE_BOOST)
template <typename T>
using optional = boost::optional<T>;
using nullopt_t = boost::none_t;
const nullopt_t nullopt = boost::none;
#endif // Boost vs. Better optional

namespace meta {
template <typename T>
struct is_optional : std::false_type {
};
template <typename T>
struct is_optional<optional<T>> : std::true_type {
};
} // namespace meta
} // namespace sol

// end of sol/optional.hpp

// beginning of sol/forward_detail.hpp

namespace sol {
namespace meta {
namespace meta_detail {
}
} // namespace meta::meta_detail

namespace stack {
namespace stack_detail {
template <typename T>
struct undefined_metatable;
}
} // namespace stack::stack_detail

namespace usertype_detail {
template <typename T, typename Regs, typename Fx>
void insert_default_registrations(Regs& l, int& index, Fx&& fx);

template <typename T, typename Regs, meta::enable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>> = meta::enabler>
void make_destructor(Regs& l, int& index);
template <typename T, typename Regs, meta::disable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>> = meta::enabler>
void make_destructor(Regs& l, int& index);
} // namespace usertype_detail
} // namespace sol

// end of sol/forward_detail.hpp

// beginning of sol/string_view.hpp

#ifdef SOL_CXX17_FEATURES
#endif // C++17 features

namespace sol {
#ifdef SOL_CXX17_FEATURES
typedef std::string_view string_view;
typedef std::wstring_view wstring_view;
typedef std::u16string_view u16string_view;
typedef std::u32string_view u32string_view;
#else
template <typename Char, typename Traits = std::char_traits<Char>>
struct basic_string_view {
    std::size_t s;
    const Char* p;

    basic_string_view(const std::string& r)
        : basic_string_view(r.data(), r.size())
    {
    }
    basic_string_view(const Char* ptr)
        : basic_string_view(ptr, Traits::length(ptr))
    {
    }
    basic_string_view(const Char* ptr, std::size_t sz)
        : s(sz)
        , p(ptr)
    {
    }

    static int compare(const Char* lhs_p, std::size_t lhs_sz, const Char* rhs_p, std::size_t rhs_sz)
    {
        int result = Traits::compare(lhs_p, rhs_p, lhs_sz < rhs_sz ? lhs_sz : rhs_sz);
        if (result != 0)
            return result;
        if (lhs_sz < rhs_sz)
            return -1;
        if (lhs_sz > rhs_sz)
            return 1;
        return 0;
    }

    const Char* begin() const
    {
        return p;
    }

    const Char* end() const
    {
        return p + s;
    }

    const Char* cbegin() const
    {
        return p;
    }

    const Char* cend() const
    {
        return p + s;
    }

    const Char* data() const
    {
        return p;
    }

    std::size_t size() const
    {
        return s;
    }

    std::size_t length() const
    {
        return size();
    }

    bool operator==(const basic_string_view& r) const
    {
        return compare(p, s, r.data(), r.size()) == 0;
    }

    bool operator==(const Char* r) const
    {
        return compare(r, std::char_traits<char>::length(r), p, s) == 0;
    }

    bool operator==(const std::basic_string<Char, Traits>& r) const
    {
        return compare(r.data(), r.size(), p, s) == 0;
    }

    bool operator!=(const basic_string_view& r) const
    {
        return !(*this == r);
    }

    bool operator!=(const char* r) const
    {
        return !(*this == r);
    }

    bool operator!=(const std::basic_string<Char, Traits>& r) const
    {
        return !(*this == r);
    }
};

using string_view = basic_string_view<char>;
using wstring_view = basic_string_view<wchar_t>;
using u16string_view = basic_string_view<char16_t>;
using u32string_view = basic_string_view<char32_t>;
#endif // C++17 Support
} // namespace sol

// end of sol/string_view.hpp

// beginning of sol/raii.hpp

namespace sol {
namespace detail {
struct default_construct {
    template <typename T, typename... Args>
    static void construct(T&& obj, Args&&... args)
    {
        std::allocator<meta::unqualified_t<T>> alloc{};
        alloc.construct(obj, std::forward<Args>(args)...);
    }

    template <typename T, typename... Args>
    void operator()(T&& obj, Args&&... args) const
    {
        construct(std::forward<T>(obj), std::forward<Args>(args)...);
    }
};

struct default_destruct {
    template <typename T>
    static void destroy(T&& obj)
    {
        std::allocator<meta::unqualified_t<T>> alloc{};
        alloc.destroy(obj);
    }

    template <typename T>
    void operator()(T&& obj) const
    {
        destroy(std::forward<T>(obj));
    }
};

struct deleter {
    template <typename T>
    void operator()(T* p) const
    {
        delete p;
    }
};

template <typename T, typename Dx, typename... Args>
inline std::unique_ptr<T, Dx> make_unique_deleter(Args&&... args)
{
    return std::unique_ptr<T, Dx>(new T(std::forward<Args>(args)...));
}

template <typename Tag, typename T>
struct tagged {
    T value;
    template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, tagged>> = meta::enabler>
    tagged(Arg&& arg, Args&&... args)
        : value(std::forward<Arg>(arg), std::forward<Args>(args)...)
    {
    }
};
} // namespace detail

template <typename... Args>
struct constructor_list {
};

template <typename... Args>
using constructors = constructor_list<Args...>;

const auto default_constructor = constructors<types<>>{};

struct no_construction {
};
const auto no_constructor = no_construction{};

struct call_construction {
};
const auto call_constructor = call_construction{};

template <typename... Functions>
struct constructor_wrapper {
    std::tuple<Functions...> functions;
    template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler>
    constructor_wrapper(Arg&& arg, Args&&... args)
        : functions(std::forward<Arg>(arg), std::forward<Args>(args)...)
    {
    }
};

template <typename... Functions>
inline auto initializers(Functions&&... functions)
{
    return constructor_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
}

template <typename... Functions>
struct factory_wrapper {
    std::tuple<Functions...> functions;
    template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, factory_wrapper>> = meta::enabler>
    factory_wrapper(Arg&& arg, Args&&... args)
        : functions(std::forward<Arg>(arg), std::forward<Args>(args)...)
    {
    }
};

template <typename... Functions>
inline auto factories(Functions&&... functions)
{
    return factory_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...);
}

template <typename Function>
struct destructor_wrapper {
    Function fx;
    destructor_wrapper(Function f)
        : fx(std::move(f))
    {
    }
};

template <>
struct destructor_wrapper<void> {
};

const destructor_wrapper<void> default_destructor{};

template <typename Fx>
inline auto destructor(Fx&& fx)
{
    return destructor_wrapper<std::decay_t<Fx>>(std::forward<Fx>(fx));
}

} // namespace sol

// end of sol/raii.hpp

// beginning of sol/filters.hpp

#include <array>

namespace sol {
namespace detail {
struct filter_base_tag {
};
} // namespace detail

template <int Target, int... In>
struct static_stack_dependencies : detail::filter_base_tag {
};
typedef static_stack_dependencies<-1, 1> self_dependency;
template <int... In>
struct returns_self_with : detail::filter_base_tag {
};
typedef returns_self_with<> returns_self;

struct stack_dependencies : detail::filter_base_tag {
    int target;
    std::array<int, 64> stack_indices;
    std::size_t len;

    template <typename... Args>
    stack_dependencies(int stack_target, Args&&... args)
        : target(stack_target)
        , stack_indices()
        , len(sizeof...(Args))
    {
        std::size_t i = 0;
        (void)detail::swallow{ int(), (stack_indices[i++] = static_cast<int>(std::forward<Args>(args)), int())... };
    }

    int& operator[](std::size_t i)
    {
        return stack_indices[i];
    }

    const int& operator[](std::size_t i) const
    {
        return stack_indices[i];
    }

    std::size_t size() const
    {
        return len;
    }
};

template <typename F, typename... Filters>
struct filter_wrapper {
    typedef std::index_sequence_for<Filters...> indices;

    F value;
    std::tuple<Filters...> filters;

    template <typename Fx, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Fx>, filter_wrapper>>> = meta::enabler>
    filter_wrapper(Fx&& fx, Args&&... args)
        : value(std::forward<Fx>(fx))
        , filters(std::forward<Args>(args)...)
    {
    }

    filter_wrapper(const filter_wrapper&) = default;
    filter_wrapper& operator=(const filter_wrapper&) = default;
    filter_wrapper(filter_wrapper&&) = default;
    filter_wrapper& operator=(filter_wrapper&&) = default;
};

template <typename F, typename... Args>
auto filters(F&& f, Args&&... args)
{
    return filter_wrapper<std::decay_t<F>, std::decay_t<Args>...>(std::forward<F>(f), std::forward<Args>(args)...);
}
} // namespace sol

// end of sol/filters.hpp

#ifdef SOL_CXX17_FEATURES
#include <variant>
#endif // C++17

namespace sol {
namespace detail {
#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
typedef int (*lua_CFunction_noexcept)(lua_State* L) noexcept;
#endif // noexcept function type for lua_CFunction

#ifdef SOL_NO_EXCEPTIONS
template <lua_CFunction f>
int static_trampoline(lua_State* L) noexcept
{
    return f(L);
}

#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
template <lua_CFunction_noexcept f>
int static_trampoline_noexcept(lua_State* L) noexcept
{
    return f(L);
}
#endif

template <typename Fx, typename... Args>
int trampoline(lua_State* L, Fx&& f, Args&&... args) noexcept
{
    return f(L, std::forward<Args>(args)...);
}

inline int c_trampoline(lua_State* L, lua_CFunction f) noexcept
{
    return trampoline(L, f);
}
#else
template <lua_CFunction f>
int static_trampoline(lua_State* L)
{
#if defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && !defined(SOL_LUAJIT)
    return f(L);

#else
    try {
        return f(L);
    }
    catch (const char* cs) {
        lua_pushstring(L, cs);
    }
    catch (const std::string& s) {
        lua_pushlstring(L, s.c_str(), s.size());
    }
    catch (const std::exception& e) {
        lua_pushstring(L, e.what());
    }
#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
    // LuaJIT cannot have the catchall when the safe propagation is on
    // but LuaJIT will swallow all C++ errors
    // if we don't at least catch std::exception ones
    catch (...) {
        lua_pushstring(L, "caught (...) exception");
    }
#endif // LuaJIT cannot have the catchall, but we must catch std::exceps for it
    return lua_error(L);
#endif // Safe exceptions
}

#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
#if 0 
		// impossible: g++/clang++ choke as they think this function is ambiguous:
		// to fix, wait for template <auto X> and then switch on no-exceptness of the function
		template <lua_CFunction_noexcept f>
		int static_trampoline(lua_State* L) noexcept {
			return f(L);
		}
#else
template <lua_CFunction_noexcept f>
int static_trampoline_noexcept(lua_State* L) noexcept
{
    return f(L);
}
#endif // impossible

#else
template <lua_CFunction f>
int static_trampoline_noexcept(lua_State* L) noexcept
{
    return f(L);
}
#endif // noexcept lua_CFunction type

template <typename Fx, typename... Args>
int trampoline(lua_State* L, Fx&& f, Args&&... args)
{
    if (meta::bind_traits<meta::unqualified_t<Fx>>::is_noexcept) {
        return f(L, std::forward<Args>(args)...);
    }
#if defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && !defined(SOL_LUAJIT)
    return f(L, std::forward<Args>(args)...);
#else
    try {
        return f(L, std::forward<Args>(args)...);
    }
    catch (const char* s) {
        lua_pushstring(L, s);
    }
    catch (const std::exception& e) {
        lua_pushstring(L, e.what());
    }
#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
    // LuaJIT cannot have the catchall when the safe propagation is on
    // but LuaJIT will swallow all C++ errors
    // if we don't at least catch std::exception ones
    catch (...) {
        lua_pushstring(L, "caught (...) exception");
    }
#endif
    return lua_error(L);
#endif
}

inline int c_trampoline(lua_State* L, lua_CFunction f)
{
    return trampoline(L, f);
}
#endif // Exceptions vs. No Exceptions

template <typename F, F fx>
inline int typed_static_trampoline_raw(std::true_type, lua_State* L)
{
    return static_trampoline_noexcept<fx>(L);
}

template <typename F, F fx>
inline int typed_static_trampoline_raw(std::false_type, lua_State* L)
{
    return static_trampoline<fx>(L);
}

template <typename F, F fx>
inline int typed_static_trampoline(lua_State* L)
{
    return typed_static_trampoline_raw<F, fx>(std::integral_constant<bool, meta::bind_traits<F>::is_noexcept>(), L);
}

template <typename T>
struct unique_usertype {
};

template <typename T>
struct implicit_wrapper {
    T& item;
    implicit_wrapper(T* item)
        : item(*item)
    {
    }
    implicit_wrapper(T& item)
        : item(item)
    {
    }
    operator T&()
    {
        return item;
    }
    operator T*()
    {
        return std::addressof(item);
    }
};

struct unchecked_t {
};
const unchecked_t unchecked = unchecked_t{};
} // namespace detail

struct lua_nil_t {
};
const lua_nil_t lua_nil{};
inline bool operator==(lua_nil_t, lua_nil_t)
{
    return true;
}
inline bool operator!=(lua_nil_t, lua_nil_t)
{
    return false;
}
typedef lua_nil_t nil_t;
#if !defined(SOL_NO_NIL)
const nil_t nil{};
#endif

struct metatable_t {
};
const metatable_t metatable_key = {};

struct env_t {
};
const env_t env_key = {};

struct no_metatable_t {
};
const no_metatable_t no_metatable = {};

typedef std::remove_pointer_t<lua_CFunction> lua_CFunction_ref;

template <typename T>
struct unique_usertype_traits {
    typedef T type;
    typedef T actual_type;
    static const bool value = false;

    template <typename U>
    static bool is_null(U&&)
    {
        return false;
    }

    template <typename U>
    static auto get(U&& value)
    {
        return std::addressof(detail::deref(value));
    }
};

template <typename T>
struct unique_usertype_traits<std::shared_ptr<T>> {
    typedef T type;
    typedef std::shared_ptr<T> actual_type;
    static const bool value = true;

    static bool is_null(const actual_type& p)
    {
        return p == nullptr;
    }

    static type* get(const actual_type& p)
    {
        return p.get();
    }
};

template <typename T, typename D>
struct unique_usertype_traits<std::unique_ptr<T, D>> {
    typedef T type;
    typedef std::unique_ptr<T, D> actual_type;
    static const bool value = true;

    static bool is_null(const actual_type& p)
    {
        return p == nullptr;
    }

    static type* get(const actual_type& p)
    {
        return p.get();
    }
};

template <typename T>
struct non_null {
};

template <typename... Args>
struct function_sig {
};

struct upvalue_index {
    int index;
    upvalue_index(int idx)
        : index(lua_upvalueindex(idx))
    {
    }

    operator int() const
    {
        return index;
    }
};

struct raw_index {
    int index;
    raw_index(int i)
        : index(i)
    {
    }

    operator int() const
    {
        return index;
    }
};

struct absolute_index {
    int index;
    absolute_index(lua_State* L, int idx)
        : index(lua_absindex(L, idx))
    {
    }

    operator int() const
    {
        return index;
    }
};

struct ref_index {
    int index;
    ref_index(int idx)
        : index(idx)
    {
    }

    operator int() const
    {
        return index;
    }
};

struct stack_count {
    int count;

    stack_count(int cnt)
        : count(cnt)
    {
    }
};

struct lightuserdata_value {
    void* value;
    lightuserdata_value(void* data)
        : value(data)
    {
    }
    operator void*() const
    {
        return value;
    }
};

struct userdata_value {
    void* value;
    userdata_value(void* data)
        : value(data)
    {
    }
    operator void*() const
    {
        return value;
    }
};

template <typename L>
struct light {
    L* value;

    light(L& x)
        : value(std::addressof(x))
    {
    }
    light(L* x)
        : value(x)
    {
    }
    light(void* x)
        : value(static_cast<L*>(x))
    {
    }
    operator L*() const
    {
        return value;
    }
    operator L&() const
    {
        return *value;
    }
};

template <typename T>
auto make_light(T& l)
{
    typedef meta::unwrapped_t<std::remove_pointer_t<std::remove_pointer_t<T>>> L;
    return light<L>(l);
}

template <typename U>
struct user {
    U value;

    user(U x)
        : value(std::forward<U>(x))
    {
    }
    operator std::add_pointer_t<std::remove_reference_t<U>>()
    {
        return std::addressof(value);
    }
    operator std::add_lvalue_reference_t<U>()
    {
        return value;
    }
    operator std::add_const_t<std::add_lvalue_reference_t<U>>&() const
    {
        return value;
    }
};

template <typename T>
auto make_user(T&& u)
{
    typedef meta::unwrapped_t<meta::unqualified_t<T>> U;
    return user<U>(std::forward<T>(u));
}

template <typename T>
struct metatable_registry_key {
    T key;

    metatable_registry_key(T key)
        : key(std::forward<T>(key))
    {
    }
};

template <typename T>
auto meta_registry_key(T&& key)
{
    typedef meta::unqualified_t<T> K;
    return metatable_registry_key<K>(std::forward<T>(key));
}

template <typename... Upvalues>
struct closure {
    lua_CFunction c_function;
    std::tuple<Upvalues...> upvalues;
    closure(lua_CFunction f, Upvalues... targetupvalues)
        : c_function(f)
        , upvalues(std::forward<Upvalues>(targetupvalues)...)
    {
    }
};

template <>
struct closure<> {
    lua_CFunction c_function;
    int upvalues;
    closure(lua_CFunction f, int upvalue_count = 0)
        : c_function(f)
        , upvalues(upvalue_count)
    {
    }
};

typedef closure<> c_closure;

template <typename... Args>
closure<Args...> make_closure(lua_CFunction f, Args&&... args)
{
    return closure<Args...>(f, std::forward<Args>(args)...);
}

template <typename Sig, typename... Ps>
struct function_arguments {
    std::tuple<Ps...> arguments;
    template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, function_arguments>> = meta::enabler>
    function_arguments(Arg&& arg, Args&&... args)
        : arguments(std::forward<Arg>(arg), std::forward<Args>(args)...)
    {
    }
};

template <typename Sig = function_sig<>, typename... Args>
auto as_function(Args&&... args)
{
    return function_arguments<Sig, std::decay_t<Args>...>(std::forward<Args>(args)...);
}

template <typename Sig = function_sig<>, typename... Args>
auto as_function_reference(Args&&... args)
{
    return function_arguments<Sig, Args...>(std::forward<Args>(args)...);
}

template <typename T>
struct as_table_t {
    T source;

    as_table_t() = default;
    as_table_t(const as_table_t&) = default;
    as_table_t(as_table_t&&) = default;
    as_table_t& operator=(const as_table_t&) = default;
    as_table_t& operator=(as_table_t&&) = default;
    template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_table_t>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
    as_table_t(Arg&& arg)
        : source(std::forward<Arg>(arg))
    {
    }
    template <typename Arg0, typename Arg1, typename... Args>
    as_table_t(Arg0&& arg0, Arg1&& arg1, Args&&... args)
        : source(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...)
    {
    }

    operator std::add_lvalue_reference_t<T>()
    {
        return source;
    }
};

template <typename T>
struct nested {
    T source;

    nested() = default;
    nested(const nested&) = default;
    nested(nested&&) = default;
    nested& operator=(const nested&) = default;
    nested& operator=(nested&&) = default;
    template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, nested>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler>
    nested(Arg&& arg)
        : source(std::forward<Arg>(arg))
    {
    }
    template <typename Arg0, typename Arg1, typename... Args>
    nested(Arg0&& arg0, Arg1&& arg1, Args&&... args)
        : source(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...)
    {
    }

    operator std::add_lvalue_reference_t<T>()
    {
        return source;
    }
};

template <typename T>
as_table_t<T> as_table(T&& container)
{
    return as_table_t<T>(std::forward<T>(container));
}

template <typename T>
nested<T> as_nested(T&& container)
{
    return nested<T>(std::forward<T>(container));
}

struct this_state {
    lua_State* L;

    this_state(lua_State* Ls)
        : L(Ls)
    {
    }

    operator lua_State*() const noexcept
    {
        return lua_state();
    }

    lua_State* operator->() const noexcept
    {
        return lua_state();
    }

    lua_State* lua_state() const noexcept
    {
        return L;
    }
};

struct this_main_state {
    lua_State* L;

    this_main_state(lua_State* Ls)
        : L(Ls)
    {
    }

    operator lua_State*() const noexcept
    {
        return lua_state();
    }

    lua_State* operator->() const noexcept
    {
        return lua_state();
    }

    lua_State* lua_state() const noexcept
    {
        return L;
    }
};

struct new_table {
    int sequence_hint = 0;
    int map_hint = 0;

    new_table() = default;
    new_table(const new_table&) = default;
    new_table(new_table&&) = default;
    new_table& operator=(const new_table&) = default;
    new_table& operator=(new_table&&) = default;

    new_table(int sequence_hint, int map_hint = 0)
        : sequence_hint(sequence_hint)
        , map_hint(map_hint)
    {
    }
};

enum class call_syntax {
    dot = 0,
    colon = 1
};

enum class load_mode {
    any = 0,
    text = 1,
    binary = 2,
};

enum class call_status : int {
    ok = LUA_OK,
    yielded = LUA_YIELD,
    runtime = LUA_ERRRUN,
    memory = LUA_ERRMEM,
    handler = LUA_ERRERR,
    gc = LUA_ERRGCMM,
    syntax = LUA_ERRSYNTAX,
    file = LUA_ERRFILE,
};

enum class thread_status : int {
    ok = LUA_OK,
    yielded = LUA_YIELD,
    runtime = LUA_ERRRUN,
    memory = LUA_ERRMEM,
    gc = LUA_ERRGCMM,
    handler = LUA_ERRERR,
    dead = -1,
};

enum class load_status : int {
    ok = LUA_OK,
    syntax = LUA_ERRSYNTAX,
    memory = LUA_ERRMEM,
    gc = LUA_ERRGCMM,
    file = LUA_ERRFILE,
};

enum class type : int {
    none = LUA_TNONE,
    lua_nil = LUA_TNIL,
#if !defined(SOL_NO_NIL)
    nil = lua_nil,
#endif // Objective C/C++ Keyword that's found in OSX SDK and OBJC -- check for all forms to protect
    string = LUA_TSTRING,
    number = LUA_TNUMBER,
    thread = LUA_TTHREAD,
    boolean = LUA_TBOOLEAN,
    function = LUA_TFUNCTION,
    userdata = LUA_TUSERDATA,
    lightuserdata = LUA_TLIGHTUSERDATA,
    table = LUA_TTABLE,
    poly = none | lua_nil | string | number | thread | table | boolean | function | userdata | lightuserdata
};

inline const std::string& to_string(call_status c)
{
    static const std::array<std::string, 8> names{ {
        "ok",
        "yielded",
        "runtime",
        "memory",
        "handler",
        "gc",
        "syntax",
        "file",
    } };
    switch (c) {
    case call_status::ok:
        return names[0];
    case call_status::yielded:
        return names[1];
    case call_status::runtime:
        return names[2];
    case call_status::memory:
        return names[3];
    case call_status::handler:
        return names[4];
    case call_status::gc:
        return names[5];
    case call_status::syntax:
        return names[6];
    case call_status::file:
        return names[7];
    }
    return names[0];
}

inline const std::string& to_string(load_status c)
{
    static const std::array<std::string, 8> names{ {
        "ok",
        "memory",
        "gc",
        "syntax",
        "file",
    } };
    switch (c) {
    case load_status::ok:
        return names[0];
    case load_status::memory:
        return names[1];
    case load_status::gc:
        return names[2];
    case load_status::syntax:
        return names[3];
    case load_status::file:
        return names[4];
    }
    return names[0];
}

inline const std::string& to_string(load_mode c)
{
    static const std::array<std::string, 3> names{ {
        "bt",
        "t",
        "b",
    } };
    return names[static_cast<std::size_t>(c)];
}

enum class meta_function {
    construct,
    index,
    new_index,
    mode,
    call,
    call_function = call,
    metatable,
    to_string,
    length,
    unary_minus,
    addition,
    subtraction,
    multiplication,
    division,
    modulus,
    power_of,
    involution = power_of,
    concatenation,
    equal_to,
    less_than,
    less_than_or_equal_to,
    garbage_collect,
    floor_division,
    bitwise_left_shift,
    bitwise_right_shift,
    bitwise_not,
    bitwise_and,
    bitwise_or,
    bitwise_xor,
    pairs,
    ipairs,
    next,
    type,
    type_info,
};

typedef meta_function meta_method;

inline const std::array<std::string, 32>& meta_function_names()
{
    static const std::array<std::string, 32> names = { { "new",
        "__index",
        "__newindex",
        "__mode",
        "__call",
        "__mt",
        "__tostring",
        "__len",
        "__unm",
        "__add",
        "__sub",
        "__mul",
        "__div",
        "__mod",
        "__pow",
        "__concat",
        "__eq",
        "__lt",
        "__le",
        "__gc",

        "__idiv",
        "__shl",
        "__shr",
        "__bnot",
        "__band",
        "__bor",
        "__bxor",

        "__pairs",
        "__ipairs",
        "__next",
        "__type",
        "__typeinfo" } };
    return names;
}

inline const std::string& to_string(meta_function mf)
{
    return meta_function_names()[static_cast<int>(mf)];
}

inline type type_of(lua_State* L, int index)
{
    return static_cast<type>(lua_type(L, index));
}

inline std::string type_name(lua_State* L, type t)
{
    return lua_typename(L, static_cast<int>(t));
}

namespace detail {
template <typename T>
struct is_initializer_list : std::false_type {
};

template <typename T>
struct is_initializer_list<std::initializer_list<T>> : std::true_type {
};

template <typename T, typename C = void>
struct is_container : std::false_type {
};

template <typename T>
struct is_container<std::initializer_list<T>> : std::false_type {
};

template <>
struct is_container<std::string> : std::false_type {
};

template <>
struct is_container<std::wstring> : std::false_type {
};

template <>
struct is_container<std::u16string> : std::false_type {
};

template <>
struct is_container<std::u32string> : std::false_type {
};

#ifdef SOL_CXX17_FEATURES
template <>
struct is_container<std::string_view> : std::false_type {
};

template <>
struct is_container<std::wstring_view> : std::false_type {
};

template <>
struct is_container<std::u16string_view> : std::false_type {
};

template <>
struct is_container<std::u32string_view> : std::false_type {
};
#endif // C++ 17

template <typename T>
struct is_container<T,
    std::enable_if_t<meta::has_begin_end<meta::unqualified_t<T>>::value && !is_initializer_list<meta::unqualified_t<T>>::value>> : std::true_type {
};

template <typename T>
struct is_container<T, std::enable_if_t<std::is_array<meta::unqualified_t<T>>::value && !meta::any_same<std::remove_all_extents_t<meta::unqualified_t<T>>, char, wchar_t, char16_t, char32_t>::value>> : std::true_type {
};
} // namespace detail

template <typename T>
struct is_container : detail::is_container<T> {
};

template <typename T>
struct is_to_stringable : meta::any<meta::supports_to_string_member<meta::unqualified_t<T>>, meta::supports_adl_to_string<meta::unqualified_t<T>>, meta::supports_ostream_op<meta::unqualified_t<T>>> {
};

namespace detail {
template <typename T, typename = void>
struct lua_type_of : std::integral_constant<type, type::userdata> {
};

template <>
struct lua_type_of<std::string> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<std::wstring> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<std::u16string> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<std::u32string> : std::integral_constant<type, type::string> {
};

template <std::size_t N>
struct lua_type_of<char[N]> : std::integral_constant<type, type::string> {
};

template <std::size_t N>
struct lua_type_of<wchar_t[N]> : std::integral_constant<type, type::string> {
};

template <std::size_t N>
struct lua_type_of<char16_t[N]> : std::integral_constant<type, type::string> {
};

template <std::size_t N>
struct lua_type_of<char32_t[N]> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<char> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<wchar_t> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<char16_t> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<char32_t> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<const char*> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<const char16_t*> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<const char32_t*> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<bool> : std::integral_constant<type, type::boolean> {
};

template <>
struct lua_type_of<lua_nil_t> : std::integral_constant<type, type::lua_nil> {
};

template <>
struct lua_type_of<nullopt_t> : std::integral_constant<type, type::lua_nil> {
};

template <>
struct lua_type_of<std::nullptr_t> : std::integral_constant<type, type::lua_nil> {
};

template <>
struct lua_type_of<error> : std::integral_constant<type, type::string> {
};

template <bool b, typename Base>
struct lua_type_of<basic_table_core<b, Base>> : std::integral_constant<type, type::table> {
};

template <>
struct lua_type_of<metatable_t> : std::integral_constant<type, type::table> {
};

template <typename B>
struct lua_type_of<basic_environment<B>> : std::integral_constant<type, type::poly> {
};

template <>
struct lua_type_of<env_t> : std::integral_constant<type, type::poly> {
};

template <>
struct lua_type_of<new_table> : std::integral_constant<type, type::table> {
};

template <typename T>
struct lua_type_of<as_table_t<T>> : std::integral_constant<type, type::table> {
};

template <typename T>
struct lua_type_of<std::initializer_list<T>> : std::integral_constant<type, type::table> {
};

template <bool b>
struct lua_type_of<basic_reference<b>> : std::integral_constant<type, type::poly> {
};

template <>
struct lua_type_of<stack_reference> : std::integral_constant<type, type::poly> {
};

template <typename Base>
struct lua_type_of<basic_object<Base>> : std::integral_constant<type, type::poly> {
};

template <typename... Args>
struct lua_type_of<std::tuple<Args...>> : std::integral_constant<type, type::poly> {
};

template <typename A, typename B>
struct lua_type_of<std::pair<A, B>> : std::integral_constant<type, type::poly> {
};

template <>
struct lua_type_of<void*> : std::integral_constant<type, type::lightuserdata> {
};

template <>
struct lua_type_of<lightuserdata_value> : std::integral_constant<type, type::lightuserdata> {
};

template <>
struct lua_type_of<userdata_value> : std::integral_constant<type, type::userdata> {
};

template <typename T>
struct lua_type_of<light<T>> : std::integral_constant<type, type::lightuserdata> {
};

template <typename T>
struct lua_type_of<user<T>> : std::integral_constant<type, type::userdata> {
};

template <typename Base>
struct lua_type_of<basic_lightuserdata<Base>> : std::integral_constant<type, type::lightuserdata> {
};

template <typename Base>
struct lua_type_of<basic_userdata<Base>> : std::integral_constant<type, type::userdata> {
};

template <>
struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> {
};

template <>
struct lua_type_of<std::remove_pointer_t<lua_CFunction>> : std::integral_constant<type, type::function> {
};

template <typename Base, bool aligned>
struct lua_type_of<basic_function<Base, aligned>> : std::integral_constant<type, type::function> {
};

template <typename Base, bool aligned, typename Handler>
struct lua_type_of<basic_protected_function<Base, aligned, Handler>> : std::integral_constant<type, type::function> {
};

template <typename Base>
struct lua_type_of<basic_coroutine<Base>> : std::integral_constant<type, type::function> {
};

template <typename Base>
struct lua_type_of<basic_thread<Base>> : std::integral_constant<type, type::thread> {
};

template <typename Signature>
struct lua_type_of<std::function<Signature>> : std::integral_constant<type, type::function> {
};

template <typename T>
struct lua_type_of<optional<T>> : std::integral_constant<type, type::poly> {
};

template <>
struct lua_type_of<variadic_args> : std::integral_constant<type, type::poly> {
};

template <>
struct lua_type_of<variadic_results> : std::integral_constant<type, type::poly> {
};

template <>
struct lua_type_of<stack_count> : std::integral_constant<type, type::poly> {
};

template <>
struct lua_type_of<this_state> : std::integral_constant<type, type::poly> {
};

template <>
struct lua_type_of<this_main_state> : std::integral_constant<type, type::poly> {
};

template <>
struct lua_type_of<this_environment> : std::integral_constant<type, type::poly> {
};

template <>
struct lua_type_of<type> : std::integral_constant<type, type::poly> {
};

template <typename T>
struct lua_type_of<T*> : std::integral_constant<type, type::userdata> {
};

template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_arithmetic<T>::value>> : std::integral_constant<type, type::number> {
};

template <typename T>
struct lua_type_of<T, std::enable_if_t<std::is_enum<T>::value>> : std::integral_constant<type, type::number> {
};

template <>
struct lua_type_of<meta_function> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<string_view> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<wstring_view> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<u16string_view> : std::integral_constant<type, type::string> {
};

template <>
struct lua_type_of<u32string_view> : std::integral_constant<type, type::string> {
};

#ifdef SOL_CXX17_FEATURES
template <typename... Tn>
struct lua_type_of<std::variant<Tn...>> : std::integral_constant<type, type::poly> {
};
#endif // C++ 17 (or not) features

template <typename T>
struct lua_type_of<nested<T>, std::enable_if_t<::sol::is_container<T>::value>> : std::integral_constant<type, type::table> {
};

template <typename T>
struct lua_type_of<nested<T>, std::enable_if_t<!::sol::is_container<T>::value>> : lua_type_of<T> {
};

template <typename C, C v, template <typename...> class V, typename... Args>
struct accumulate : std::integral_constant<C, v> {
};

template <typename C, C v, template <typename...> class V, typename T, typename... Args>
struct accumulate<C, v, V, T, Args...> : accumulate<C, v + V<T>::value, V, Args...> {
};
} // namespace detail

template <typename T>
struct is_unique_usertype : std::integral_constant<bool, unique_usertype_traits<T>::value> {
};

template <typename T>
struct lua_type_of : detail::lua_type_of<T> {
    typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
};

template <typename T>
struct lua_size : std::integral_constant<int, 1> {
    typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_;
};

template <typename A, typename B>
struct lua_size<std::pair<A, B>> : std::integral_constant<int, lua_size<A>::value + lua_size<B>::value> {
};

template <typename... Args>
struct lua_size<std::tuple<Args...>> : std::integral_constant<int, detail::accumulate<int, 0, lua_size, Args...>::value> {
};

namespace detail {
template <typename...>
struct void_ {
    typedef void type;
};
template <typename T, typename = void>
struct has_internal_marker_impl : std::false_type {
};
template <typename T>
struct has_internal_marker_impl<T, typename void_<typename T::SOL_INTERNAL_UNSPECIALIZED_MARKER_>::type> : std::true_type {
};

template <typename T>
struct has_internal_marker : has_internal_marker_impl<T> {
};
} // namespace detail

template <typename T>
struct is_lua_primitive : std::integral_constant<bool,
                              type::userdata != lua_type_of<meta::unqualified_t<T>>::value
                                  || ((type::userdata == lua_type_of<meta::unqualified_t<T>>::value)
                                         && detail::has_internal_marker<lua_type_of<meta::unqualified_t<T>>>::value
                                         && !detail::has_internal_marker<lua_size<meta::unqualified_t<T>>>::value)
                                  || std::is_base_of<reference, meta::unqualified_t<T>>::value
                                  || std::is_base_of<main_reference, meta::unqualified_t<T>>::value
                                  || std::is_base_of<stack_reference, meta::unqualified_t<T>>::value
                                  || meta::is_specialization_of<std::tuple, meta::unqualified_t<T>>::value
                                  || meta::is_specialization_of<std::pair, meta::unqualified_t<T>>::value> {
};

template <typename T>
struct is_lua_reference : std::integral_constant<bool,
                              std::is_base_of<reference, meta::unqualified_t<T>>::value
                                  || std::is_base_of<main_reference, meta::unqualified_t<T>>::value
                                  || std::is_base_of<stack_reference, meta::unqualified_t<T>>::value> {
};

template <typename T>
struct is_lua_reference_or_proxy : std::integral_constant<bool,
                                       is_lua_reference<meta::unqualified_t<T>>::value
                                           || meta::is_specialization_of<proxy, meta::unqualified_t<T>>::value> {
};

template <typename T>
struct is_main_threaded : std::is_base_of<main_reference, T> {
};

template <typename T>
struct is_stack_based : std::is_base_of<stack_reference, T> {
};
template <>
struct is_stack_based<variadic_args> : std::true_type {
};
template <>
struct is_stack_based<unsafe_function_result> : std::true_type {
};
template <>
struct is_stack_based<protected_function_result> : std::true_type {
};
template <>
struct is_stack_based<stack_proxy> : std::true_type {
};
template <>
struct is_stack_based<stack_proxy_base> : std::true_type {
};

template <typename T>
struct is_lua_primitive<T*> : std::true_type {
};
template <>
struct is_lua_primitive<unsafe_function_result> : std::true_type {
};
template <>
struct is_lua_primitive<protected_function_result> : std::true_type {
};
template <typename T>
struct is_lua_primitive<std::reference_wrapper<T>> : std::true_type {
};
template <typename T>
struct is_lua_primitive<user<T>> : std::true_type {
};
template <typename T>
struct is_lua_primitive<light<T>> : is_lua_primitive<T*> {
};
template <typename T>
struct is_lua_primitive<optional<T>> : std::true_type {
};
template <typename T>
struct is_lua_primitive<as_table_t<T>> : std::true_type {
};
template <typename T>
struct is_lua_primitive<nested<T>> : std::true_type {
};
template <>
struct is_lua_primitive<userdata_value> : std::true_type {
};
template <>
struct is_lua_primitive<lightuserdata_value> : std::true_type {
};
template <typename T>
struct is_lua_primitive<non_null<T>> : is_lua_primitive<T*> {
};

template <typename T>
struct is_proxy_primitive : is_lua_primitive<T> {
};

template <typename T>
struct is_transparent_argument : std::false_type {
};
template <>
struct is_transparent_argument<this_state> : std::true_type {
};
template <>
struct is_transparent_argument<this_main_state> : std::true_type {
};
template <>
struct is_transparent_argument<this_environment> : std::true_type {
};
template <>
struct is_transparent_argument<variadic_args> : std::true_type {
};
template <typename T>
struct is_variadic_arguments : std::is_same<meta::unqualified_t<T>, variadic_args> {
};

template <typename T>
struct is_lua_index : std::is_integral<T> {
};
template <>
struct is_lua_index<raw_index> : std::true_type {
};
template <>
struct is_lua_index<absolute_index> : std::true_type {
};
template <>
struct is_lua_index<ref_index> : std::true_type {
};
template <>
struct is_lua_index<upvalue_index> : std::true_type {
};

template <typename Signature>
struct lua_bind_traits : meta::bind_traits<Signature> {
private:
    typedef meta::bind_traits<Signature> base_t;

public:
    typedef std::integral_constant<bool, meta::count_for<is_variadic_arguments, typename base_t::args_list>::value != 0> runtime_variadics_t;
    static const std::size_t true_arity = base_t::arity;
    static const std::size_t arity = base_t::arity - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
    static const std::size_t true_free_arity = base_t::free_arity;
    static const std::size_t free_arity = base_t::free_arity - meta::count_for<is_transparent_argument, typename base_t::args_list>::value;
};

template <typename T>
struct is_table : std::false_type {
};
template <bool x, typename T>
struct is_table<basic_table_core<x, T>> : std::true_type {
};

template <typename T>
struct is_function : std::false_type {
};
template <typename T, bool aligned>
struct is_function<basic_function<T, aligned>> : std::true_type {
};
template <typename T, bool aligned, typename Handler>
struct is_function<basic_protected_function<T, aligned, Handler>> : std::true_type {
};

template <typename T>
struct is_lightuserdata : std::false_type {
};
template <typename T>
struct is_lightuserdata<basic_lightuserdata<T>> : std::true_type {
};

template <typename T>
struct is_userdata : std::false_type {
};
template <typename T>
struct is_userdata<basic_userdata<T>> : std::true_type {
};

template <typename T>
struct is_environment : std::integral_constant<bool, is_userdata<T>::value || is_table<T>::value> {
};

template <typename T>
inline type type_of()
{
    return lua_type_of<meta::unqualified_t<T>>::value;
}

namespace detail {
template <typename T>
struct is_non_factory_constructor : std::false_type {
};

template <typename... Args>
struct is_non_factory_constructor<constructors<Args...>> : std::true_type {
};

template <typename... Args>
struct is_non_factory_constructor<constructor_wrapper<Args...>> : std::true_type {
};

template <>
struct is_non_factory_constructor<no_construction> : std::true_type {
};

template <typename T>
struct is_constructor : is_non_factory_constructor<T> {
};

template <typename... Args>
struct is_constructor<factory_wrapper<Args...>> : std::true_type {
};

template <typename T>
struct is_constructor<protect_t<T>> : is_constructor<meta::unqualified_t<T>> {
};

template <typename F, typename... Filters>
struct is_constructor<filter_wrapper<F, Filters...>> : is_constructor<meta::unqualified_t<F>> {
};

template <typename... Args>
using has_constructor = meta::any<is_constructor<meta::unqualified_t<Args>>...>;

template <typename T>
struct is_destructor : std::false_type {
};

template <typename Fx>
struct is_destructor<destructor_wrapper<Fx>> : std::true_type {
};

template <typename... Args>
using has_destructor = meta::any<is_destructor<meta::unqualified_t<Args>>...>;

struct add_destructor_tag {
};
struct check_destructor_tag {
};
struct verified_tag {
} const verified{};
} // namespace detail
} // namespace sol

// end of sol/types.hpp

// beginning of sol/error_handler.hpp

// beginning of sol/demangle.hpp

#include <cctype>
#if defined(__GNUC__) && defined(__MINGW32__) && (__GNUC__ < 6)
extern "C" {
}
#endif // MinGW is on some stuff
#include <locale>

namespace sol {
namespace detail {
#if defined(__GNUC__) || defined(__clang__)
template <typename T, class seperator_mark = int>
inline std::string ctti_get_type_name()
{
    // cardinal sins from MINGW
    using namespace std;
    const static std::array<std::string, 2> removals = { { "{anonymous}", "(anonymous namespace)" } };
    std::string name = __PRETTY_FUNCTION__;
    std::size_t start = name.find_first_of('[');
    start = name.find_first_of('=', start);
    std::size_t end = name.find_last_of(']');
    if (end == std::string::npos)
        end = name.size();
    if (start == std::string::npos)
        start = 0;
    if (start < name.size() - 1)
        start += 1;
    name = name.substr(start, end - start);
    start = name.rfind("seperator_mark");
    if (start != std::string::npos) {
        name.erase(start - 2, name.length());
    }
    while (!name.empty() && isblank(name.front()))
        name.erase(name.begin());
    while (!name.empty() && isblank(name.back()))
        name.pop_back();

    for (std::size_t r = 0; r < removals.size(); ++r) {
        auto found = name.find(removals[r]);
        while (found != std::string::npos) {
            name.erase(found, removals[r].size());
            found = name.find(removals[r]);
        }
    }

    return name;
}
#elif defined(_MSC_VER)
template <typename T>
inline std::string ctti_get_type_name()
{
    const static std::array<std::string, 7> removals = { { "public:", "private:", "protected:", "struct ", "class ", "`anonymous-namespace'", "`anonymous namespace'" } };
    std::string name = __FUNCSIG__;
    std::size_t start = name.find("get_type_name");
    if (start == std::string::npos)
        start = 0;
    else
        start += 13;
    if (start < name.size() - 1)
        start += 1;
    std::size_t end = name.find_last_of('>');
    if (end == std::string::npos)
        end = name.size();
    name = name.substr(start, end - start);
    if (name.find("struct", 0) == 0)
        name.replace(0, 6, "", 0);
    if (name.find("class", 0) == 0)
        name.replace(0, 5, "", 0);
    while (!name.empty() && isblank(name.front()))
        name.erase(name.begin());
    while (!name.empty() && isblank(name.back()))
        name.pop_back();

    for (std::size_t r = 0; r < removals.size(); ++r) {
        auto found = name.find(removals[r]);
        while (found != std::string::npos) {
            name.erase(found, removals[r].size());
            found = name.find(removals[r]);
        }
    }

    return name;
}
#else
#error Compiler not supported for demangling
#endif // compilers

template <typename T>
inline std::string demangle_once()
{
    std::string realname = ctti_get_type_name<T>();
    return realname;
}

template <typename T>
inline std::string short_demangle_once()
{
    std::string realname = ctti_get_type_name<T>();
    // This isn't the most complete but it'll do for now...?
    static const std::array<std::string, 10> ops = { { "operator<", "operator<<", "operator<<=", "operator<=", "operator>", "operator>>", "operator>>=", "operator>=", "operator->", "operator->*" } };
    int level = 0;
    std::ptrdiff_t idx = 0;
    for (idx = static_cast<std::ptrdiff_t>(realname.empty() ? 0 : realname.size() - 1); idx > 0; --idx) {
        if (level == 0 && realname[idx] == ':') {
            break;
        }
        bool isleft = realname[idx] == '<';
        bool isright = realname[idx] == '>';
        if (!isleft && !isright)
            continue;
        bool earlybreak = false;
        for (const auto& op : ops) {
            std::size_t nisop = realname.rfind(op, idx);
            if (nisop == std::string::npos)
                continue;
            std::size_t nisopidx = idx - op.size() + 1;
            if (nisop == nisopidx) {
                idx = static_cast<std::ptrdiff_t>(nisopidx);
                earlybreak = true;
            }
            break;
        }
        if (earlybreak) {
            continue;
        }
        level += isleft ? -1 : 1;
    }
    if (idx > 0) {
        realname.erase(0, realname.length() < static_cast<std::size_t>(idx) ? realname.length() : idx + 1);
    }
    return realname;
}

template <typename T>
inline const std::string& demangle()
{
    static const std::string d = demangle_once<T>();
    return d;
}

template <typename T>
inline const std::string& short_demangle()
{
    static const std::string d = short_demangle_once<T>();
    return d;
}
}
} // namespace sol::detail

// end of sol/demangle.hpp

namespace sol {

inline std::string associated_type_name(lua_State* L, int index, type t)
{
    switch (t) {
    case type::poly:
        return "anything";
    case type::userdata: {
        if (lua_getmetatable(L, index) == 0) {
            break;
        }
        lua_pushlstring(L, "__name", 6);
        lua_rawget(L, -2);
        size_t sz;
        const char* name = lua_tolstring(L, -1, &sz);
        std::string tn(name, static_cast<std::string::size_type>(sz));
        lua_pop(L, 2);
        return name;
    }
    default:
        break;
    }
    return lua_typename(L, static_cast<int>(t));
}

inline int type_panic_string(lua_State* L, int index, type expected, type actual, const std::string& message = "") noexcept(false)
{
    const char* err = message.empty() ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s";
    std::string actualname = associated_type_name(L, index, actual);
    return luaL_error(L, err, index,
        expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)),
        actualname.c_str(),
        message.c_str());
}

inline int type_panic_c_str(lua_State* L, int index, type expected, type actual, const char* message = nullptr) noexcept(false)
{
    const char* err = message == nullptr || (std::char_traits<char>::length(message) == 0) ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s";
    std::string actualname = associated_type_name(L, index, actual);
    return luaL_error(L, err, index,
        expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)),
        actualname.c_str(),
        message);
}

struct type_panic_t {
    int operator()(lua_State* L, int index, type expected, type actual) const noexcept(false)
    {
        return type_panic_c_str(L, index, expected, actual, nullptr);
    }
    int operator()(lua_State* L, int index, type expected, type actual, const char* message) const noexcept(false)
    {
        return type_panic_c_str(L, index, expected, actual, message);
    }
    int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false)
    {
        return type_panic_string(L, index, expected, actual, message);
    }
};

const type_panic_t type_panic = {};

struct constructor_handler {
    int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false)
    {
        return type_panic_string(L, index, expected, actual, message + " (type check failed in constructor)");
    }
};

template <typename F = void>
struct argument_handler {
    int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false)
    {
        return type_panic_string(L, index, expected, actual, message + " (bad argument to variable or function call)");
    }
};

template <typename R, typename... Args>
struct argument_handler<types<R, Args...>> {
    int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false)
    {
        std::string addendum = " (bad argument into '";
        addendum += detail::demangle<R>();
        addendum += "(";
        int marker = 0;
        auto action = [&addendum, &marker](const std::string& n) {
            if (marker > 0) {
                addendum += ", ";
            }
            addendum += n;
            ++marker;
        };
        (void)detail::swallow{ int(), (action(detail::demangle<Args>()), int())... };
        addendum += ")')";
        return type_panic_string(L, index, expected, actual, message + addendum);
    }
};

// Specify this function as the handler for lua::check if you know there's nothing wrong
inline int no_panic(lua_State*, int, type, type, const char* = nullptr) noexcept
{
    return 0;
}

inline void type_error(lua_State* L, int expected, int actual) noexcept(false)
{
    luaL_error(L, "expected %s, received %s", lua_typename(L, expected), lua_typename(L, actual));
}

inline void type_error(lua_State* L, type expected, type actual) noexcept(false)
{
    type_error(L, static_cast<int>(expected), static_cast<int>(actual));
}

inline void type_assert(lua_State* L, int index, type expected, type actual) noexcept(false)
{
    if (expected != type::poly && expected != actual) {
        type_panic_c_str(L, index, expected, actual, nullptr);
    }
}

inline void type_assert(lua_State* L, int index, type expected)
{
    type actual = type_of(L, index);
    type_assert(L, index, expected, actual);
}

} // namespace sol

// end of sol/error_handler.hpp

// beginning of sol/reference.hpp

// beginning of sol/stack_reference.hpp

namespace sol {
namespace detail {
inline bool xmovable(lua_State* leftL, lua_State* rightL)
{
    if (rightL == nullptr || leftL == nullptr || leftL == rightL) {
        return false;
    }
    const void* leftregistry = lua_topointer(leftL, LUA_REGISTRYINDEX);
    const void* rightregistry = lua_topointer(rightL, LUA_REGISTRYINDEX);
    return leftregistry == rightregistry;
}
} // namespace detail

class stack_reference {
private:
    lua_State* luastate = nullptr;
    int index = 0;

protected:
    int registry_index() const noexcept
    {
        return LUA_NOREF;
    }

public:
    stack_reference() noexcept = default;
    stack_reference(lua_nil_t) noexcept
        : stack_reference(){};
    stack_reference(lua_State* L, lua_nil_t) noexcept
        : luastate(L),
          index(0)
    {
    }
    stack_reference(lua_State* L, int i) noexcept
        : stack_reference(L, absolute_index(L, i))
    {
    }
    stack_reference(lua_State* L, absolute_index i) noexcept
        : luastate(L),
          index(i)
    {
    }
    stack_reference(lua_State* L, raw_index i) noexcept
        : luastate(L),
          index(i)
    {
    }
    stack_reference(lua_State* L, ref_index i) noexcept = delete;
    stack_reference(lua_State* L, const reference& r) noexcept = delete;
    stack_reference(lua_State* L, const stack_reference& r) noexcept
        : luastate(L)
    {
        if (!r.valid()) {
            index = 0;
            return;
        }
        int i = r.stack_index();
        if (detail::xmovable(lua_state(), r.lua_state())) {
            lua_pushvalue(r.lua_state(), r.index);
            lua_xmove(r.lua_state(), luastate, 1);
            i = absolute_index(luastate, -1);
        }
        index = i;
    }
    stack_reference(stack_reference&& o) noexcept = default;
    stack_reference& operator=(stack_reference&&) noexcept = default;
    stack_reference(const stack_reference&) noexcept = default;
    stack_reference& operator=(const stack_reference&) noexcept = default;

    int push() const noexcept
    {
        return push(lua_state());
    }

    int push(lua_State* Ls) const noexcept
    {
        if (lua_state() == nullptr) {
            lua_pushnil(Ls);
            return 1;
        }
        lua_pushvalue(lua_state(), index);
        if (Ls != lua_state()) {
            lua_xmove(lua_state(), Ls, 1);
        }
        return 1;
    }

    void pop() const noexcept
    {
        pop(lua_state());
    }

    void pop(lua_State* Ls, int n = 1) const noexcept
    {
        lua_pop(Ls, n);
    }

    int stack_index() const noexcept
    {
        return index;
    }

    type get_type() const noexcept
    {
        int result = lua_type(lua_state(), index);
        return static_cast<type>(result);
    }

    lua_State* lua_state() const noexcept
    {
        return luastate;
    }

    bool valid() const noexcept
    {
        type t = get_type();
        return t != type::lua_nil && t != type::none;
    }
};

inline bool operator==(const stack_reference& l, const stack_reference& r)
{
    return lua_compare(l.lua_state(), l.stack_index(), r.stack_index(), LUA_OPEQ) == 0;
}

inline bool operator!=(const stack_reference& l, const stack_reference& r)
{
    return !operator==(l, r);
}

inline bool operator==(const stack_reference& lhs, const lua_nil_t&)
{
    return !lhs.valid();
}

inline bool operator==(const lua_nil_t&, const stack_reference& rhs)
{
    return !rhs.valid();
}

inline bool operator!=(const stack_reference& lhs, const lua_nil_t&)
{
    return lhs.valid();
}

inline bool operator!=(const lua_nil_t&, const stack_reference& rhs)
{
    return rhs.valid();
}
} // namespace sol

// end of sol/stack_reference.hpp

namespace sol {
namespace detail {
inline const char (&default_main_thread_name())[9]
{
    static const char name[9] = "sol.\xF0\x9F\x93\x8C";
    return name;
}
} // namespace detail

namespace stack {
inline void remove(lua_State* L, int rawindex, int count)
{
    if (count < 1)
        return;
    int top = lua_gettop(L);
    if (rawindex == -count || top == rawindex) {
        // Slice them right off the top
        lua_pop(L, static_cast<int>(count));
        return;
    }

    // Remove each item one at a time using stack operations
    // Probably slower, maybe, haven't benchmarked,
    // but necessary
    int index = lua_absindex(L, rawindex);
    if (index < 0) {
        index = lua_gettop(L) + (index + 1);
    }
    int last = index + count;
    for (int i = index; i < last; ++i) {
        lua_remove(L, index);
    }
}

struct push_popper_at {
    lua_State* L;
    int index;
    int count;
    push_popper_at(lua_State* luastate, int index = -1, int count = 1)
        : L(luastate)
        , index(index)
        , count(count)
    {
    }
    ~push_popper_at()
    {
        remove(L, index, count);
    }
};

template <bool top_level>
struct push_popper_n {
    lua_State* L;
    int t;
    push_popper_n(lua_State* luastate, int x)
        : L(luastate)
        , t(x)
    {
    }
    push_popper_n(const push_popper_n&) = delete;
    push_popper_n(push_popper_n&&) = default;
    push_popper_n& operator=(const push_popper_n&) = delete;
    push_popper_n& operator=(push_popper_n&&) = default;
    ~push_popper_n()
    {
        lua_pop(L, t);
    }
};
template <>
struct push_popper_n<true> {
    push_popper_n(lua_State*, int)
    {
    }
};
template <bool, typename T, typename = void>
struct push_popper {
    T t;
    push_popper(T x)
        : t(x)
    {
        t.push();
    }
    ~push_popper()
    {
        t.pop();
    }
};
template <typename T, typename C>
struct push_popper<true, T, C> {
    push_popper(T)
    {
    }
    ~push_popper()
    {
    }
};
template <typename T>
struct push_popper<false, T, std::enable_if_t<std::is_base_of<stack_reference, meta::unqualified_t<T>>::value>> {
    push_popper(T)
    {
    }
    ~push_popper()
    {
    }
};

template <bool top_level = false, typename T>
push_popper<top_level, T> push_pop(T&& x)
{
    return push_popper<top_level, T>(std::forward<T>(x));
}
template <typename T>
push_popper_at push_pop_at(T&& x)
{
    int c = x.push();
    lua_State* L = x.lua_state();
    return push_popper_at(L, lua_absindex(L, -c), c);
}
template <bool top_level = false>
push_popper_n<top_level> pop_n(lua_State* L, int x)
{
    return push_popper_n<top_level>(L, x);
}
} // namespace stack

inline lua_State* main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr)
{
#if SOL_LUA_VERSION < 502
    if (L == nullptr)
        return backup_if_unsupported;
    lua_getglobal(L, detail::default_main_thread_name());
    auto pp = stack::pop_n(L, 1);
    if (type_of(L, -1) == type::thread) {
        return lua_tothread(L, -1);
    }
    return backup_if_unsupported;
#else
    if (L == nullptr)
        return backup_if_unsupported;
    lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_MAINTHREAD);
    lua_State* Lmain = lua_tothread(L, -1);
    lua_pop(L, 1);
    return Lmain;
#endif // Lua 5.2+ has the main thread getter
}

namespace detail {
struct global_tag {
} const global_{};
struct no_safety_tag {
} const no_safety{};

template <bool b>
inline lua_State* pick_main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr)
{
    (void)L;
    (void)backup_if_unsupported;
    if (b) {
        return main_thread(L, backup_if_unsupported);
    }
    return L;
}
} // namespace detail

template <bool main_only = false>
class basic_reference {
private:
    template <bool o_main_only>
    friend class basic_reference;
    lua_State* luastate = nullptr; // non-owning
    int ref = LUA_NOREF;

    int copy() const noexcept
    {
        if (ref == LUA_NOREF)
            return LUA_NOREF;
        push();
        return luaL_ref(lua_state(), LUA_REGISTRYINDEX);
    }

    template <bool r_main_only>
    void copy_assign(const basic_reference<r_main_only>& r)
    {
        if (valid()) {
            deref();
        }
        if (r.ref == LUA_REFNIL) {
            luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
            ref = LUA_REFNIL;
            return;
        }
        if (r.ref == LUA_NOREF) {
            ref = LUA_NOREF;
            return;
        }
        if (detail::xmovable(lua_state(), r.lua_state())) {
            r.push(lua_state());
            ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
            return;
        }
        luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
        ref = r.copy();
    }

    template <bool r_main_only>
    void move_assign(basic_reference<r_main_only>&& r)
    {
        if (valid()) {
            deref();
        }
        if (r.ref == LUA_REFNIL) {
            luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
            ref = LUA_REFNIL;
            return;
        }
        if (r.ref == LUA_NOREF) {
            ref = LUA_NOREF;
            return;
        }
        if (detail::xmovable(lua_state(), r.lua_state())) {
            r.push(lua_state());
            ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
            return;
        }

        luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state());
        ref = r.ref;
        r.ref = LUA_NOREF;
        r.luastate = nullptr;
    }

protected:
    basic_reference(lua_State* L, detail::global_tag) noexcept
        : luastate(detail::pick_main_thread<main_only>(L, L))
    {
        lua_pushglobaltable(lua_state());
        ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
    }

    int stack_index() const noexcept
    {
        return -1;
    }

    void deref() const noexcept
    {
        luaL_unref(lua_state(), LUA_REGISTRYINDEX, ref);
    }

public:
    basic_reference() noexcept = default;
    basic_reference(lua_nil_t) noexcept
        : basic_reference()
    {
    }
    basic_reference(const stack_reference& r) noexcept
        : basic_reference(r.lua_state(), r.stack_index())
    {
    }
    basic_reference(stack_reference&& r) noexcept
        : basic_reference(r.lua_state(), r.stack_index())
    {
    }
    template <bool r_main_only>
    basic_reference(lua_State* L, const basic_reference<r_main_only>& r) noexcept
        : luastate(detail::pick_main_thread<main_only>(L, L))
    {
        if (r.ref == LUA_REFNIL) {
            ref = LUA_REFNIL;
            return;
        }
        if (r.ref == LUA_NOREF || lua_state() == nullptr) {
            ref = LUA_NOREF;
            return;
        }
        if (detail::xmovable(lua_state(), r.lua_state())) {
            r.push(lua_state());
            ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
            return;
        }
        ref = r.copy();
    }

    template <bool r_main_only>
    basic_reference(lua_State* L, basic_reference<r_main_only>&& r) noexcept
        : luastate(detail::pick_main_thread<main_only>(L, L))
    {
        if (r.ref == LUA_REFNIL) {
            ref = LUA_REFNIL;
            return;
        }
        if (r.ref == LUA_NOREF || lua_state() == nullptr) {
            ref = LUA_NOREF;
            return;
        }
        if (detail::xmovable(lua_state(), r.lua_state())) {
            r.push(lua_state());
            ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
            return;
        }
        ref = r.ref;
        r.ref = LUA_NOREF;
        r.luastate = nullptr;
    }

    basic_reference(lua_State* L, const stack_reference& r) noexcept
        : luastate(detail::pick_main_thread<main_only>(L, L))
    {
        if (lua_state() == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) {
            ref = LUA_NOREF;
            return;
        }
        if (r.get_type() == type::lua_nil) {
            ref = LUA_REFNIL;
            return;
        }
        if (lua_state() != r.lua_state() && !detail::xmovable(lua_state(), r.lua_state())) {
            return;
        }
        r.push(lua_state());
        ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
    }
    basic_reference(lua_State* L, int index = -1) noexcept
        : luastate(detail::pick_main_thread<main_only>(L, L))
    {
        // use L to stick with that state's execution stack
        lua_pushvalue(L, index);
        ref = luaL_ref(L, LUA_REGISTRYINDEX);
    }
    basic_reference(lua_State* L, ref_index index) noexcept
        : luastate(detail::pick_main_thread<main_only>(L, L))
    {
        lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, index.index);
        ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX);
    }
    basic_reference(lua_State* L, lua_nil_t) noexcept
        : luastate(detail::pick_main_thread<main_only>(L, L))
    {
    }

    ~basic_reference() noexcept
    {
        if (lua_state() == nullptr || ref == LUA_NOREF)
            return;
        deref();
    }

    basic_reference(const basic_reference& o) noexcept
        : luastate(o.lua_state()),
          ref(o.copy())
    {
    }

    basic_reference(basic_reference&& o) noexcept
        : luastate(o.lua_state()),
          ref(o.ref)
    {
        o.luastate = nullptr;
        o.ref = LUA_NOREF;
    }

    basic_reference(const basic_reference<!main_only>& o) noexcept
        : luastate(detail::pick_main_thread<main_only && !main_only>(o.lua_state(), o.lua_state())),
          ref(o.copy())
    {
    }

    basic_reference(basic_reference<!main_only>&& o) noexcept
        : luastate(detail::pick_main_thread<main_only && !main_only>(o.lua_state(), o.lua_state())),
          ref(o.ref)
    {
        o.luastate = nullptr;
        o.ref = LUA_NOREF;
    }

    basic_reference& operator=(basic_reference&& r) noexcept
    {
        move_assign(std::move(r));
        return *this;
    }

    basic_reference& operator=(const basic_reference& r) noexcept
    {
        copy_assign(r);
        return *this;
    }

    basic_reference& operator=(basic_reference<!main_only>&& r) noexcept
    {
        move_assign(std::move(r));
        return *this;
    }

    basic_reference& operator=(const basic_reference<!main_only>& r) noexcept
    {
        copy_assign(r);
        return *this;
    }

    template <typename Super>
    basic_reference& operator=(proxy_base<Super>&& r);

    template <typename Super>
    basic_reference& operator=(const proxy_base<Super>& r);

    int push() const noexcept
    {
        return push(lua_state());
    }

    int push(lua_State* Ls) const noexcept
    {
        if (lua_state() == nullptr) {
            lua_pushnil(Ls);
            return 1;
        }
        lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, ref);
        if (Ls != lua_state()) {
            lua_xmove(lua_state(), Ls, 1);
        }
        return 1;
    }

    void pop() const noexcept
    {
        pop(lua_state());
    }

    void pop(lua_State* Ls, int n = 1) const noexcept
    {
        lua_pop(Ls, n);
    }

    int registry_index() const noexcept
    {
        return ref;
    }

    bool valid() const noexcept
    {
        return !(ref == LUA_NOREF || ref == LUA_REFNIL);
    }

    explicit operator bool() const noexcept
    {
        return valid();
    }

    type get_type() const noexcept
    {
        auto pp = stack::push_pop(*this);
        int result = lua_type(lua_state(), -1);
        return static_cast<type>(result);
    }

    lua_State* lua_state() const noexcept
    {
        return luastate;
    }
};

template <bool lb, bool rb>
inline bool operator==(const basic_reference<lb>& l, const basic_reference<rb>& r)
{
    auto ppl = stack::push_pop(l);
    auto ppr = stack::push_pop(r);
    return lua_compare(l.lua_state(), -1, -2, LUA_OPEQ) == 1;
}

template <bool lb, bool rb>
inline bool operator!=(const basic_reference<lb>& l, const basic_reference<rb>& r)
{
    return !operator==(l, r);
}

template <bool lb>
inline bool operator==(const basic_reference<lb>& lhs, const lua_nil_t&)
{
    return !lhs.valid();
}

template <bool rb>
inline bool operator==(const lua_nil_t&, const basic_reference<rb>& rhs)
{
    return !rhs.valid();
}

template <bool lb>
inline bool operator!=(const basic_reference<lb>& lhs, const lua_nil_t&)
{
    return lhs.valid();
}

template <bool rb>
inline bool operator!=(const lua_nil_t&, const basic_reference<rb>& rhs)
{
    return rhs.valid();
}
} // namespace sol

// end of sol/reference.hpp

// beginning of sol/tie.hpp

namespace sol {

namespace detail {
template <typename T>
struct is_speshul : std::false_type {
};
} // namespace detail

template <typename T>
struct tie_size : std::tuple_size<T> {
};

template <typename T>
struct is_tieable : std::integral_constant<bool, (::sol::tie_size<T>::value > 0)> {
};

template <typename... Tn>
struct tie_t : public std::tuple<std::add_lvalue_reference_t<Tn>...> {
private:
    typedef std::tuple<std::add_lvalue_reference_t<Tn>...> base_t;

    template <typename T>
    void set(std::false_type, T&& target)
    {
        std::get<0>(*this) = std::forward<T>(target);
    }

    template <typename T>
    void set(std::true_type, T&& target)
    {
        typedef tie_size<meta::unqualified_t<T>> value_size;
        typedef tie_size<std::tuple<Tn...>> tie_size;
        typedef std::conditional_t<(value_size::value < tie_size::value), value_size, tie_size> indices_size;
        typedef std::make_index_sequence<indices_size::value> indices;
        set_extra(detail::is_speshul<meta::unqualified_t<T>>(), indices(), std::forward<T>(target));
    }

    template <std::size_t... I, typename T>
    void set_extra(std::true_type, std::index_sequence<I...>, T&& target)
    {
        using std::get;
        (void)detail::swallow{ 0,
            (get<I>(static_cast<base_t&>(*this)) = get<I>(types<Tn...>(), target), 0)..., 0 };
    }

    template <std::size_t... I, typename T>
    void set_extra(std::false_type, std::index_sequence<I...>, T&& target)
    {
        using std::get;
        (void)detail::swallow{ 0,
            (get<I>(static_cast<base_t&>(*this)) = get<I>(target), 0)..., 0 };
    }

public:
    using base_t::base_t;

    template <typename T>
    tie_t& operator=(T&& value)
    {
        typedef is_tieable<meta::unqualified_t<T>> tieable;
        set(tieable(), std::forward<T>(value));
        return *this;
    }
};

template <typename... Tn>
struct tie_size<tie_t<Tn...>> : std::tuple_size<std::tuple<Tn...>> {
};

namespace adl_barrier_detail {
template <typename... Tn>
inline tie_t<std::remove_reference_t<Tn>...> tie(Tn&&... argn)
{
    return tie_t<std::remove_reference_t<Tn>...>(std::forward<Tn>(argn)...);
}
} // namespace adl_barrier_detail

using namespace adl_barrier_detail;

} // namespace sol

// end of sol/tie.hpp

// beginning of sol/stack_guard.hpp

namespace sol {
namespace detail {
inline void stack_fail(int, int)
{
#ifndef SOL_NO_EXCEPTIONS
    throw error(detail::direct_error, "imbalanced stack after operation finish");
#else
// Lol, what do you want, an error printout? :3c
// There's no sane default here. The right way would be C-style abort(), and that's not acceptable, so
// hopefully someone will register their own stack_fail thing for the `fx` parameter of stack_guard.
#endif // No Exceptions
}
} // namespace detail

struct stack_guard {
    lua_State* L;
    int top;
    std::function<void(int, int)> on_mismatch;

    stack_guard(lua_State* L)
        : stack_guard(L, lua_gettop(L))
    {
    }
    stack_guard(lua_State* L, int top, std::function<void(int, int)> fx = detail::stack_fail)
        : L(L)
        , top(top)
        , on_mismatch(std::move(fx))
    {
    }
    bool check_stack(int modification = 0) const
    {
        int bottom = lua_gettop(L) + modification;
        if (top == bottom) {
            return true;
        }
        on_mismatch(top, bottom);
        return false;
    }
    ~stack_guard()
    {
        check_stack();
    }
};
} // namespace sol

// end of sol/stack_guard.hpp

#include <vector>
#include <forward_list>
#include <algorithm>

namespace sol {
namespace detail {
struct as_reference_tag {
};
template <typename T>
struct as_pointer_tag {
};
template <typename T>
struct as_value_tag {
};
template <typename T>
struct as_table_tag {
};

using unique_destructor = void (*)(void*);

inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space, std::size_t& required_space)
{
    // this handels arbitrary alignments...
    // make this into a power-of-2-only?
    // actually can't: this is a C++14-compatible framework,
    // power of 2 alignment is C++17
    std::uintptr_t initial = reinterpret_cast<std::uintptr_t>(ptr);
    std::uintptr_t offby = static_cast<std::uintptr_t>(initial % alignment);
    std::uintptr_t padding = (alignment - offby) % alignment;
    required_space += size + padding;
    if (space < required_space) {
        return nullptr;
    }
    ptr = static_cast<void*>(static_cast<char*>(ptr) + padding);
    space -= padding;
    return ptr;
}

inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space)
{
    std::size_t required_space = 0;
    return align(alignment, size, ptr, space, required_space);
}

template <typename... Args>
inline std::size_t aligned_space_for(void* alignment = nullptr)
{
    char* start = static_cast<char*>(alignment);
    auto specific_align = [&alignment](std::size_t a, std::size_t s) {
        std::size_t space = std::numeric_limits<std::size_t>::max();
        alignment = align(a, s, alignment, space);
        alignment = static_cast<void*>(static_cast<char*>(alignment) + s);
    };
    (void)detail::swallow{ int{}, (specific_align(std::alignment_of<Args>::value, sizeof(Args)), int{})... };
    return static_cast<char*>(alignment) - start;
}

inline void* align_usertype_pointer(void* ptr)
{
    typedef std::integral_constant<bool,
#ifdef SOL_NO_MEMORY_ALIGNMENT
        false
#else
        (std::alignment_of<void*>::value > 1)
#endif
        >
        use_align;
    if (!use_align::value) {
        return ptr;
    }
    std::size_t space = std::numeric_limits<std::size_t>::max();
    return align(std::alignment_of<void*>::value, sizeof(void*), ptr, space);
}

inline void* align_usertype_unique_destructor(void* ptr)
{
    typedef std::integral_constant<bool,
#ifdef SOL_NO_MEMORY_ALIGNMENT
        false
#else
        (std::alignment_of<unique_destructor>::value > 1)
#endif
        >
        use_align;
    if (!use_align::value) {
        return static_cast<void*>(static_cast<void**>(ptr) + 1);
    }
    ptr = align_usertype_pointer(ptr);
    ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*));
    std::size_t space = std::numeric_limits<std::size_t>::max();
    return align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), ptr, space);
}

template <typename T, bool pre_aligned = false>
inline void* align_usertype_unique(void* ptr)
{
    typedef std::integral_constant<bool,
#ifdef SOL_NO_MEMORY_ALIGNMENT
        false
#else
        (std::alignment_of<T>::value > 1)
#endif
        >
        use_align;
    if (!pre_aligned) {
        ptr = align_usertype_unique_destructor(ptr);
        ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor));
    }
    if (!use_align::value) {
        return ptr;
    }
    std::size_t space = std::numeric_limits<std::size_t>::max();
    return align(std::alignment_of<T>::value, sizeof(T), ptr, space);
}

template <typename T>
inline void* align_user(void* ptr)
{
    typedef std::integral_constant<bool,
#ifdef SOL_NO_MEMORY_ALIGNMENT
        false
#else
        (std::alignment_of<T>::value > 1)
#endif
        >
        use_align;
    if (!use_align::value) {
        return ptr;
    }
    std::size_t space = std::numeric_limits<std::size_t>::max();
    return align(std::alignment_of<T>::value, sizeof(T), ptr, space);
}

template <typename T>
inline T** usertype_allocate_pointer(lua_State* L)
{
    typedef std::integral_constant<bool,
#ifdef SOL_NO_MEMORY_ALIGNMENT
        false
#else
        (std::alignment_of<T*>::value > 1)
#endif
        >
        use_align;
    if (!use_align::value) {
        T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*)));
        return pointerpointer;
    }
    static const std::size_t initial_size = aligned_space_for<T*>(nullptr);
    static const std::size_t misaligned_size = aligned_space_for<T*>(reinterpret_cast<void*>(0x1));

    std::size_t allocated_size = initial_size;
    void* unadjusted = lua_newuserdata(L, initial_size);
    void* adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
    if (adjusted == nullptr) {
        lua_pop(L, 1);
        // what kind of absolute garbage trash allocator are we dealing with?
        // whatever, add some padding in the case of MAXIMAL alignment waste...
        allocated_size = misaligned_size;
        unadjusted = lua_newuserdata(L, allocated_size);
        adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size);
        if (adjusted == nullptr) {
            // trash allocator can burn in hell
            lua_pop(L, 1);
            //luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a worse job than malloc/realloc and should go read some books, yeah?");
            luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data());
        }
    }
    return static_cast<T**>(adjusted);
}

template <typename T>
inline T* usertype_allocate(lua_State* L)
{
    typedef std::integral_constant<bool,
#ifdef SOL_NO_MEMORY_ALIGNMENT
        false
#else
        (std::alignment_of<T*>::value > 1 || std::alignment_of<T>::value > 1)
#endif
        >
        use_align;
    if (!use_align::value) {
        T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T)));
        T*& pointerreference = *pointerpointer;
        T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1);
        pointerreference = allocationtarget;
        return allocationtarget;
    }

    /* the assumption is that `lua_newuserdata` -- unless someone
			passes a specific lua_Alloc that gives us bogus, un-aligned pointers
			-- uses malloc, which tends to hand out more or less aligned pointers to memory
			(most of the time, anyhow)

			but it's not guaranteed, so we have to do a post-adjustment check and increase padding

			we do this preliminarily with compile-time stuff, to see
			if we strike lucky with the allocator and alignment values

			otherwise, we have to re-allocate the userdata and
			over-allocate some space for additional padding because
			compilers are optimized for aligned reads/writes
			(and clang will barf UBsan errors on us for not being aligned)
			*/
    static const std::size_t initial_size = aligned_space_for<T*, T>(nullptr);
    static const std::size_t misaligned_size = aligned_space_for<T*, T>(reinterpret_cast<void*>(0x1));

    void* pointer_adjusted;
    void* data_adjusted;
    auto attempt_alloc = [](lua_State* L, std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) -> bool {
        void* adjusted = lua_newuserdata(L, allocated_size);
        pointer_adjusted = align(std::alignment_of<T*>::value, sizeof(T*), adjusted, allocated_size);
        if (pointer_adjusted == nullptr) {
            lua_pop(L, 1);
            return false;
        }
        // subtract size of what we're going to allocate there
        allocated_size -= sizeof(T*);
        adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + sizeof(T*));
        data_adjusted = align(std::alignment_of<T>::value, sizeof(T), adjusted, allocated_size);
        if (data_adjusted == nullptr) {
            lua_pop(L, 1);
            return false;
        }
        return true;
    };
    bool result = attempt_alloc(L, initial_size, pointer_adjusted, data_adjusted);
    if (!result) {
        // we're likely to get something that fails to perform the proper allocation a second time,
        // so we use the suggested_new_size bump to help us out here
        pointer_adjusted = nullptr;
        data_adjusted = nullptr;
        result = attempt_alloc(L, misaligned_size, pointer_adjusted, data_adjusted);
        if (!result) {
            if (pointer_adjusted == nullptr) {
                luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
            }
            else {
                luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str());
            }
            return nullptr;
        }
    }

    T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted);
    T*& pointerreference = *pointerpointer;
    T* allocationtarget = reinterpret_cast<T*>(data_adjusted);
    pointerreference = allocationtarget;
    return allocationtarget;
}

template <typename T, typename Real>
inline Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx)
{
    typedef std::integral_constant<bool,
#ifdef SOL_NO_MEMORY_ALIGNMENT
        false
#else
        (std::alignment_of<T*>::value > 1 || std::alignment_of<unique_destructor>::value > 1 || std::alignment_of<Real>::value > 1)
#endif
        >
        use_align;
    if (!use_align::value) {
        pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(Real)));
        dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1));
        Real* mem = static_cast<Real*>(static_cast<void*>(dx + 1));
        return mem;
    }

    static const std::size_t initial_size = aligned_space_for<T*, unique_destructor, Real>(nullptr);
    static const std::size_t misaligned_size = aligned_space_for<T*, unique_destructor, Real>(reinterpret_cast<void*>(0x1));

    void* pointer_adjusted;
    void* dx_adjusted;
    void* data_adjusted;
    auto attempt_alloc = [](lua_State* L, std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& data_adjusted) -> bool {
        void* adjusted = lua_newuserdata(L, allocated_size);
        pointer_adjusted = align(std::alignment_of<T*>::value, sizeof(T*), adjusted, allocated_size);
        if (pointer_adjusted == nullptr) {
            lua_pop(L, 1);
            return false;
        }
        allocated_size -= sizeof(T*);
        adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + sizeof(T*));
        dx_adjusted = align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), adjusted, allocated_size);
        if (dx_adjusted == nullptr) {
            lua_pop(L, 1);
            return false;
        }
        allocated_size -= sizeof(unique_destructor);
        adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor));
        data_adjusted = align(std::alignment_of<Real>::value, sizeof(Real), adjusted, allocated_size);
        if (data_adjusted == nullptr) {
            lua_pop(L, 1);
            return false;
        }
        return true;
    };
    bool result = attempt_alloc(L, initial_size, pointer_adjusted, dx_adjusted, data_adjusted);
    if (!result) {
        // we're likely to get something that fails to perform the proper allocation a second time,
        // so we use the suggested_new_size bump to help us out here
        pointer_adjusted = nullptr;
        dx_adjusted = nullptr;
        data_adjusted = nullptr;
        result = attempt_alloc(L, misaligned_size, pointer_adjusted, dx_adjusted, data_adjusted);
        if (!result) {
            if (pointer_adjusted == nullptr) {
                luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str());
            }
            else if (dx_adjusted == nullptr) {
                luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<Real>().c_str());
            }
            else {
                luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<Real>().c_str());
            }
            return nullptr;
        }
    }

    pref = static_cast<T**>(pointer_adjusted);
    dx = static_cast<detail::unique_destructor*>(dx_adjusted);
    Real* mem = static_cast<Real*>(data_adjusted);
    return mem;
}

template <typename T>
inline T* user_allocate(lua_State* L)
{
    typedef std::integral_constant<bool,
#ifdef SOL_NO_MEMORY_ALIGNMENT
        false
#else
        (std::alignment_of<T>::value > 1)
#endif
        >
        use_align;
    if (!use_align::value) {
        T* pointer = static_cast<T*>(lua_newuserdata(L, sizeof(T)));
        return pointer;
    }

    static const std::size_t initial_size = aligned_space_for<T>(nullptr);
    static const std::size_t misaligned_size = aligned_space_for<T>(reinterpret_cast<void*>(0x1));

    std::size_t allocated_size = initial_size;
    void* unadjusted = lua_newuserdata(L, allocated_size);
    void* adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size);
    if (adjusted == nullptr) {
        lua_pop(L, 1);
        // try again, add extra space for alignment padding
        allocated_size = misaligned_size;
        unadjusted = lua_newuserdata(L, allocated_size);
        adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size);
        if (adjusted == nullptr) {
            lua_pop(L, 1);
            luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data());
        }
    }
    return static_cast<T*>(adjusted);
}

template <typename T>
inline int usertype_alloc_destruct(lua_State* L)
{
    void* memory = lua_touserdata(L, 1);
    memory = align_usertype_pointer(memory);
    T** pdata = static_cast<T**>(memory);
    T* data = *pdata;
    std::allocator<T> alloc{};
    alloc.destroy(data);
    return 0;
}

template <typename T>
inline int unique_destruct(lua_State* L)
{
    void* memory = lua_touserdata(L, 1);
    memory = align_usertype_unique_destructor(memory);
    unique_destructor& dx = *static_cast<unique_destructor*>(memory);
    memory = static_cast<void*>(static_cast<char*>(memory) + sizeof(unique_destructor));
    (dx)(memory);
    return 0;
}

template <typename T>
inline int user_alloc_destruct(lua_State* L)
{
    void* memory = lua_touserdata(L, 1);
    memory = align_user<T>(memory);
    T* data = static_cast<T*>(memory);
    std::allocator<T> alloc;
    alloc.destroy(data);
    return 0;
}

template <typename T, typename Real>
inline void usertype_unique_alloc_destroy(void* memory)
{
    memory = align_usertype_unique<Real, true>(memory);
    Real* target = static_cast<Real*>(memory);
    std::allocator<Real> alloc;
    alloc.destroy(target);
}

template <typename T>
inline int cannot_destruct(lua_State* L)
{
    return luaL_error(L, "cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= delete' and thusly this type is being destroyed without properly destructing, invoking undefined behavior: please bind a usertype and specify a custom destructor to define the behavior properly", detail::demangle<T>().data());
}

template <typename T>
void reserve(T&, std::size_t)
{
}

template <typename T, typename Al>
void reserve(std::vector<T, Al>& arr, std::size_t hint)
{
    arr.reserve(hint);
}

template <typename T, typename Tr, typename Al>
void reserve(std::basic_string<T, Tr, Al>& arr, std::size_t hint)
{
    arr.reserve(hint);
}
} // namespace detail

namespace stack {

template <typename T>
struct extensible {
};

template <typename T, bool global = false, bool raw = false, typename = void>
struct field_getter;
template <typename T, bool global = false, bool raw = false, typename = void>
struct probe_field_getter;
template <typename T, bool global = false, bool raw = false, typename = void>
struct field_setter;
template <typename T, typename = void>
struct getter;
template <typename T, typename = void>
struct userdata_getter;
template <typename T, typename = void>
struct popper;
template <typename T, typename = void>
struct pusher;
template <typename T, type = lua_type_of<T>::value, typename = void>
struct checker;
template <typename T, typename = void>
struct userdata_checker;
template <typename T, typename = void>
struct check_getter;

struct probe {
    bool success;
    int levels;

    probe(bool s, int l)
        : success(s)
        , levels(l)
    {
    }

    operator bool() const
    {
        return success;
    };
};

struct record {
    int last;
    int used;

    record()
        : last()
        , used()
    {
    }
    void use(int count)
    {
        last = count;
        used += count;
    }
};

namespace stack_detail {
template <typename T>
struct strip {
    typedef T type;
};
template <typename T>
struct strip<std::reference_wrapper<T>> {
    typedef T& type;
};
template <typename T>
struct strip<user<T>> {
    typedef T& type;
};
template <typename T>
struct strip<non_null<T>> {
    typedef T type;
};
template <typename T>
using strip_t = typename strip<T>::type;

template <typename T>
struct strip_extensible {
    typedef T type;
};

template <typename T>
struct strip_extensible<extensible<T>> {
    typedef T type;
};

template <typename T>
using strip_extensible_t = typename strip_extensible<T>::type;

const bool default_check_arguments =
#ifdef SOL_CHECK_ARGUMENTS
    true;
#else
    false;
#endif

template <typename C>
static int get_size_hint(const C& c)
{
    return static_cast<int>(c.size());
}

template <typename V, typename Al>
static int get_size_hint(const std::forward_list<V, Al>&)
{
    // forward_list makes me sad
    return static_cast<int>(32);
}

template <typename T>
inline decltype(auto) unchecked_get(lua_State* L, int index, record& tracking)
{
    getter<meta::unqualified_t<T>> g{};
    (void)g;
    return g.get(L, index, tracking);
}

template <typename T, typename Arg, typename... Args>
inline int push_reference(lua_State* L, Arg&& arg, Args&&... args)
{
    typedef meta::all<std::is_lvalue_reference<T>,
        meta::neg<std::is_const<T>>,
        meta::neg<is_lua_primitive<meta::unqualified_t<T>>>,
        meta::neg<is_unique_usertype<meta::unqualified_t<T>>>>
        use_reference_tag;
    return pusher<std::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>>{}.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}
} // namespace stack_detail

inline bool maybe_indexable(lua_State* L, int index = -1)
{
    type t = type_of(L, index);
    return t == type::userdata || t == type::table;
}

inline int top(lua_State* L)
{
    return lua_gettop(L);
}

template <typename T, typename... Args>
inline int push(lua_State* L, T&& t, Args&&... args)
{
    return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<T>(t), std::forward<Args>(args)...);
}

// overload allows to use a pusher of a specific type, but pass in any kind of args
template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>>
inline int push(lua_State* L, Arg&& arg, Args&&... args)
{
    return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}

template <typename T, typename... Args>
inline int push_reference(lua_State* L, T&& t, Args&&... args)
{
    return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...);
}

template <typename T, typename Arg, typename... Args>
inline int push_reference(lua_State* L, Arg&& arg, Args&&... args)
{
    return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...);
}

inline int multi_push(lua_State*)
{
    // do nothing
    return 0;
}

template <typename T, typename... Args>
inline int multi_push(lua_State* L, T&& t, Args&&... args)
{
    int pushcount = push(L, std::forward<T>(t));
    void(detail::swallow{ (pushcount += stack::push(L, std::forward<Args>(args)), 0)... });
    return pushcount;
}

inline int multi_push_reference(lua_State*)
{
    // do nothing
    return 0;
}

template <typename T, typename... Args>
inline int multi_push_reference(lua_State* L, T&& t, Args&&... args)
{
    int pushcount = push_reference(L, std::forward<T>(t));
    void(detail::swallow{ (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... });
    return pushcount;
}

template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler, record& tracking)
{
    typedef meta::unqualified_t<T> Tu;
    checker<Tu> c;
    // VC++ has a bad warning here: shut it up
    (void)c;
    return c.check(L, index, std::forward<Handler>(handler), tracking);
}

template <typename T, typename Handler>
bool check(lua_State* L, int index, Handler&& handler)
{
    record tracking{};
    return check<T>(L, index, std::forward<Handler>(handler), tracking);
}

template <typename T>
bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value)
{
    auto handler = no_panic;
    return check<T>(L, index, handler);
}

template <typename T, typename Handler>
inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking)
{
    typedef meta::unqualified_t<T> Tu;
    check_getter<Tu> cg{};
    (void)cg;
    return cg.get(L, index, std::forward<Handler>(handler), tracking);
}

template <typename T, typename Handler>
inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler)
{
    record tracking{};
    return check_get<T>(L, index, handler, tracking);
}

template <typename T>
inline decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value)
{
    auto handler = no_panic;
    return check_get<T>(L, index, handler);
}

namespace stack_detail {

#ifdef SOL_CHECK_ARGUMENTS
template <typename T>
inline auto tagged_get(types<T>, lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking))
{
    auto op = check_get<T>(L, index, type_panic_c_str, tracking);
    return *std::move(op);
}
#else
template <typename T>
inline decltype(auto) tagged_get(types<T>, lua_State* L, int index, record& tracking)
{
    return stack_detail::unchecked_get<T>(L, index, tracking);
}
#endif

template <typename T>
inline decltype(auto) tagged_get(types<optional<T>>, lua_State* L, int index, record& tracking)
{
    return stack_detail::unchecked_get<optional<T>>(L, index, tracking);
}

template <bool b>
struct check_types {
    template <typename T, typename... Args, typename Handler>
    static bool check(types<T, Args...>, lua_State* L, int firstargument, Handler&& handler, record& tracking)
    {
        if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking))
            return false;
        return check(types<Args...>(), L, firstargument, std::forward<Handler>(handler), tracking);
    }

    template <typename Handler>
    static bool check(types<>, lua_State*, int, Handler&&, record&)
    {
        return true;
    }
};

template <>
struct check_types<false> {
    template <typename... Args, typename Handler>
    static bool check(types<Args...>, lua_State*, int, Handler&&, record&)
    {
        return true;
    }
};

} // namespace stack_detail

template <bool b, typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking)
{
    return stack_detail::check_types<b>{}.check(types<meta::unqualified_t<Args>...>(), L, index, std::forward<Handler>(handler), tracking);
}

template <bool b, typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler)
{
    record tracking{};
    return multi_check<b, Args...>(L, index, std::forward<Handler>(handler), tracking);
}

template <bool b, typename... Args>
bool multi_check(lua_State* L, int index)
{
    auto handler = no_panic;
    return multi_check<b, Args...>(L, index, handler);
}

template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking)
{
    return multi_check<true, Args...>(L, index, std::forward<Handler>(handler), tracking);
}

template <typename... Args, typename Handler>
bool multi_check(lua_State* L, int index, Handler&& handler)
{
    return multi_check<true, Args...>(L, index, std::forward<Handler>(handler));
}

template <typename... Args>
bool multi_check(lua_State* L, int index)
{
    return multi_check<true, Args...>(L, index);
}

template <typename T>
inline decltype(auto) get(lua_State* L, int index, record& tracking)
{
    return stack_detail::tagged_get(types<T>(), L, index, tracking);
}

template <typename T>
inline decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value)
{
    record tracking{};
    return get<T>(L, index, tracking);
}

template <typename T>
inline decltype(auto) pop(lua_State* L)
{
    return popper<meta::unqualified_t<T>>{}.pop(L);
}

template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key)
{
    field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key));
}

template <bool global = false, bool raw = false, typename Key>
void get_field(lua_State* L, Key&& key, int tableindex)
{
    field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
}

template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key)
{
    get_field<global, true>(L, std::forward<Key>(key));
}

template <bool global = false, typename Key>
void raw_get_field(lua_State* L, Key&& key, int tableindex)
{
    get_field<global, true>(L, std::forward<Key>(key), tableindex);
}

template <bool global = false, bool raw = false, typename Key>
probe probe_get_field(lua_State* L, Key&& key)
{
    return probe_field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key));
}

template <bool global = false, bool raw = false, typename Key>
probe probe_get_field(lua_State* L, Key&& key, int tableindex)
{
    return probe_field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex);
}

template <bool global = false, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key)
{
    return probe_get_field<global, true>(L, std::forward<Key>(key));
}

template <bool global = false, typename Key>
probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex)
{
    return probe_get_field<global, true>(L, std::forward<Key>(key), tableindex);
}

template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value)
{
    field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value));
}

template <bool global = false, bool raw = false, typename Key, typename Value>
void set_field(lua_State* L, Key&& key, Value&& value, int tableindex)
{
    field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}

template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value)
{
    set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value));
}

template <bool global = false, typename Key, typename Value>
void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex)
{
    set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex);
}
} // namespace stack
} // namespace sol

// end of sol/stack_core.hpp

// beginning of sol/stack_check.hpp

// beginning of sol/usertype_traits.hpp

namespace sol {

template <typename T>
struct usertype_traits {
    static const std::string& name()
    {
        static const std::string& n = detail::short_demangle<T>();
        return n;
    }
    static const std::string& qualified_name()
    {
        static const std::string& q_n = detail::demangle<T>();
        return q_n;
    }
    static const std::string& metatable()
    {
        static const std::string m = std::string("sol.").append(detail::demangle<T>());
        return m;
    }
    static const std::string& user_metatable()
    {
        static const std::string u_m = std::string("sol.").append(detail::demangle<T>()).append(".user");
        return u_m;
    }
    static const std::string& user_gc_metatable()
    {
        static const std::string u_g_m = std::string("sol.").append(detail::demangle<T>()).append(".user\xE2\x99\xBB");
        return u_g_m;
    }
    static const std::string& gc_table()
    {
        static const std::string g_t = std::string("sol.").append(detail::demangle<T>()).append(".\xE2\x99\xBB");
        return g_t;
    }
};

} // namespace sol

// end of sol/usertype_traits.hpp

// beginning of sol/inheritance.hpp

#include <atomic>

namespace sol {
template <typename... Args>
struct base_list {
};
template <typename... Args>
using bases = base_list<Args...>;

typedef bases<> base_classes_tag;
const auto base_classes = base_classes_tag();

namespace detail {

template <typename T>
struct has_derived {
    static bool value;
};

template <typename T>
bool has_derived<T>::value = false;

inline std::size_t unique_id()
{
    static std::atomic<std::size_t> x(0);
    return ++x;
}

template <typename T>
struct id_for {
    static const std::size_t value;
};

template <typename T>
const std::size_t id_for<T>::value = unique_id();

inline decltype(auto) base_class_check_key()
{
    static const auto& key = "class_check";
    return key;
}

inline decltype(auto) base_class_cast_key()
{
    static const auto& key = "class_cast";
    return key;
}

inline decltype(auto) base_class_index_propogation_key()
{
    static const auto& key = u8"\xF0\x9F\x8C\xB2.index";
    return key;
}

inline decltype(auto) base_class_new_index_propogation_key()
{
    static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index";
    return key;
}

template <typename T, typename... Bases>
struct inheritance {
    static bool type_check_bases(types<>, std::size_t)
    {
        return false;
    }

    template <typename Base, typename... Args>
    static bool type_check_bases(types<Base, Args...>, std::size_t ti)
    {
        return ti == id_for<Base>::value || type_check_bases(types<Args...>(), ti);
    }

    static bool type_check(std::size_t ti)
    {
        return ti == id_for<T>::value || type_check_bases(types<Bases...>(), ti);
    }

    static void* type_cast_bases(types<>, T*, std::size_t)
    {
        return nullptr;
    }

    template <typename Base, typename... Args>
    static void* type_cast_bases(types<Base, Args...>, T* data, std::size_t ti)
    {
        // Make sure to convert to T first, and then dynamic cast to the proper type
        return ti != id_for<Base>::value ? type_cast_bases(types<Args...>(), data, ti) : static_cast<void*>(static_cast<Base*>(data));
    }

    static void* type_cast(void* voiddata, std::size_t ti)
    {
        T* data = static_cast<T*>(voiddata);
        return static_cast<void*>(ti != id_for<T>::value ? type_cast_bases(types<Bases...>(), data, ti) : data);
    }
};

using inheritance_check_function = decltype(&inheritance<void>::type_check);
using inheritance_cast_function = decltype(&inheritance<void>::type_cast);

} // namespace detail
} // namespace sol

// end of sol/inheritance.hpp

#include <cmath>
#ifdef SOL_CXX17_FEATURES
#endif // C++17

namespace sol {
namespace stack {
namespace stack_detail {
template <typename T, bool poptable = true>
inline bool check_metatable(lua_State* L, int index = -2)
{
    const auto& metakey = usertype_traits<T>::metatable();
    luaL_getmetatable(L, &metakey[0]);
    const type expectedmetatabletype = static_cast<type>(lua_type(L, -1));
    if (expectedmetatabletype != type::lua_nil) {
        if (lua_rawequal(L, -1, index) == 1) {
            lua_pop(L, 1 + static_cast<int>(poptable));
            return true;
        }
    }
    lua_pop(L, 1);
    return false;
}

template <type expected, int (*check_func)(lua_State*, int)>
struct basic_check {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
        bool success = check_func(L, index) == 1;
        if (!success) {
            // expected type, actual type
            handler(L, index, expected, type_of(L, index), "");
        }
        return success;
    }
};
} // namespace stack_detail

template <typename T, typename>
struct userdata_checker {
    template <typename Handler>
    static bool check(lua_State*, int, type, Handler&&, record&)
    {
        return false;
    }
};

template <typename T, type expected, typename>
struct checker {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
        const type indextype = type_of(L, index);
        bool success = expected == indextype;
        if (!success) {
            // expected type, actual type, message
            handler(L, index, expected, indextype, "");
        }
        return success;
    }
};

template <typename T>
struct checker<T, type::number, std::enable_if_t<std::is_integral<T>::value>> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
#if SOL_LUA_VERSION >= 503
#ifdef SOL_STRINGS_ARE_NUMBERS
        int isnum = 0;
        lua_tointegerx(L, index, &isnum);
        const bool success = isnum != 0;
#else
        // this check is precise, does not convert
        if (lua_isinteger(L, index) == 1) {
            return true;
        }
        const bool success = false;
#endif // If numbers are enabled, use the imprecise check
        if (!success) {
            // expected type, actual type
            handler(L, index, type::number, type_of(L, index), "not a numeric type");
        }
        return success;
#else
#ifndef SOL_STRINGS_ARE_NUMBERS
        // must pre-check, because it will convert
        type t = type_of(L, index);
        if (t != type::number) {
            // expected type, actual type
            handler(L, index, type::number, t, "not a numeric type");
            return false;
        }
#endif // Do not allow strings to be numbers
        int isnum = 0;
        const lua_Number v = lua_tonumberx(L, index, &isnum);
        const bool success = isnum != 0 && static_cast<lua_Number>(llround(v)) == v;
        if (!success) {
// expected type, actual type
#ifndef SOL_STRINGS_ARE_NUMBERS
            handler(L, index, type::number, t, "not a numeric type");
#else
            handler(L, index, type::number, type_of(L, index), "not a numeric type or numeric string");
#endif
        }
        return success;
#endif
    }
};

template <typename T>
struct checker<T, type::number, std::enable_if_t<std::is_floating_point<T>::value>> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
#ifndef SOL_STRINGS_ARE_NUMBERS
        type t = type_of(L, index);
        bool success = t == type::number;
        if (!success) {
            // expected type, actual type
            handler(L, index, type::number, t, "not a numeric type");
        }
        return success;
#else
        bool success = lua_isnumber(L, index) == 1;
        if (!success) {
            // expected type, actual type
            handler(L, index, type::number, type_of(L, index), "not a numeric type or numeric string");
        }
        return success;
#endif
    }
};

template <type expected, typename C>
struct checker<lua_nil_t, expected, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        bool success = lua_isnil(L, index);
        if (success) {
            tracking.use(1);
            return success;
        }
        tracking.use(0);
        success = lua_isnone(L, index);
        if (!success) {
            // expected type, actual type
            handler(L, index, expected, type_of(L, index), "");
        }
        return success;
    }
};

template <type expected, typename C>
struct checker<nullopt_t, expected, C> : checker<lua_nil_t> {
};

template <typename C>
struct checker<this_state, type::poly, C> {
    template <typename Handler>
    static bool check(lua_State*, int, Handler&&, record& tracking)
    {
        tracking.use(0);
        return true;
    }
};

template <typename C>
struct checker<this_main_state, type::poly, C> {
    template <typename Handler>
    static bool check(lua_State*, int, Handler&&, record& tracking)
    {
        tracking.use(0);
        return true;
    }
};

template <typename C>
struct checker<this_environment, type::poly, C> {
    template <typename Handler>
    static bool check(lua_State*, int, Handler&&, record& tracking)
    {
        tracking.use(0);
        return true;
    }
};

template <typename C>
struct checker<variadic_args, type::poly, C> {
    template <typename Handler>
    static bool check(lua_State*, int, Handler&&, record& tracking)
    {
        tracking.use(0);
        return true;
    }
};

template <typename C>
struct checker<type, type::poly, C> {
    template <typename Handler>
    static bool check(lua_State*, int, Handler&&, record& tracking)
    {
        tracking.use(0);
        return true;
    }
};

template <typename T, typename C>
struct checker<T, type::poly, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
        bool success = !lua_isnone(L, index);
        if (!success) {
            // expected type, actual type
            handler(L, index, type::none, type_of(L, index), "");
        }
        return success;
    }
};

template <typename T, typename C>
struct checker<T, type::lightuserdata, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
        type t = type_of(L, index);
        bool success = t == type::userdata || t == type::lightuserdata;
        if (!success) {
            // expected type, actual type
            handler(L, index, type::lightuserdata, t, "");
        }
        return success;
    }
};

template <typename C>
struct checker<userdata_value, type::userdata, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
        type t = type_of(L, index);
        bool success = t == type::userdata;
        if (!success) {
            // expected type, actual type
            handler(L, index, type::userdata, t, "");
        }
        return success;
    }
};

template <typename B, typename C>
struct checker<basic_userdata<B>, type::userdata, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        return stack::check<userdata_value>(L, index, std::forward<Handler>(handler), tracking);
    }
};

template <typename T, typename C>
struct checker<user<T>, type::userdata, C> : checker<user<T>, type::lightuserdata, C> {
};

template <typename T, typename C>
struct checker<non_null<T>, type::userdata, C> : checker<T, lua_type_of<T>::value, C> {
};

template <typename C>
struct checker<lua_CFunction, type::function, C> : stack_detail::basic_check<type::function, lua_iscfunction> {
};
template <typename C>
struct checker<std::remove_pointer_t<lua_CFunction>, type::function, C> : checker<lua_CFunction, type::function, C> {
};
template <typename C>
struct checker<c_closure, type::function, C> : checker<lua_CFunction, type::function, C> {
};

template <typename T, typename C>
struct checker<T, type::function, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
        type t = type_of(L, index);
        if (t == type::lua_nil || t == type::none || t == type::function) {
            // allow for lua_nil to be returned
            return true;
        }
        if (t != type::userdata && t != type::table) {
            handler(L, index, type::function, t, "must be a function or table or a userdata");
            return false;
        }
        // Do advanced check for call-style userdata?
        static const auto& callkey = to_string(meta_function::call);
        if (lua_getmetatable(L, index) == 0) {
            // No metatable, no __call key possible
            handler(L, index, type::function, t, "value is not a function and does not have overriden metatable");
            return false;
        }
        if (lua_isnoneornil(L, -1)) {
            lua_pop(L, 1);
            handler(L, index, type::function, t, "value is not a function and does not have valid metatable");
            return false;
        }
        lua_getfield(L, -1, &callkey[0]);
        if (lua_isnoneornil(L, -1)) {
            lua_pop(L, 2);
            handler(L, index, type::function, t, "value's metatable does not have __call overridden in metatable, cannot call this type");
            return false;
        }
        // has call, is definitely a function
        lua_pop(L, 2);
        return true;
    }
};

template <typename T, typename C>
struct checker<T, type::table, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
        type t = type_of(L, index);
        if (t == type::table) {
            return true;
        }
        if (t != type::userdata) {
            handler(L, index, type::table, t, "value is not a table or a userdata that can behave like one");
            return false;
        }
        return true;
    }
};

template <type expected, typename C>
struct checker<metatable_t, expected, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
        if (lua_getmetatable(L, index) == 0) {
            return true;
        }
        type t = type_of(L, -1);
        if (t == type::table || t == type::none || t == type::lua_nil) {
            lua_pop(L, 1);
            return true;
        }
        if (t != type::userdata) {
            lua_pop(L, 1);
            handler(L, index, expected, t, "value does not have a valid metatable");
            return false;
        }
        return true;
    }
};

template <typename C>
struct checker<env_t, type::poly, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
        type t = type_of(L, index);
        if (t == type::table || t == type::none || t == type::lua_nil || t == type::userdata) {
            return true;
        }
        handler(L, index, type::table, t, "value cannot not have a valid environment");
        return true;
    }
};

template <typename E, typename C>
struct checker<basic_environment<E>, type::poly, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        tracking.use(1);
        if (lua_getmetatable(L, index) == 0) {
            return true;
        }
        type t = type_of(L, -1);
        if (t == type::table || t == type::none || t == type::lua_nil) {
            lua_pop(L, 1);
            return true;
        }
        if (t != type::userdata) {
            lua_pop(L, 1);
            handler(L, index, type::table, t, "value does not have a valid metatable");
            return false;
        }
        return true;
    }
};

template <typename T, typename C>
struct checker<detail::as_value_tag<T>, type::userdata, C> {
    template <typename U, typename Handler>
    static bool check(types<U>, lua_State* L, int index, type indextype, Handler&& handler, record& tracking)
    {
#ifdef SOL_ENABLE_INTEROP
        userdata_checker<extensible<T>> uc;
        (void)uc;
        if (uc.check(L, index, indextype, handler, tracking)) {
            return true;
        }
#endif // interop extensibility
        tracking.use(1);
        if (indextype != type::userdata) {
            handler(L, index, type::userdata, indextype, "value is not a valid userdata");
            return false;
        }
        if (meta::any<std::is_same<T, lightuserdata_value>, std::is_same<T, userdata_value>, std::is_same<T, userdata>, std::is_same<T, lightuserdata>>::value)
            return true;
        if (lua_getmetatable(L, index) == 0) {
            return true;
        }
        int metatableindex = lua_gettop(L);
        if (stack_detail::check_metatable<U>(L, metatableindex))
            return true;
        if (stack_detail::check_metatable<U*>(L, metatableindex))
            return true;
        if (stack_detail::check_metatable<detail::unique_usertype<U>>(L, metatableindex))
            return true;
        if (stack_detail::check_metatable<as_container_t<U>>(L, metatableindex))
            return true;
        bool success = false;
        if (detail::has_derived<T>::value) {
            auto pn = stack::pop_n(L, 1);
            lua_pushstring(L, &detail::base_class_check_key()[0]);
            lua_rawget(L, metatableindex);
            if (type_of(L, -1) != type::lua_nil) {
                void* basecastdata = lua_touserdata(L, -1);
                detail::inheritance_check_function ic = (detail::inheritance_check_function)basecastdata;
                success = ic(detail::id_for<T>::value);
            }
        }
        if (!success) {
            lua_pop(L, 1);
            handler(L, index, type::userdata, indextype, "value at this index does not properly reflect the desired type");
            return false;
        }
        lua_pop(L, 1);
        return true;
    }
};

template <typename T, typename C>
struct checker<T, type::userdata, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        const type indextype = type_of(L, index);
        return checker<detail::as_value_tag<T>, type::userdata, C>{}.check(types<T>(), L, index, indextype, std::forward<Handler>(handler), tracking);
    }
};

template <typename T, typename C>
struct checker<T*, type::userdata, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        const type indextype = type_of(L, index);
        // Allow lua_nil to be transformed to nullptr
        if (indextype == type::lua_nil) {
            tracking.use(1);
            return true;
        }
        return checker<meta::unqualified_t<T>, type::userdata, C>{}.check(L, index, std::forward<Handler>(handler), tracking);
    }
};

template <typename X>
struct checker<X, type::userdata, std::enable_if_t<is_unique_usertype<X>::value>> {
    typedef typename unique_usertype_traits<X>::type T;
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        const type indextype = type_of(L, index);
        tracking.use(1);
        if (indextype != type::userdata) {
            handler(L, index, type::userdata, indextype, "value is not a userdata");
            return false;
        }
        if (lua_getmetatable(L, index) == 0) {
            return true;
        }
        int metatableindex = lua_gettop(L);
        if (stack_detail::check_metatable<detail::unique_usertype<T>>(L, metatableindex)) {
            void* memory = lua_touserdata(L, index);
            memory = detail::align_usertype_unique_destructor(memory);
            detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory);
            bool success = &detail::usertype_unique_alloc_destroy<T, X> == pdx;
            if (!success) {
                handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype");
            }
            return success;
        }
        lua_pop(L, 1);
        handler(L, index, type::userdata, indextype, "unrecognized userdata (not pushed by sol?)");
        return false;
    }
};

template <typename T, typename C>
struct checker<std::reference_wrapper<T>, type::userdata, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        return checker<T, type::userdata, C>{}.check(L, index, std::forward<Handler>(handler), tracking);
    }
};

template <typename... Args, typename C>
struct checker<std::tuple<Args...>, type::poly, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        return stack::multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking);
    }
};

template <typename A, typename B, typename C>
struct checker<std::pair<A, B>, type::poly, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        return stack::multi_check<A, B>(L, index, std::forward<Handler>(handler), tracking);
    }
};

template <typename T, typename C>
struct checker<optional<T>, type::poly, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&&, record& tracking)
    {
        type t = type_of(L, index);
        if (t == type::none) {
            tracking.use(0);
            return true;
        }
        if (t == type::lua_nil) {
            tracking.use(1);
            return true;
        }
        return stack::check<T>(L, index, no_panic, tracking);
    }
};

#ifdef SOL_CXX17_FEATURES
template <typename... Tn, typename C>
struct checker<std::variant<Tn...>, type::poly, C> {
    typedef std::variant<Tn...> V;
    typedef std::variant_size<V> V_size;
    typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;

    template <typename Handler>
    static bool is_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking)
    {
        if (V_is_empty::value && lua_isnone(L, index)) {
            return true;
        }
        tracking.use(1);
        handler(L, index, type::poly, type_of(L, index), "value does not fit any type present in the variant");
        return false;
    }

    template <std::size_t I, typename Handler>
    static bool is_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking)
    {
        typedef std::variant_alternative_t<I - 1, V> T;
        if (stack::check<T>(L, index, no_panic, tracking)) {
            return true;
        }
        return is_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking);
    }

    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        return is_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking);
    }
};
#endif // C++17
}
} // namespace sol::stack

// end of sol/stack_check.hpp

// beginning of sol/stack_get.hpp

// beginning of sol/overload.hpp

namespace sol {
template <typename... Functions>
struct overload_set {
    std::tuple<Functions...> functions;
    template <typename Arg, typename... Args, meta::disable<std::is_same<overload_set, meta::unqualified_t<Arg>>> = meta::enabler>
    overload_set(Arg&& arg, Args&&... args)
        : functions(std::forward<Arg>(arg), std::forward<Args>(args)...)
    {
    }
    overload_set(const overload_set&) = default;
    overload_set(overload_set&&) = default;
    overload_set& operator=(const overload_set&) = default;
    overload_set& operator=(overload_set&&) = default;
};

template <typename... Args>
decltype(auto) overload(Args&&... args)
{
    return overload_set<std::decay_t<Args>...>(std::forward<Args>(args)...);
}
} // namespace sol

// end of sol/overload.hpp

#ifdef SOL_CODECVT_SUPPORT
#include <codecvt>
#endif // codecvt header support
#ifdef SOL_CXX17_FEATURES
#endif // C++17

namespace sol {
namespace stack {

template <typename U>
struct userdata_getter<U> {
    typedef stack_detail::strip_extensible_t<U> T;

    static std::pair<bool, T*> get(lua_State*, int, void*, record&)
    {
        return { false, nullptr };
    }
};

template <typename T, typename>
struct getter {
    static T& get(lua_State* L, int index, record& tracking)
    {
        return getter<detail::as_value_tag<T>>{}.get(L, index, tracking);
    }
};

template <typename T>
struct getter<T, std::enable_if_t<std::is_floating_point<T>::value>> {
    static T get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        return static_cast<T>(lua_tonumber(L, index));
    }
};

template <typename T>
struct getter<T, std::enable_if_t<std::is_integral<T>::value>> {
    static T get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
#if SOL_LUA_VERSION >= 503
        if (lua_isinteger(L, index) != 0) {
            return static_cast<T>(lua_tointeger(L, index));
        }
#endif
        return static_cast<T>(llround(lua_tonumber(L, index)));
    }
};

template <typename T>
struct getter<T, std::enable_if_t<std::is_enum<T>::value>> {
    static T get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        return static_cast<T>(lua_tointegerx(L, index, nullptr));
    }
};

template <typename T>
struct getter<as_table_t<T>> {
    typedef meta::unqualified_t<T> Tu;

    template <typename V>
    static void push_back_at_end(std::true_type, types<V>, lua_State* L, T& arr, std::size_t)
    {
        arr.push_back(stack::get<V>(L, -lua_size<V>::value));
    }

    template <typename V>
    static void push_back_at_end(std::false_type, types<V> t, lua_State* L, T& arr, std::size_t idx)
    {
        insert_at_end(meta::has_insert<Tu>(), t, L, arr, idx);
    }

    template <typename V>
    static void insert_at_end(std::true_type, types<V>, lua_State* L, T& arr, std::size_t)
    {
        using std::end;
        arr.insert(end(arr), stack::get<V>(L, -lua_size<V>::value));
    }

    template <typename V>
    static void insert_at_end(std::false_type, types<V>, lua_State* L, T& arr, std::size_t idx)
    {
        arr[idx] = stack::get<V>(L, -lua_size<V>::value);
    }

    static T get(lua_State* L, int relindex, record& tracking)
    {
        return get(meta::has_key_value_pair<meta::unqualified_t<T>>(), L, relindex, tracking);
    }

    static T get(std::false_type, lua_State* L, int relindex, record& tracking)
    {
        typedef typename T::value_type V;
        return get(types<V>(), L, relindex, tracking);
    }

    template <typename V>
    static T get(types<V> t, lua_State* L, int relindex, record& tracking)
    {
        tracking.use(1);

        int index = lua_absindex(L, relindex);
        T arr;
        std::size_t idx = 0;
#if SOL_LUA_VERSION >= 503
        // This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3
        for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
            if (idx >= arr.max_size()) {
                return arr;
            }
            bool isnil = false;
            for (int vi = 0; vi < lua_size<V>::value; ++vi) {
                type vt = static_cast<type>(lua_geti(L, index, i + vi));
                isnil = vt == type::lua_nil;
                if (isnil) {
                    if (i == 0) {
                        break;
                    }
                    lua_pop(L, (vi + 1));
                    return arr;
                }
            }
            if (isnil)
                continue;
            push_back_at_end(meta::has_push_back<Tu>(), t, L, arr, idx);
            ++idx;
        }
#else
        // Zzzz slower but necessary thanks to the lower version API and missing functions qq
        for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
            if (idx >= arr.max_size()) {
                return arr;
            }
            bool isnil = false;
            for (int vi = 0; vi < lua_size<V>::value; ++vi) {
                lua_pushinteger(L, i);
                lua_gettable(L, index);
                type vt = type_of(L, -1);
                isnil = vt == type::lua_nil;
                if (isnil) {
                    if (i == 0) {
                        break;
                    }
                    lua_pop(L, (vi + 1));
                    return arr;
                }
            }
            if (isnil)
                continue;
            push_back_at_end(meta::has_push_back<Tu>(), t, L, arr, idx);
            ++idx;
        }
#endif
        return arr;
    }

    static T get(std::true_type, lua_State* L, int index, record& tracking)
    {
        typedef typename T::value_type P;
        typedef typename P::first_type K;
        typedef typename P::second_type V;
        return get(types<K, V>(), L, index, tracking);
    }

    template <typename K, typename V>
    static T get(types<K, V>, lua_State* L, int relindex, record& tracking)
    {
        tracking.use(1);

        T associative;
        int index = lua_absindex(L, relindex);
        lua_pushnil(L);
        while (lua_next(L, index) != 0) {
            decltype(auto) key = stack::check_get<K>(L, -2);
            if (!key) {
                lua_pop(L, 1);
                continue;
            }
            associative.emplace(std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
            lua_pop(L, 1);
        }
        return associative;
    }
};

template <typename T, typename Al>
struct getter<as_table_t<std::forward_list<T, Al>>> {
    typedef std::forward_list<T, Al> C;

    static C get(lua_State* L, int relindex, record& tracking)
    {
        return get(meta::has_key_value_pair<C>(), L, relindex, tracking);
    }

    static C get(std::true_type, lua_State* L, int index, record& tracking)
    {
        typedef typename T::value_type P;
        typedef typename P::first_type K;
        typedef typename P::second_type V;
        return get(types<K, V>(), L, index, tracking);
    }

    static C get(std::false_type, lua_State* L, int relindex, record& tracking)
    {
        typedef typename C::value_type V;
        return get(types<V>(), L, relindex, tracking);
    }

    template <typename V>
    static C get(types<V>, lua_State* L, int relindex, record& tracking)
    {
        tracking.use(1);

        int index = lua_absindex(L, relindex);
        C arr;
        auto at = arr.cbefore_begin();
        std::size_t idx = 0;
#if SOL_LUA_VERSION >= 503
        // This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3
        for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
            if (idx >= arr.max_size()) {
                return arr;
            }
            bool isnil = false;
            for (int vi = 0; vi < lua_size<V>::value; ++vi) {
                type t = static_cast<type>(lua_geti(L, index, i + vi));
                isnil = t == type::lua_nil;
                if (isnil) {
                    if (i == 0) {
                        break;
                    }
                    lua_pop(L, (vi + 1));
                    return arr;
                }
            }
            if (isnil)
                continue;
            at = arr.insert_after(at, stack::get<V>(L, -lua_size<V>::value));
            ++idx;
        }
#else
        // Zzzz slower but necessary thanks to the lower version API and missing functions qq
        for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) {
            if (idx >= arr.max_size()) {
                return arr;
            }
            bool isnil = false;
            for (int vi = 0; vi < lua_size<V>::value; ++vi) {
                lua_pushinteger(L, i);
                lua_gettable(L, index);
                type t = type_of(L, -1);
                isnil = t == type::lua_nil;
                if (isnil) {
                    if (i == 0) {
                        break;
                    }
                    lua_pop(L, (vi + 1));
                    return arr;
                }
            }
            if (isnil)
                continue;
            at = arr.insert_after(at, stack::get<V>(L, -lua_size<V>::value));
            ++idx;
        }
#endif
        return arr;
    }

    template <typename K, typename V>
    static C get(types<K, V>, lua_State* L, int relindex, record& tracking)
    {
        tracking.use(1);

        C associative;
        auto at = associative.cbefore_begin();
        int index = lua_absindex(L, relindex);
        lua_pushnil(L);
        while (lua_next(L, index) != 0) {
            decltype(auto) key = stack::check_get<K>(L, -2);
            if (!key) {
                lua_pop(L, 1);
                continue;
            }
            at = associative.emplace_after(at, std::forward<decltype(*key)>(*key), stack::get<V>(L, -1));
            lua_pop(L, 1);
        }
        return associative;
    }
};

template <typename T>
struct getter<nested<T>, std::enable_if_t<!is_container<T>::value>> {
    static T get(lua_State* L, int index, record& tracking)
    {
        getter<T> g;
        // VC++ has a bad warning here: shut it up
        (void)g;
        return g.get(L, index, tracking);
    }
};

template <typename T>
struct getter<nested<T>, std::enable_if_t<meta::all<is_container<T>, meta::neg<meta::has_key_value_pair<meta::unqualified_t<T>>>>::value>> {
    static T get(lua_State* L, int index, record& tracking)
    {
        typedef typename T::value_type V;
        getter<as_table_t<T>> g;
        // VC++ has a bad warning here: shut it up
        (void)g;
        return g.get(types<nested<V>>(), L, index, tracking);
    }
};

template <typename T>
struct getter<nested<T>, std::enable_if_t<meta::all<is_container<T>, meta::has_key_value_pair<meta::unqualified_t<T>>>::value>> {
    static T get(lua_State* L, int index, record& tracking)
    {
        typedef typename T::value_type P;
        typedef typename P::first_type K;
        typedef typename P::second_type V;
        getter<as_table_t<T>> g;
        // VC++ has a bad warning here: shut it up
        (void)g;
        return g.get(types<K, nested<V>>(), L, index, tracking);
    }
};

template <typename T>
struct getter<T, std::enable_if_t<is_lua_reference<T>::value>> {
    static T get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        return T(L, index);
    }
};

template <>
struct getter<userdata_value> {
    static userdata_value get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        return userdata_value(lua_touserdata(L, index));
    }
};

template <>
struct getter<lightuserdata_value> {
    static lightuserdata_value get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        return lightuserdata_value(lua_touserdata(L, index));
    }
};

template <typename T>
struct getter<light<T>> {
    static light<T> get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        void* memory = lua_touserdata(L, index);
        return light<T>(static_cast<T*>(memory));
    }
};

template <typename T>
struct getter<user<T>> {
    static std::add_lvalue_reference_t<T> get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        void* memory = lua_touserdata(L, index);
        memory = detail::align_user<T>(memory);
        return *static_cast<std::remove_reference_t<T>*>(memory);
    }
};

template <typename T>
struct getter<user<T*>> {
    static T* get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        void* memory = lua_touserdata(L, index);
        memory = detail::align_user<T*>(memory);
        return static_cast<T*>(memory);
    }
};

template <>
struct getter<type> {
    static type get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        return static_cast<type>(lua_type(L, index));
    }
};

template <>
struct getter<bool> {
    static bool get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        return lua_toboolean(L, index) != 0;
    }
};

template <>
struct getter<std::string> {
    static std::string get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        std::size_t len;
        auto str = lua_tolstring(L, index, &len);
        return std::string(str, len);
    }
};

template <>
struct getter<const char*> {
    static const char* get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        size_t sz;
        return lua_tolstring(L, index, &sz);
    }
};

template <>
struct getter<char> {
    static char get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        size_t len;
        auto str = lua_tolstring(L, index, &len);
        return len > 0 ? str[0] : '\0';
    }
};

template <>
struct getter<string_view> {
    static string_view get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        size_t sz;
        const char* str = lua_tolstring(L, index, &sz);
        return string_view(str, sz);
    }
};

#ifdef SOL_CODECVT_SUPPORT
template <>
struct getter<std::wstring> {
    static std::wstring get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        size_t len;
        auto str = lua_tolstring(L, index, &len);
        if (len < 1)
            return std::wstring();
        if (sizeof(wchar_t) == 2) {
            thread_local std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> convert;
            std::wstring r = convert.from_bytes(str, str + len);
#if defined(__MINGW32__) && defined(__GNUC__) && __GNUC__ < 7
            // Fuck you, MinGW, and fuck you libstdc++ for introducing this absolutely asinine bug
            // https://sourceforge.net/p/mingw-w64/bugs/538/
            // http://chat.stackoverflow.com/transcript/message/32271369#32271369
            for (auto& c : r) {
                uint8_t* b = reinterpret_cast<uint8_t*>(&c);
                std::swap(b[0], b[1]);
            }
#endif
            return r;
        }
        thread_local std::wstring_convert<std::codecvt_utf8<wchar_t>> convert;
        std::wstring r = convert.from_bytes(str, str + len);
        return r;
    }
};

template <>
struct getter<std::u16string> {
    static std::u16string get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        size_t len;
        auto str = lua_tolstring(L, index, &len);
        if (len < 1)
            return std::u16string();
#ifdef _MSC_VER
        thread_local std::wstring_convert<std::codecvt_utf8_utf16<int16_t>, int16_t> convert;
        auto intd = convert.from_bytes(str, str + len);
        std::u16string r(intd.size(), '\0');
        std::memcpy(&r[0], intd.data(), intd.size() * sizeof(char16_t));
#else
        thread_local std::wstring_convert<std::codecvt_utf8_utf16<char16_t>, char16_t> convert;
        std::u16string r = convert.from_bytes(str, str + len);
#endif // VC++ is a shit
        return r;
    }
};

template <>
struct getter<std::u32string> {
    static std::u32string get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        size_t len;
        auto str = lua_tolstring(L, index, &len);
        if (len < 1)
            return std::u32string();
#ifdef _MSC_VER
        thread_local std::wstring_convert<std::codecvt_utf8<int32_t>, int32_t> convert;
        auto intd = convert.from_bytes(str, str + len);
        std::u32string r(intd.size(), '\0');
        std::memcpy(&r[0], intd.data(), r.size() * sizeof(char32_t));
#else
        thread_local std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> convert;
        std::u32string r = convert.from_bytes(str, str + len);
#endif // VC++ is a shit
        return r;
    }
};

template <>
struct getter<wchar_t> {
    static wchar_t get(lua_State* L, int index, record& tracking)
    {
        auto str = getter<std::wstring>{}.get(L, index, tracking);
        return str.size() > 0 ? str[0] : wchar_t(0);
    }
};

template <>
struct getter<char16_t> {
    static char16_t get(lua_State* L, int index, record& tracking)
    {
        auto str = getter<std::u16string>{}.get(L, index, tracking);
        return str.size() > 0 ? str[0] : char16_t(0);
    }
};

template <>
struct getter<char32_t> {
    static char32_t get(lua_State* L, int index, record& tracking)
    {
        auto str = getter<std::u32string>{}.get(L, index, tracking);
        return str.size() > 0 ? str[0] : char32_t(0);
    }
};
#endif // codecvt header support

template <>
struct getter<meta_function> {
    static meta_function get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        const char* name = getter<const char*>{}.get(L, index, tracking);
        const auto& mfnames = meta_function_names();
        for (std::size_t i = 0; i < mfnames.size(); ++i)
            if (mfnames[i] == name)
                return static_cast<meta_function>(i);
        return meta_function::construct;
    }
};

template <>
struct getter<lua_nil_t> {
    static lua_nil_t get(lua_State*, int, record& tracking)
    {
        tracking.use(1);
        return lua_nil;
    }
};

template <>
struct getter<std::nullptr_t> {
    static std::nullptr_t get(lua_State*, int, record& tracking)
    {
        tracking.use(1);
        return nullptr;
    }
};

template <>
struct getter<nullopt_t> {
    static nullopt_t get(lua_State*, int, record& tracking)
    {
        tracking.use(1);
        return nullopt;
    }
};

template <>
struct getter<this_state> {
    static this_state get(lua_State* L, int, record& tracking)
    {
        tracking.use(0);
        return this_state(L);
    }
};

template <>
struct getter<this_main_state> {
    static this_main_state get(lua_State* L, int, record& tracking)
    {
        tracking.use(0);
        return this_main_state(main_thread(L, L));
    }
};

template <>
struct getter<lua_CFunction> {
    static lua_CFunction get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        return lua_tocfunction(L, index);
    }
};

template <>
struct getter<c_closure> {
    static c_closure get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        return c_closure(lua_tocfunction(L, index), -1);
    }
};

template <>
struct getter<error> {
    static error get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        size_t sz = 0;
        const char* err = lua_tolstring(L, index, &sz);
        if (err == nullptr) {
            return error(detail::direct_error, "");
        }
        return error(detail::direct_error, std::string(err, sz));
    }
};

template <>
struct getter<void*> {
    static void* get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        return lua_touserdata(L, index);
    }
};

template <typename T>
struct getter<detail::as_value_tag<T>> {
    static T* get_no_lua_nil(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        void* memory = lua_touserdata(L, index);
#ifdef SOL_ENABLE_INTEROP
        userdata_getter<extensible<T>> ug;
        (void)ug;
        auto ugr = ug.get(L, index, memory, tracking);
        if (ugr.first) {
            return ugr.second;
        }
#endif // interop extensibility
        void* rawdata = detail::align_usertype_pointer(memory);
        void** pudata = static_cast<void**>(rawdata);
        void* udata = *pudata;
        return get_no_lua_nil_from(L, udata, index, tracking);
    }

    static T* get_no_lua_nil_from(lua_State* L, void* udata, int index, record&)
    {
        if (detail::has_derived<T>::value && luaL_getmetafield(L, index, &detail::base_class_cast_key()[0]) != 0) {
            void* basecastdata = lua_touserdata(L, -1);
            detail::inheritance_cast_function ic = (detail::inheritance_cast_function)basecastdata;
            // use the casting function to properly adjust the pointer for the desired T
            udata = ic(udata, detail::id_for<T>::value);
            lua_pop(L, 1);
        }
        T* obj = static_cast<T*>(udata);
        return obj;
    }

    static T& get(lua_State* L, int index, record& tracking)
    {
        return *get_no_lua_nil(L, index, tracking);
    }
};

template <typename T>
struct getter<detail::as_pointer_tag<T>> {
    static T* get(lua_State* L, int index, record& tracking)
    {
        type t = type_of(L, index);
        if (t == type::lua_nil) {
            tracking.use(1);
            return nullptr;
        }
        getter<detail::as_value_tag<T>> g;
        // Avoid VC++ warning
        (void)g;
        return g.get_no_lua_nil(L, index, tracking);
    }
};

template <typename T>
struct getter<non_null<T*>> {
    static T* get(lua_State* L, int index, record& tracking)
    {
        getter<detail::as_value_tag<T>> g;
        // Avoid VC++ warning
        (void)g;
        return g.get_no_lua_nil(L, index, tracking);
    }
};

template <typename T>
struct getter<T&> {
    static T& get(lua_State* L, int index, record& tracking)
    {
        getter<detail::as_value_tag<T>> g;
        // Avoid VC++ warning
        (void)g;
        return g.get(L, index, tracking);
    }
};

template <typename T>
struct getter<std::reference_wrapper<T>> {
    static T& get(lua_State* L, int index, record& tracking)
    {
        getter<T&> g;
        // Avoid VC++ warning
        (void)g;
        return g.get(L, index, tracking);
    }
};

template <typename T>
struct getter<T*> {
    static T* get(lua_State* L, int index, record& tracking)
    {
        getter<detail::as_pointer_tag<T>> g;
        // Avoid VC++ warning
        (void)g;
        return g.get(L, index, tracking);
    }
};

template <typename T>
struct getter<T, std::enable_if_t<is_unique_usertype<T>::value>> {
    typedef typename unique_usertype_traits<T>::type P;
    typedef typename unique_usertype_traits<T>::actual_type Real;

    static Real& get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        void* memory = lua_touserdata(L, index);
        memory = detail::align_usertype_unique<Real>(memory);
        Real* mem = static_cast<Real*>(memory);
        return *mem;
    }
};

template <typename... Tn>
struct getter<std::tuple<Tn...>> {
    typedef std::tuple<decltype(stack::get<Tn>(nullptr, 0))...> R;

    template <typename... Args>
    static R apply(std::index_sequence<>, lua_State*, int, record&, Args&&... args)
    {
        // Fuck you too, VC++
        return R{ std::forward<Args>(args)... };
    }

    template <std::size_t I, std::size_t... Ix, typename... Args>
    static R apply(std::index_sequence<I, Ix...>, lua_State* L, int index, record& tracking, Args&&... args)
    {
        // Fuck you too, VC++
        typedef std::tuple_element_t<I, std::tuple<Tn...>> T;
        return apply(std::index_sequence<Ix...>(), L, index, tracking, std::forward<Args>(args)..., stack::get<T>(L, index + tracking.used, tracking));
    }

    static R get(lua_State* L, int index, record& tracking)
    {
        return apply(std::make_index_sequence<sizeof...(Tn)>(), L, index, tracking);
    }
};

template <typename A, typename B>
struct getter<std::pair<A, B>> {
    static decltype(auto) get(lua_State* L, int index, record& tracking)
    {
        return std::pair<decltype(stack::get<A>(L, index)), decltype(stack::get<B>(L, index))>{ stack::get<A>(L, index, tracking), stack::get<B>(L, index + tracking.used, tracking) };
    }
};

#ifdef SOL_CXX17_FEATURES
template <typename... Tn>
struct getter<std::variant<Tn...>> {
    typedef std::variant<Tn...> V;
    typedef std::variant_size<V> V_size;
    typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;

    static V get_empty(std::true_type, lua_State*, int, record&)
    {
        return V();
    }

    static V get_empty(std::false_type, lua_State* L, int index, record& tracking)
    {
        typedef std::variant_alternative_t<0, V> T;
        // This should never be reached...
        // please check your code and understand what you did to bring yourself here
        std::abort();
        return V(std::in_place_index<0>, stack::get<T>(L, index, tracking));
    }

    static V get_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, record& tracking)
    {
        return get_empty(V_is_empty(), L, index, tracking);
    }

    template <std::size_t I>
    static V get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, record& tracking)
    {
        typedef std::variant_alternative_t<I - 1, V> T;
        if (stack::check<T>(L, index, no_panic, tracking)) {
            return V(std::in_place_index<I - 1>, stack::get<T>(L, index));
        }
        return get_one(std::integral_constant<std::size_t, I - 1>(), L, index, tracking);
    }

    static V get(lua_State* L, int index, record& tracking)
    {
        return get_one(std::integral_constant<std::size_t, V_size::value>(), L, index, tracking);
    }
};
#endif // C++17-wave
}
} // namespace sol::stack

// end of sol/stack_get.hpp

// beginning of sol/stack_check_get.hpp

namespace sol {
namespace stack {
template <typename T, typename>
struct check_getter {
    typedef decltype(stack_detail::unchecked_get<T>(nullptr, 0, std::declval<record&>())) R;

    template <typename Handler>
    static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        if (!check<T>(L, index, std::forward<Handler>(handler))) {
            tracking.use(static_cast<int>(!lua_isnone(L, index)));
            return nullopt;
        }
        return stack_detail::unchecked_get<T>(L, index, tracking);
    }
};

template <typename T>
struct check_getter<optional<T>> {
    template <typename Handler>
    static decltype(auto) get(lua_State* L, int index, Handler&&, record& tracking)
    {
        return check_get<T>(L, index, no_panic, tracking);
    }
};

template <typename T>
struct check_getter<T, std::enable_if_t<std::is_integral<T>::value && lua_type_of<T>::value == type::number>> {
    template <typename Handler>
    static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking)
    {
#if SOL_LUA_VERSION >= 503
        if (lua_isinteger(L, index) != 0) {
            tracking.use(1);
            return static_cast<T>(lua_tointeger(L, index));
        }
#endif
        int isnum = 0;
        const lua_Number value = lua_tonumberx(L, index, &isnum);
        if (isnum != 0) {
#if defined(SOL_CHECK_ARGUMENTS) && !defined(SOL_NO_CHECK_NUMBER_PRECISION)
            const auto integer_value = llround(value);
            if (static_cast<lua_Number>(integer_value) == value) {
                tracking.use(1);
                return static_cast<T>(integer_value);
            }
#else
            tracking.use(1);
            return static_cast<T>(value);
#endif
        }
        const type t = type_of(L, index);
        tracking.use(static_cast<int>(t != type::none));
        handler(L, index, type::number, t, "not an integer");
        return nullopt;
    }
};

template <typename T>
struct check_getter<T, std::enable_if_t<std::is_enum<T>::value && !meta::any_same<T, meta_function, type>::value>> {
    template <typename Handler>
    static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        int isnum = 0;
        lua_Integer value = lua_tointegerx(L, index, &isnum);
        if (isnum == 0) {
            type t = type_of(L, index);
            tracking.use(static_cast<int>(t != type::none));
            handler(L, index, type::number, t, "not a valid enumeration value");
            return nullopt;
        }
        tracking.use(1);
        return static_cast<T>(value);
    }
};

template <typename T>
struct check_getter<T, std::enable_if_t<std::is_floating_point<T>::value>> {
    template <typename Handler>
    static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        int isnum = 0;
        lua_Number value = lua_tonumberx(L, index, &isnum);
        if (isnum == 0) {
            type t = type_of(L, index);
            tracking.use(static_cast<int>(t != type::none));
            handler(L, index, type::number, t, "not a valid floating point number");
            return nullopt;
        }
        tracking.use(1);
        return static_cast<T>(value);
    }
};

template <typename T>
struct getter<optional<T>> {
    static decltype(auto) get(lua_State* L, int index, record& tracking)
    {
        return check_get<T>(L, index, no_panic, tracking);
    }
};

#ifdef SOL_CXX17_FEATURES
template <typename... Tn>
struct check_getter<std::variant<Tn...>> {
    typedef std::variant<Tn...> V;
    typedef std::variant_size<V> V_size;
    typedef std::integral_constant<bool, V_size::value == 0> V_is_empty;

    template <typename Handler>
    static optional<V> get_empty(std::true_type, lua_State* L, int index, Handler&& handler, record& tracking)
    {
        return nullopt;
    }

    template <typename Handler>
    static optional<V> get_empty(std::false_type, lua_State* L, int index, Handler&& handler, record& tracking)
    {
        typedef std::variant_alternative_t<0, V> T;
        // This should never be reached...
        // please check your code and understand what you did to bring yourself here
        handler(L, index, type::poly, type_of(L, index), "this variant code should never be reached: if it has, you have done something so terribly wrong");
        return nullopt;
    }

    template <typename Handler>
    static optional<V> get_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking)
    {
        return get_empty(V_is_empty(), L, index, std::forward<Handler>(handler), tracking);
    }

    template <std::size_t I, typename Handler>
    static optional<V> get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking)
    {
        typedef std::variant_alternative_t<I - 1, V> T;
        if (stack::check<T>(L, index, no_panic, tracking)) {
            return V(std::in_place_index<I - 1>, stack::get<T>(L, index));
        }
        return get_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking);
    }

    template <typename Handler>
    static optional<V> get(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        return get_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking);
    }
};
#endif // C++17
}
} // namespace sol::stack

// end of sol/stack_check_get.hpp

// beginning of sol/stack_push.hpp

#include <limits>
#ifdef SOL_CODECVT_SUPPORT
#endif // codecvt support
#ifdef SOL_CXX17_FEATURES
#endif // C++17

namespace sol {
namespace stack {
inline int push_environment_of(lua_State* L, int index = -1)
{
#if SOL_LUA_VERSION < 502
    // Use lua_getfenv
    lua_getfenv(L, index);
    return 1;
#else
    // Use upvalues as explained in Lua 5.2 and beyond's manual
    if (lua_getupvalue(L, index, 1) == nullptr) {
        push(L, lua_nil);
        return 1;
    }
#endif
    return 1;
}

template <typename T>
int push_environment_of(const T& target)
{
    target.push();
    return push_environment_of(target.lua_state(), -1) + 1;
}

template <typename T>
struct pusher<detail::as_value_tag<T>> {
    template <typename F, typename... Args>
    static int push_fx(lua_State* L, F&& f, Args&&... args)
    {
        // Basically, we store all user-data like this:
        // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new
        // data in the first sizeof(T*) bytes, and then however many bytes it takes to
        // do the actual object. Things that are std::ref or plain T* are stored as
        // just the sizeof(T*), and nothing else.
        T* obj = detail::usertype_allocate<T>(L);
        std::allocator<T> alloc{};
        alloc.construct(obj, std::forward<Args>(args)...);
        f();
        return 1;
    }

    template <typename K, typename... Args>
    static int push_keyed(lua_State* L, K&& k, Args&&... args)
    {
        stack_detail::undefined_metatable<T> fx(L, &k[0]);
        return push_fx(L, fx, std::forward<Args>(args)...);
    }

    template <typename... Args>
    static int push(lua_State* L, Args&&... args)
    {
        return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Args>(args)...);
    }
};

template <typename T>
struct pusher<detail::as_pointer_tag<T>> {
    typedef meta::unqualified_t<T> U;

    template <typename F>
    static int push_fx(lua_State* L, F&& f, T* obj)
    {
        if (obj == nullptr)
            return stack::push(L, lua_nil);
        T** pref = detail::usertype_allocate_pointer<T>(L);
        *pref = obj;
        f();
        return 1;
    }

    template <typename K>
    static int push_keyed(lua_State* L, K&& k, T* obj)
    {
        stack_detail::undefined_metatable<U*> fx(L, &k[0]);
        return push_fx(L, fx, obj);
    }

    static int push(lua_State* L, T* obj)
    {
        return push_keyed(L, usertype_traits<U*>::metatable(), obj);
    }
};

template <>
struct pusher<detail::as_reference_tag> {
    template <typename T>
    static int push(lua_State* L, T&& obj)
    {
        return stack::push(L, detail::ptr(obj));
    }
};

template <typename T, typename>
struct pusher {
    template <typename... Args>
    static int push(lua_State* L, Args&&... args)
    {
        return pusher<detail::as_value_tag<T>>{}.push(L, std::forward<Args>(args)...);
    }
};

template <typename T>
struct pusher<T*, meta::disable_if_t<meta::any<is_container<meta::unqualified_t<T>>, std::is_function<meta::unqualified_t<T>>, is_lua_reference<meta::unqualified_t<T>>>::value>> {
    template <typename... Args>
    static int push(lua_State* L, Args&&... args)
    {
        return pusher<detail::as_pointer_tag<T>>{}.push(L, std::forward<Args>(args)...);
    }
};

template <typename T>
struct pusher<T, std::enable_if_t<is_unique_usertype<T>::value>> {
    typedef typename unique_usertype_traits<T>::type P;
    typedef typename unique_usertype_traits<T>::actual_type Real;

    template <typename Arg, meta::enable<std::is_base_of<Real, meta::unqualified_t<Arg>>> = meta::enabler>
    static int push(lua_State* L, Arg&& arg)
    {
        if (unique_usertype_traits<T>::is_null(arg)) {
            return stack::push(L, lua_nil);
        }
        return push_deep(L, std::forward<Arg>(arg));
    }

    template <typename Arg0, typename Arg1, typename... Args>
    static int push(lua_State* L, Arg0&& arg0, Arg0&& arg1, Args&&... args)
    {
        return push_deep(L, std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...);
    }

    template <typename... Args>
    static int push_deep(lua_State* L, Args&&... args)
    {
        P** pref = nullptr;
        detail::unique_destructor* fx = nullptr;
        Real* mem = detail::usertype_unique_allocate<P, Real>(L, pref, fx);
        *fx = detail::usertype_unique_alloc_destroy<P, Real>;
        detail::default_construct::construct(mem, std::forward<Args>(args)...);
        *pref = unique_usertype_traits<T>::get(*mem);
        if (luaL_newmetatable(L, &usertype_traits<detail::unique_usertype<P>>::metatable()[0]) == 1) {
            luaL_Reg l[32]{};
            int index = 0;
            auto prop_fx = [](meta_function) { return true; };
            usertype_detail::insert_default_registrations<P>(l, index, prop_fx);
            usertype_detail::make_destructor<T>(l, index);
            luaL_setfuncs(L, l, 0);
        }
        lua_setmetatable(L, -2);
        return 1;
    }
};

template <typename T>
struct pusher<std::reference_wrapper<T>> {
    static int push(lua_State* L, const std::reference_wrapper<T>& t)
    {
        return stack::push(L, std::addressof(detail::deref(t.get())));
    }
};

template <typename T>
struct pusher<T, std::enable_if_t<std::is_floating_point<T>::value>> {
    static int push(lua_State* L, const T& value)
    {
        lua_pushnumber(L, value);
        return 1;
    }
};

template <typename T>
struct pusher<T, std::enable_if_t<std::is_integral<T>::value>> {
    static int push(lua_State* L, const T& value)
    {
#if SOL_LUA_VERSION >= 503
        static auto integer_value_fits = [](T const& value) {
            if (sizeof(T) < sizeof(lua_Integer) || (std::is_signed<T>::value && sizeof(T) == sizeof(lua_Integer))) {
                return true;
            }
            auto u_min = static_cast<std::intmax_t>((std::numeric_limits<lua_Integer>::min)());
            auto u_max = static_cast<std::uintmax_t>((std::numeric_limits<lua_Integer>::max)());
            auto t_min = static_cast<std::intmax_t>((std::numeric_limits<T>::min)());
            auto t_max = static_cast<std::uintmax_t>((std::numeric_limits<T>::max)());
            return (u_min <= t_min || value >= static_cast<T>(u_min)) && (u_max >= t_max || value <= static_cast<T>(u_max));
        };
        if (integer_value_fits(value)) {
            lua_pushinteger(L, static_cast<lua_Integer>(value));
            return 1;
        }
#endif
#if defined(SOL_CHECK_ARGUMENTS) && !defined(SOL_NO_CHECK_NUMBER_PRECISION)
        if (static_cast<T>(llround(static_cast<lua_Number>(value))) != value) {
#ifdef SOL_NO_EXCEPTIONS
            // Is this really worth it?
            assert(false && "integer value will be misrepresented in lua");
            lua_pushnumber(L, static_cast<lua_Number>(value));
            return 1;
#else
            throw error(detail::direct_error, "integer value will be misrepresented in lua");
#endif
        }
#endif
        lua_pushnumber(L, static_cast<lua_Number>(value));
        return 1;
    }
};

template <typename T>
struct pusher<T, std::enable_if_t<std::is_enum<T>::value>> {
    static int push(lua_State* L, const T& value)
    {
        if (std::is_same<char, std::underlying_type_t<T>>::value) {
            return stack::push(L, static_cast<int>(value));
        }
        return stack::push(L, static_cast<std::underlying_type_t<T>>(value));
    }
};

template <typename T>
struct pusher<detail::as_table_tag<T>> {
    static int push(lua_State* L, const T& tablecont)
    {
        typedef meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>> has_kvp;
        return push(has_kvp(), L, tablecont);
    }

    static int push(std::true_type, lua_State* L, const T& tablecont)
    {
        auto& cont = detail::deref(detail::unwrap(tablecont));
        lua_createtable(L, static_cast<int>(cont.size()), 0);
        int tableindex = lua_gettop(L);
        for (const auto& pair : cont) {
            set_field(L, pair.first, pair.second, tableindex);
        }
        return 1;
    }

    static int push(std::false_type, lua_State* L, const T& tablecont)
    {
        auto& cont = detail::deref(detail::unwrap(tablecont));
        lua_createtable(L, stack_detail::get_size_hint(cont), 0);
        int tableindex = lua_gettop(L);
        std::size_t index = 1;
        for (const auto& i : cont) {
#if SOL_LUA_VERSION >= 503
            int p = stack::push(L, i);
            for (int pi = 0; pi < p; ++pi) {
                lua_seti(L, tableindex, static_cast<lua_Integer>(index++));
            }
#else
            lua_pushinteger(L, static_cast<lua_Integer>(index));
            int p = stack::push(L, i);
            if (p == 1) {
                ++index;
                lua_settable(L, tableindex);
            }
            else {
                int firstindex = tableindex + 1 + 1;
                for (int pi = 0; pi < p; ++pi) {
                    stack::push(L, index);
                    lua_pushvalue(L, firstindex);
                    lua_settable(L, tableindex);
                    ++index;
                    ++firstindex;
                }
                lua_pop(L, 1 + p);
            }
#endif
        }
        // TODO: figure out a better way to do this...?
        //set_field(L, -1, cont.size());
        return 1;
    }
};

template <typename T>
struct pusher<as_table_t<T>, std::enable_if_t<is_container<std::remove_pointer_t<meta::unwrap_unqualified_t<T>>>::value>> {
    static int push(lua_State* L, const T& tablecont)
    {
        return stack::push<detail::as_table_tag<T>>(L, tablecont);
    }
};

template <typename T>
struct pusher<as_table_t<T>, std::enable_if_t<!is_container<std::remove_pointer_t<meta::unwrap_unqualified_t<T>>>::value>> {
    static int push(lua_State* L, const T& v)
    {
        return stack::push(L, v);
    }
};

template <typename T>
struct pusher<nested<T>> {
    static int push(lua_State* L, const T& tablecont)
    {
        pusher<as_table_t<T>> p{};
        // silence annoying VC++ warning
        (void)p;
        return p.push(L, tablecont);
    }
};

template <typename T>
struct pusher<std::initializer_list<T>> {
    static int push(lua_State* L, const std::initializer_list<T>& il)
    {
        pusher<detail::as_table_tag<std::initializer_list<T>>> p{};
        // silence annoying VC++ warning
        (void)p;
        return p.push(L, il);
    }
};

template <typename T>
struct pusher<T, std::enable_if_t<is_lua_reference<T>::value>> {
    static int push(lua_State* L, const T& ref)
    {
        return ref.push(L);
    }

    static int push(lua_State* L, T&& ref)
    {
        return ref.push(L);
    }
};

template <>
struct pusher<bool> {
    static int push(lua_State* L, bool b)
    {
        lua_pushboolean(L, b);
        return 1;
    }
};

template <>
struct pusher<lua_nil_t> {
    static int push(lua_State* L, lua_nil_t)
    {
        lua_pushnil(L);
        return 1;
    }
};

template <>
struct pusher<stack_count> {
    static int push(lua_State*, stack_count st)
    {
        return st.count;
    }
};

template <>
struct pusher<metatable_t> {
    static int push(lua_State* L, metatable_t)
    {
        lua_pushlstring(L, "__mt", 4);
        return 1;
    }
};

template <>
struct pusher<std::remove_pointer_t<lua_CFunction>> {
    static int push(lua_State* L, lua_CFunction func, int n = 0)
    {
        lua_pushcclosure(L, func, n);
        return 1;
    }
};

template <>
struct pusher<lua_CFunction> {
    static int push(lua_State* L, lua_CFunction func, int n = 0)
    {
        lua_pushcclosure(L, func, n);
        return 1;
    }
};
#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
template <>
struct pusher<std::remove_pointer_t<detail::lua_CFunction_noexcept>> {
    static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0)
    {
        lua_pushcclosure(L, func, n);
        return 1;
    }
};

template <>
struct pusher<detail::lua_CFunction_noexcept> {
    static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0)
    {
        lua_pushcclosure(L, func, n);
        return 1;
    }
};
#endif // noexcept function type

template <>
struct pusher<c_closure> {
    static int push(lua_State* L, c_closure cc)
    {
        lua_pushcclosure(L, cc.c_function, cc.upvalues);
        return 1;
    }
};

template <typename Arg, typename... Args>
struct pusher<closure<Arg, Args...>> {
    template <std::size_t... I, typename T>
    static int push(std::index_sequence<I...>, lua_State* L, T&& c)
    {
        int pushcount = multi_push(L, detail::forward_get<I>(c.upvalues)...);
        return stack::push(L, c_closure(c.c_function, pushcount));
    }

    template <typename T>
    static int push(lua_State* L, T&& c)
    {
        return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c));
    }
};

template <>
struct pusher<void*> {
    static int push(lua_State* L, void* userdata)
    {
        lua_pushlightuserdata(L, userdata);
        return 1;
    }
};

template <>
struct pusher<lightuserdata_value> {
    static int push(lua_State* L, lightuserdata_value userdata)
    {
        lua_pushlightuserdata(L, userdata);
        return 1;
    }
};

template <typename T>
struct pusher<light<T>> {
    static int push(lua_State* L, light<T> l)
    {
        lua_pushlightuserdata(L, static_cast<void*>(l.value));
        return 1;
    }
};

template <typename T>
struct pusher<user<T>> {
    template <bool with_meta = true, typename Key, typename... Args>
    static int push_with(lua_State* L, Key&& name, Args&&... args)
    {
        // A dumb pusher
        T* data = detail::user_allocate<T>(L);
        std::allocator<T> alloc;
        alloc.construct(data, std::forward<Args>(args)...);
        if (with_meta) {
            // Make sure we have a plain GC set for this data
            if (luaL_newmetatable(L, name) != 0) {
                lua_CFunction cdel = detail::user_alloc_destruct<T>;
                lua_pushcclosure(L, cdel, 0);
                lua_setfield(L, -2, "__gc");
            }
            lua_setmetatable(L, -2);
        }
        return 1;
    }

    template <typename Arg, typename... Args, meta::disable<meta::any_same<meta::unqualified_t<Arg>, no_metatable_t, metatable_t>> = meta::enabler>
    static int push(lua_State* L, Arg&& arg, Args&&... args)
    {
        const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
        return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...);
    }

    template <typename... Args>
    static int push(lua_State* L, no_metatable_t, Args&&... args)
    {
        const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
        return push_with<false>(L, name, std::forward<Args>(args)...);
    }

    template <typename Key, typename... Args>
    static int push(lua_State* L, metatable_t, Key&& key, Args&&... args)
    {
        const auto name = &key[0];
        return push_with<true>(L, name, std::forward<Args>(args)...);
    }

    static int push(lua_State* L, const user<T>& u)
    {
        const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
        return push_with(L, name, u.value);
    }

    static int push(lua_State* L, user<T>&& u)
    {
        const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
        return push_with(L, name, std::move(u.value));
    }

    static int push(lua_State* L, no_metatable_t, const user<T>& u)
    {
        const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
        return push_with<false>(L, name, u.value);
    }

    static int push(lua_State* L, no_metatable_t, user<T>&& u)
    {
        const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0];
        return push_with<false>(L, name, std::move(u.value));
    }
};

template <>
struct pusher<userdata_value> {
    static int push(lua_State* L, userdata_value data)
    {
        void** ud = detail::usertype_allocate_pointer<void>(L);
        *ud = data.value;
        return 1;
    }
};

template <>
struct pusher<const char*> {
    static int push_sized(lua_State* L, const char* str, std::size_t len)
    {
        lua_pushlstring(L, str, len);
        return 1;
    }

    static int push(lua_State* L, const char* str)
    {
        if (str == nullptr)
            return stack::push(L, lua_nil);
        return push_sized(L, str, std::char_traits<char>::length(str));
    }

    static int push(lua_State* L, const char* strb, const char* stre)
    {
        return push_sized(L, strb, stre - strb);
    }

    static int push(lua_State* L, const char* str, std::size_t len)
    {
        return push_sized(L, str, len);
    }
};

template <>
struct pusher<char*> {
    static int push_sized(lua_State* L, const char* str, std::size_t len)
    {
        pusher<const char*> p{};
        (void)p;
        return p.push_sized(L, str, len);
    }

    static int push(lua_State* L, const char* str)
    {
        pusher<const char*> p{};
        (void)p;
        return p.push(L, str);
    }

    static int push(lua_State* L, const char* strb, const char* stre)
    {
        pusher<const char*> p{};
        (void)p;
        return p.push(L, strb, stre);
    }

    static int push(lua_State* L, const char* str, std::size_t len)
    {
        pusher<const char*> p{};
        (void)p;
        return p.push(L, str, len);
    }
};

template <size_t N>
struct pusher<char[N]> {
    static int push(lua_State* L, const char (&str)[N])
    {
        lua_pushlstring(L, str, N - 1);
        return 1;
    }

    static int push(lua_State* L, const char (&str)[N], std::size_t sz)
    {
        lua_pushlstring(L, str, sz);
        return 1;
    }
};

template <>
struct pusher<char> {
    static int push(lua_State* L, char c)
    {
        const char str[2] = { c, '\0' };
        return stack::push(L, str, 1);
    }
};

template <>
struct pusher<std::string> {
    static int push(lua_State* L, const std::string& str)
    {
        lua_pushlstring(L, str.c_str(), str.size());
        return 1;
    }

    static int push(lua_State* L, const std::string& str, std::size_t sz)
    {
        lua_pushlstring(L, str.c_str(), sz);
        return 1;
    }
};

template <>
struct pusher<string_view> {
    static int push(lua_State* L, const string_view& sv)
    {
        return stack::push(L, sv.data(), sv.length());
    }

    static int push(lua_State* L, const string_view& sv, std::size_t n)
    {
        return stack::push(L, sv.data(), n);
    }
};

template <>
struct pusher<meta_function> {
    static int push(lua_State* L, meta_function m)
    {
        const std::string& str = to_string(m);
        lua_pushlstring(L, str.c_str(), str.size());
        return 1;
    }
};

template <>
struct pusher<absolute_index> {
    static int push(lua_State* L, absolute_index ai)
    {
        lua_pushvalue(L, ai);
        return 1;
    }
};

template <>
struct pusher<raw_index> {
    static int push(lua_State* L, raw_index ri)
    {
        lua_pushvalue(L, ri);
        return 1;
    }
};

template <>
struct pusher<ref_index> {
    static int push(lua_State* L, ref_index ri)
    {
        lua_rawgeti(L, LUA_REGISTRYINDEX, ri);
        return 1;
    }
};

#ifdef SOL_CODECVT_SUPPORT
template <>
struct pusher<const wchar_t*> {
    static int push(lua_State* L, const wchar_t* wstr)
    {
        return push(L, wstr, std::char_traits<wchar_t>::length(wstr));
    }

    static int push(lua_State* L, const wchar_t* wstr, std::size_t sz)
    {
        return push(L, wstr, wstr + sz);
    }

    static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre)
    {
        if (sizeof(wchar_t) == 2) {
            thread_local std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> convert;
            std::string u8str = convert.to_bytes(strb, stre);
            return stack::push(L, u8str);
        }
        thread_local std::wstring_convert<std::codecvt_utf8<wchar_t>> convert;
        std::string u8str = convert.to_bytes(strb, stre);
        return stack::push(L, u8str);
    }
};

template <>
struct pusher<wchar_t*> {
    static int push(lua_State* L, const wchar_t* str)
    {
        pusher<const wchar_t*> p{};
        (void)p;
        return p.push(L, str);
    }

    static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre)
    {
        pusher<const wchar_t*> p{};
        (void)p;
        return p.push(L, strb, stre);
    }

    static int push(lua_State* L, const wchar_t* str, std::size_t len)
    {
        pusher<const wchar_t*> p{};
        (void)p;
        return p.push(L, str, len);
    }
};

template <>
struct pusher<const char16_t*> {
    static int push(lua_State* L, const char16_t* u16str)
    {
        return push(L, u16str, std::char_traits<char16_t>::length(u16str));
    }

    static int push(lua_State* L, const char16_t* u16str, std::size_t sz)
    {
        return push(L, u16str, u16str + sz);
    }

    static int push(lua_State* L, const char16_t* strb, const char16_t* stre)
    {
#ifdef _MSC_VER
        thread_local std::wstring_convert<std::codecvt_utf8_utf16<int16_t>, int16_t> convert;
        std::string u8str = convert.to_bytes(reinterpret_cast<const int16_t*>(strb), reinterpret_cast<const int16_t*>(stre));
#else
        thread_local std::wstring_convert<std::codecvt_utf8_utf16<char16_t>, char16_t> convert;
        std::string u8str = convert.to_bytes(strb, stre);
#endif // VC++ is a shit
        return stack::push(L, u8str);
    }
};

template <>
struct pusher<char16_t*> {
    static int push(lua_State* L, const char16_t* str)
    {
        pusher<const char16_t*> p{};
        (void)p;
        return p.push(L, str);
    }

    static int push(lua_State* L, const char16_t* strb, const char16_t* stre)
    {
        pusher<const char16_t*> p{};
        (void)p;
        return p.push(L, strb, stre);
    }

    static int push(lua_State* L, const char16_t* str, std::size_t len)
    {
        pusher<const char16_t*> p{};
        (void)p;
        return p.push(L, str, len);
    }
};

template <>
struct pusher<const char32_t*> {
    static int push(lua_State* L, const char32_t* u32str)
    {
        return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str));
    }

    static int push(lua_State* L, const char32_t* u32str, std::size_t sz)
    {
        return push(L, u32str, u32str + sz);
    }

    static int push(lua_State* L, const char32_t* strb, const char32_t* stre)
    {
#ifdef _MSC_VER
        thread_local std::wstring_convert<std::codecvt_utf8<int32_t>, int32_t> convert;
        std::string u8str = convert.to_bytes(reinterpret_cast<const int32_t*>(strb), reinterpret_cast<const int32_t*>(stre));
#else
        thread_local std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> convert;
        std::string u8str = convert.to_bytes(strb, stre);
#endif // VC++ is a shit
        return stack::push(L, u8str);
    }
};

template <>
struct pusher<char32_t*> {
    static int push(lua_State* L, const char32_t* str)
    {
        pusher<const char32_t*> p{};
        (void)p;
        return p.push(L, str);
    }

    static int push(lua_State* L, const char32_t* strb, const char32_t* stre)
    {
        pusher<const char32_t*> p{};
        (void)p;
        return p.push(L, strb, stre);
    }

    static int push(lua_State* L, const char32_t* str, std::size_t len)
    {
        pusher<const char32_t*> p{};
        (void)p;
        return p.push(L, str, len);
    }
};

template <size_t N>
struct pusher<wchar_t[N]> {
    static int push(lua_State* L, const wchar_t (&str)[N])
    {
        return push(L, str, N - 1);
    }

    static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz)
    {
        return stack::push<const wchar_t*>(L, str, str + sz);
    }
};

template <size_t N>
struct pusher<char16_t[N]> {
    static int push(lua_State* L, const char16_t (&str)[N])
    {
        return push(L, str, N - 1);
    }

    static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz)
    {
        return stack::push<const char16_t*>(L, str, str + sz);
    }
};

template <size_t N>
struct pusher<char32_t[N]> {
    static int push(lua_State* L, const char32_t (&str)[N])
    {
        return push(L, str, N - 1);
    }

    static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz)
    {
        return stack::push<const char32_t*>(L, str, str + sz);
    }
};

template <>
struct pusher<wchar_t> {
    static int push(lua_State* L, wchar_t c)
    {
        const wchar_t str[2] = { c, '\0' };
        return stack::push(L, str, 1);
    }
};

template <>
struct pusher<char16_t> {
    static int push(lua_State* L, char16_t c)
    {
        const char16_t str[2] = { c, '\0' };
        return stack::push(L, str, 1);
    }
};

template <>
struct pusher<char32_t> {
    static int push(lua_State* L, char32_t c)
    {
        const char32_t str[2] = { c, '\0' };
        return stack::push(L, str, 1);
    }
};

template <>
struct pusher<std::wstring> {
    static int push(lua_State* L, const std::wstring& wstr)
    {
        return push(L, wstr.data(), wstr.size());
    }

    static int push(lua_State* L, const std::wstring& wstr, std::size_t sz)
    {
        return stack::push(L, wstr.data(), wstr.data() + sz);
    }
};

template <>
struct pusher<std::u16string> {
    static int push(lua_State* L, const std::u16string& u16str)
    {
        return push(L, u16str, u16str.size());
    }

    static int push(lua_State* L, const std::u16string& u16str, std::size_t sz)
    {
        return stack::push(L, u16str.data(), u16str.data() + sz);
    }
};

template <>
struct pusher<std::u32string> {
    static int push(lua_State* L, const std::u32string& u32str)
    {
        return push(L, u32str, u32str.size());
    }

    static int push(lua_State* L, const std::u32string& u32str, std::size_t sz)
    {
        return stack::push(L, u32str.data(), u32str.data() + sz);
    }
};

template <>
struct pusher<wstring_view> {
    static int push(lua_State* L, const wstring_view& sv)
    {
        return stack::push(L, sv.data(), sv.length());
    }

    static int push(lua_State* L, const wstring_view& sv, std::size_t n)
    {
        return stack::push(L, sv.data(), n);
    }
};

template <>
struct pusher<u16string_view> {
    static int push(lua_State* L, const u16string_view& sv)
    {
        return stack::push(L, sv.data(), sv.length());
    }

    static int push(lua_State* L, const u16string_view& sv, std::size_t n)
    {
        return stack::push(L, sv.data(), n);
    }
};

template <>
struct pusher<u32string_view> {
    static int push(lua_State* L, const u32string_view& sv)
    {
        return stack::push(L, sv.data(), sv.length());
    }

    static int push(lua_State* L, const u32string_view& sv, std::size_t n)
    {
        return stack::push(L, sv.data(), n);
    }
};
#endif // codecvt Header Support

template <typename... Args>
struct pusher<std::tuple<Args...>> {
    template <std::size_t... I, typename T>
    static int push(std::index_sequence<I...>, lua_State* L, T&& t)
    {
        int pushcount = 0;
        (void)detail::swallow{ 0, (pushcount += stack::push(L, detail::forward_get<I>(t)), 0)... };
        return pushcount;
    }

    template <typename T>
    static int push(lua_State* L, T&& t)
    {
        return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t));
    }
};

template <typename A, typename B>
struct pusher<std::pair<A, B>> {
    template <typename T>
    static int push(lua_State* L, T&& t)
    {
        int pushcount = stack::push(L, detail::forward_get<0>(t));
        pushcount += stack::push(L, detail::forward_get<1>(t));
        return pushcount;
    }
};

template <typename O>
struct pusher<optional<O>> {
    template <typename T>
    static int push(lua_State* L, T&& t)
    {
        if (t == nullopt) {
            return stack::push(L, nullopt);
        }
        return stack::push(L, static_cast<std::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value()));
    }
};

template <>
struct pusher<nullopt_t> {
    static int push(lua_State* L, nullopt_t)
    {
        return stack::push(L, lua_nil);
    }
};

template <>
struct pusher<std::nullptr_t> {
    static int push(lua_State* L, std::nullptr_t)
    {
        return stack::push(L, lua_nil);
    }
};

template <>
struct pusher<this_state> {
    static int push(lua_State*, const this_state&)
    {
        return 0;
    }
};

template <>
struct pusher<this_main_state> {
    static int push(lua_State*, const this_main_state&)
    {
        return 0;
    }
};

template <>
struct pusher<new_table> {
    static int push(lua_State* L, const new_table& nt)
    {
        lua_createtable(L, nt.sequence_hint, nt.map_hint);
        return 1;
    }
};

#ifdef SOL_CXX17_FEATURES
namespace stack_detail {

struct push_function {
    lua_State* L;

    push_function(lua_State* L)
        : L(L)
    {
    }

    template <typename T>
    int operator()(T&& value) const
    {
        return stack::push<T>(L, std::forward<T>(value));
    }
};

} // namespace stack_detail

template <typename... Tn>
struct pusher<std::variant<Tn...>> {
    static int push(lua_State* L, const std::variant<Tn...>& v)
    {
        return std::visit(stack_detail::push_function(L), v);
    }

    static int push(lua_State* L, std::variant<Tn...>&& v)
    {
        return std::visit(stack_detail::push_function(L), std::move(v));
    }
};
#endif // C++17 Support
}
} // namespace sol::stack

// end of sol/stack_push.hpp

// beginning of sol/stack_pop.hpp

namespace sol {
namespace stack {
template <typename T, typename>
struct popper {
    inline static decltype(auto) pop(lua_State* L)
    {
        record tracking{};
        decltype(auto) r = get<T>(L, -lua_size<T>::value, tracking);
        lua_pop(L, tracking.used);
        return r;
    }
};

template <typename T>
struct popper<T, std::enable_if_t<std::is_base_of<stack_reference, meta::unqualified_t<T>>::value>> {
    static_assert(meta::neg<std::is_base_of<stack_reference, meta::unqualified_t<T>>>::value, "You cannot pop something that derives from stack_reference: it will not remain on the stack and thusly will go out of scope!");
};
}
} // namespace sol::stack

// end of sol/stack_pop.hpp

// beginning of sol/stack_field.hpp

namespace sol {
namespace stack {
template <typename T, bool, bool, typename>
struct field_getter {
    template <typename Key>
    void get(lua_State* L, Key&& key, int tableindex = -2)
    {
        push(L, std::forward<Key>(key));
        lua_gettable(L, tableindex);
    }
};

template <typename T, bool global, typename C>
struct field_getter<T, global, true, C> {
    template <typename Key>
    void get(lua_State* L, Key&& key, int tableindex = -2)
    {
        push(L, std::forward<Key>(key));
        lua_rawget(L, tableindex);
    }
};

template <bool b, bool raw, typename C>
struct field_getter<metatable_t, b, raw, C> {
    void get(lua_State* L, metatable_t, int tableindex = -1)
    {
        if (lua_getmetatable(L, tableindex) == 0)
            push(L, lua_nil);
    }
};

template <bool b, bool raw, typename C>
struct field_getter<env_t, b, raw, C> {
    void get(lua_State* L, env_t, int tableindex = -1)
    {
#if SOL_LUA_VERSION < 502
        // Use lua_setfenv
        lua_getfenv(L, tableindex);
#else
        // Use upvalues as explained in Lua 5.2 and beyond's manual
        if (lua_getupvalue(L, tableindex, 1) == nullptr) {
            push(L, lua_nil);
        }
#endif
    }
};

template <typename T, bool raw>
struct field_getter<T, true, raw, std::enable_if_t<meta::is_c_str<T>::value>> {
    template <typename Key>
    void get(lua_State* L, Key&& key, int = -1)
    {
        lua_getglobal(L, &key[0]);
    }
};

template <typename T>
struct field_getter<T, false, false, std::enable_if_t<meta::is_c_str<T>::value>> {
    template <typename Key>
    void get(lua_State* L, Key&& key, int tableindex = -1)
    {
        lua_getfield(L, tableindex, &key[0]);
    }
};

#if SOL_LUA_VERSION >= 503
template <typename T>
struct field_getter<T, false, false, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> {
    template <typename Key>
    void get(lua_State* L, Key&& key, int tableindex = -1)
    {
        lua_geti(L, tableindex, static_cast<lua_Integer>(key));
    }
};
#endif // Lua 5.3.x

#if SOL_LUA_VERSION >= 502
template <typename C>
struct field_getter<void*, false, true, C> {
    void get(lua_State* L, void* key, int tableindex = -1)
    {
        lua_rawgetp(L, tableindex, key);
    }
};
#endif // Lua 5.3.x

template <typename T>
struct field_getter<T, false, true, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> {
    template <typename Key>
    void get(lua_State* L, Key&& key, int tableindex = -1)
    {
        lua_rawgeti(L, tableindex, static_cast<lua_Integer>(key));
    }
};

template <typename... Args, bool b, bool raw, typename C>
struct field_getter<std::tuple<Args...>, b, raw, C> {
    template <std::size_t... I, typename Keys>
    void apply(std::index_sequence<0, I...>, lua_State* L, Keys&& keys, int tableindex)
    {
        get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
        void(detail::swallow{ (get_field<false, raw>(L, detail::forward_get<I>(keys)), 0)... });
        reference saved(L, -1);
        lua_pop(L, static_cast<int>(sizeof...(I)));
        saved.push();
    }

    template <typename Keys>
    void get(lua_State* L, Keys&& keys)
    {
        apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), lua_absindex(L, -1));
    }

    template <typename Keys>
    void get(lua_State* L, Keys&& keys, int tableindex)
    {
        apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), tableindex);
    }
};

template <typename A, typename B, bool b, bool raw, typename C>
struct field_getter<std::pair<A, B>, b, raw, C> {
    template <typename Keys>
    void get(lua_State* L, Keys&& keys, int tableindex)
    {
        get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
        get_field<false, raw>(L, detail::forward_get<1>(keys));
        reference saved(L, -1);
        lua_pop(L, static_cast<int>(2));
        saved.push();
    }

    template <typename Keys>
    void get(lua_State* L, Keys&& keys)
    {
        get_field<b, raw>(L, detail::forward_get<0>(keys));
        get_field<false, raw>(L, detail::forward_get<1>(keys));
        reference saved(L, -1);
        lua_pop(L, static_cast<int>(2));
        saved.push();
    }
};

template <typename T, bool, bool, typename>
struct field_setter {
    template <typename Key, typename Value>
    void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3)
    {
        push(L, std::forward<Key>(key));
        push(L, std::forward<Value>(value));
        lua_settable(L, tableindex);
    }
};

template <typename T, bool b, typename C>
struct field_setter<T, b, true, C> {
    template <typename Key, typename Value>
    void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3)
    {
        push(L, std::forward<Key>(key));
        push(L, std::forward<Value>(value));
        lua_rawset(L, tableindex);
    }
};

template <bool b, bool raw, typename C>
struct field_setter<metatable_t, b, raw, C> {
    template <typename Value>
    void set(lua_State* L, metatable_t, Value&& value, int tableindex = -2)
    {
        push(L, std::forward<Value>(value));
        lua_setmetatable(L, tableindex);
    }
};

template <typename T, bool raw>
struct field_setter<T, true, raw, std::enable_if_t<meta::is_c_str<T>::value>> {
    template <typename Key, typename Value>
    void set(lua_State* L, Key&& key, Value&& value, int = -2)
    {
        push(L, std::forward<Value>(value));
        lua_setglobal(L, &key[0]);
    }
};

template <typename T>
struct field_setter<T, false, false, std::enable_if_t<meta::is_c_str<T>::value>> {
    template <typename Key, typename Value>
    void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2)
    {
        push(L, std::forward<Value>(value));
        lua_setfield(L, tableindex, &key[0]);
    }
};

#if SOL_LUA_VERSION >= 503
template <typename T>
struct field_setter<T, false, false, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> {
    template <typename Key, typename Value>
    void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2)
    {
        push(L, std::forward<Value>(value));
        lua_seti(L, tableindex, static_cast<lua_Integer>(key));
    }
};
#endif // Lua 5.3.x

template <typename T>
struct field_setter<T, false, true, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> {
    template <typename Key, typename Value>
    void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2)
    {
        push(L, std::forward<Value>(value));
        lua_rawseti(L, tableindex, static_cast<lua_Integer>(key));
    }
};

#if SOL_LUA_VERSION >= 502
template <typename C>
struct field_setter<void*, false, true, C> {
    template <typename Key, typename Value>
    void set(lua_State* L, void* key, Value&& value, int tableindex = -2)
    {
        push(L, std::forward<Value>(value));
        lua_rawsetp(L, tableindex, key);
    }
};
#endif // Lua 5.2.x

template <typename... Args, bool b, bool raw, typename C>
struct field_setter<std::tuple<Args...>, b, raw, C> {
    template <bool g, std::size_t I, typename Key, typename Value>
    void apply(std::index_sequence<I>, lua_State* L, Key&& keys, Value&& value, int tableindex)
    {
        I < 1 ? set_field<g, raw>(L, detail::forward_get<I>(keys), std::forward<Value>(value), tableindex) : set_field<g, raw>(L, detail::forward_get<I>(keys), std::forward<Value>(value));
    }

    template <bool g, std::size_t I0, std::size_t I1, std::size_t... I, typename Keys, typename Value>
    void apply(std::index_sequence<I0, I1, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex)
    {
        I0 < 1 ? get_field<g, raw>(L, detail::forward_get<I0>(keys), tableindex) : get_field<g, raw>(L, detail::forward_get<I0>(keys), -1);
        apply<false>(std::index_sequence<I1, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), -1);
    }

    template <bool g, std::size_t I0, std::size_t... I, typename Keys, typename Value>
    void top_apply(std::index_sequence<I0, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex)
    {
        apply<g>(std::index_sequence<I0, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
        lua_pop(L, static_cast<int>(sizeof...(I)));
    }

    template <typename Keys, typename Value>
    void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -3)
    {
        top_apply<b>(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex);
    }
};

template <typename A, typename B, bool b, bool raw, typename C>
struct field_setter<std::pair<A, B>, b, raw, C> {
    template <typename Keys, typename Value>
    void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -1)
    {
        get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex);
        set_field<false, raw>(L, detail::forward_get<1>(keys), std::forward<Value>(value));
        lua_pop(L, 1);
    }
};
}
} // namespace sol::stack

// end of sol/stack_field.hpp

// beginning of sol/stack_probe.hpp

namespace sol {
namespace stack {
template <typename T, bool b, bool raw, typename>
struct probe_field_getter {
    template <typename Key>
    probe get(lua_State* L, Key&& key, int tableindex = -2)
    {
        if (!b && !maybe_indexable(L, tableindex)) {
            return probe(false, 0);
        }
        get_field<b, raw>(L, std::forward<Key>(key), tableindex);
        return probe(!check<lua_nil_t>(L), 1);
    }
};

template <typename A, typename B, bool b, bool raw, typename C>
struct probe_field_getter<std::pair<A, B>, b, raw, C> {
    template <typename Keys>
    probe get(lua_State* L, Keys&& keys, int tableindex = -2)
    {
        if (!b && !maybe_indexable(L, tableindex)) {
            return probe(false, 0);
        }
        get_field<b, raw>(L, std::get<0>(keys), tableindex);
        if (!maybe_indexable(L)) {
            return probe(false, 1);
        }
        get_field<false, raw>(L, std::get<1>(keys), tableindex);
        return probe(!check<lua_nil_t>(L), 2);
    }
};

template <typename... Args, bool b, bool raw, typename C>
struct probe_field_getter<std::tuple<Args...>, b, raw, C> {
    template <std::size_t I, typename Keys>
    probe apply(std::index_sequence<I>, int sofar, lua_State* L, Keys&& keys, int tableindex)
    {
        get_field < I<1 && b, raw>(L, std::get<I>(keys), tableindex);
        return probe(!check<lua_nil_t>(L), sofar);
    }

    template <std::size_t I, std::size_t I1, std::size_t... In, typename Keys>
    probe apply(std::index_sequence<I, I1, In...>, int sofar, lua_State* L, Keys&& keys, int tableindex)
    {
        get_field < I<1 && b, raw>(L, std::get<I>(keys), tableindex);
        if (!maybe_indexable(L)) {
            return probe(false, sofar);
        }
        return apply(std::index_sequence<I1, In...>(), sofar + 1, L, std::forward<Keys>(keys), -1);
    }

    template <typename Keys>
    probe get(lua_State* L, Keys&& keys, int tableindex = -2)
    {
        if (!b && !maybe_indexable(L, tableindex)) {
            return probe(false, 0);
        }
        return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex);
    }
};
}
} // namespace sol::stack

// end of sol/stack_probe.hpp

#include <cstring>

namespace sol {
namespace detail {
using typical_chunk_name_t = char[32];

inline const std::string& default_chunk_name()
{
    static const std::string name = "";
    return name;
}

template <std::size_t N>
const char* make_chunk_name(const string_view& code, const std::string& chunkname, char (&basechunkname)[N])
{
    if (chunkname.empty()) {
        auto it = code.cbegin();
        auto e = code.cend();
        std::size_t i = 0;
        static const std::size_t n = N - 4;
        for (i = 0; i < n && it != e; ++i, ++it) {
            basechunkname[i] = *it;
        }
        if (it != e) {
            for (std::size_t c = 0; c < 3; ++i, ++c) {
                basechunkname[i] = '.';
            }
        }
        basechunkname[i] = '\0';
        return &basechunkname[0];
    }
    else {
        return chunkname.c_str();
    }
}
} // namespace detail

namespace stack {
namespace stack_detail {
template <typename T>
inline int push_as_upvalues(lua_State* L, T& item)
{
    typedef std::decay_t<T> TValue;
    const static std::size_t itemsize = sizeof(TValue);
    const static std::size_t voidsize = sizeof(void*);
    const static std::size_t voidsizem1 = voidsize - 1;
    const static std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize;
    typedef std::array<void*, data_t_count> data_t;

    data_t data{ {} };
    std::memcpy(&data[0], std::addressof(item), itemsize);
    int pushcount = 0;
    for (auto&& v : data) {
        pushcount += push(L, lightuserdata_value(v));
    }
    return pushcount;
}

template <typename T>
inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 2)
{
    const static std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
    typedef std::array<void*, data_t_count> data_t;
    data_t voiddata{ {} };
    for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void *)) {
        voiddata[i] = get<lightuserdata_value>(L, upvalue_index(index++));
    }
    return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
}

struct evaluator {
    template <typename Fx, typename... Args>
    static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, record&, Fx&& fx, Args&&... args)
    {
        return std::forward<Fx>(fx)(std::forward<Args>(args)...);
    }

    template <typename Fx, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename... FxArgs>
    static decltype(auto) eval(types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L, int start, record& tracking, Fx&& fx, FxArgs&&... fxargs)
    {
        return eval(types<Args...>(), std::index_sequence<Is...>(), L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)..., stack_detail::unchecked_get<Arg>(L, start + tracking.used, tracking));
    }
};

template <bool checkargs = default_check_arguments, std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call(types<R>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args)
{
#ifndef _MSC_VER
    static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention.");
#endif // This compiler make me so sad
    argument_handler<types<R, Args...>> handler{};
    multi_check<checkargs, Args...>(L, start, handler);
    record tracking{};
    return evaluator{}.eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}

template <bool checkargs = default_check_arguments, std::size_t... I, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args)
{
#ifndef _MSC_VER
    static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention.");
#endif // This compiler make me so fucking sad
    argument_handler<types<void, Args...>> handler{};
    multi_check<checkargs, Args...>(L, start, handler);
    record tracking{};
    evaluator{}.eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
} // namespace stack_detail

template <typename T>
int set_ref(lua_State* L, T&& arg, int tableindex = -2)
{
    push(L, std::forward<T>(arg));
    return luaL_ref(L, tableindex);
}

template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args)
{
    typedef std::make_index_sequence<sizeof...(Args)> args_indices;
    return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}

template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args)
{
    return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}

template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args)
{
    typedef std::make_index_sequence<sizeof...(Args)> args_indices;
    stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}

template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline void call(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args)
{
    call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}

template <bool check_args = stack_detail::default_check_arguments, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>>
inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args)
{
    typedef meta::count_for_pack<lua_size, Args...> expected_count;
    return call<check_args>(tr, ta, L, (std::max)(static_cast<int>(lua_gettop(L) - expected_count::value), static_cast<int>(0)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}

template <bool check_args = stack_detail::default_check_arguments, typename... Args, typename Fx, typename... FxArgs>
inline void call_from_top(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args)
{
    typedef meta::count_for_pack<lua_size, Args...> expected_count;
    call<check_args>(tr, ta, L, (std::max)(static_cast<int>(lua_gettop(L) - expected_count::value), static_cast<int>(0)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}

template <bool check_args = stack_detail::default_check_arguments, bool clean_stack = true, typename... Args, typename Fx, typename... FxArgs>
inline int call_into_lua(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs)
{
    call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
    if (clean_stack) {
        lua_settop(L, 0);
    }
    return 0;
}

template <bool check_args = stack_detail::default_check_arguments, bool clean_stack = true, typename Ret0, typename... Ret, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<meta::neg<std::is_void<Ret0>>::value>>
inline int call_into_lua(types<Ret0, Ret...>, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs)
{
    decltype(auto) r = call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
    typedef meta::unqualified_t<decltype(r)> R;
    typedef meta::any<is_stack_based<R>,
        std::is_same<R, absolute_index>,
        std::is_same<R, ref_index>,
        std::is_same<R, raw_index>>
        is_stack;
    if (clean_stack && !is_stack::value) {
        lua_settop(L, 0);
    }
    return push_reference(L, std::forward<decltype(r)>(r));
}

template <bool check_args = stack_detail::default_check_arguments, bool clean_stack = true, typename Fx, typename... FxArgs>
inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs)
{
    typedef lua_bind_traits<meta::unqualified_t<Fx>> traits_type;
    typedef typename traits_type::args_list args_list;
    typedef typename traits_type::returns_list returns_list;
    return call_into_lua<check_args, clean_stack>(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
}

inline call_syntax get_call_syntax(lua_State* L, const std::string& key, int index)
{
    if (lua_gettop(L) == 0) {
        return call_syntax::dot;
    }
    luaL_getmetatable(L, key.c_str());
    auto pn = pop_n(L, 1);
    if (lua_compare(L, -1, index, LUA_OPEQ) != 1) {
        return call_syntax::dot;
    }
    return call_syntax::colon;
}

inline void script(lua_State* L, const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
{
    detail::typical_chunk_name_t basechunkname = {};
    const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
    if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
        lua_error(L);
    }
}

inline void script_file(lua_State* L, const std::string& filename, load_mode mode = load_mode::any)
{
    if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
        lua_error(L);
    }
}

inline void luajit_exception_handler(lua_State* L, int (*handler)(lua_State*, lua_CFunction) = detail::c_trampoline)
{
#if defined(SOL_LUAJIT) && !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
    if (L == nullptr) {
        return;
    }
    lua_pushlightuserdata(L, (void*)handler);
    auto pn = pop_n(L, 1);
    luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON);
#else
    (void)L;
    (void)handler;
#endif
}

inline void luajit_exception_off(lua_State* L)
{
#if defined(SOL_LUAJIT)
    if (L == nullptr) {
        return;
    }
    luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF);
#else
    (void)L;
#endif
}
} // namespace stack
} // namespace sol

// end of sol/stack.hpp

// beginning of sol/unsafe_function.hpp

// beginning of sol/function_result.hpp

// beginning of sol/protected_function_result.hpp

// beginning of sol/proxy_base.hpp

namespace sol {
struct proxy_base_tag {
};

template <typename Super>
struct proxy_base : proxy_base_tag {
    operator std::string() const
    {
        const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
        return super.template get<std::string>();
    }

    template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, is_proxy_primitive<meta::unqualified_t<T>>> = meta::enabler>
    operator T() const
    {
        const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
        return super.template get<T>();
    }

    template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, meta::neg<is_proxy_primitive<meta::unqualified_t<T>>>> = meta::enabler>
    operator T&() const
    {
        const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
        return super.template get<T&>();
    }

    lua_State* lua_state() const
    {
        const Super& super = *static_cast<const Super*>(static_cast<const void*>(this));
        return super.lua_state();
    }
};
} // namespace sol

// end of sol/proxy_base.hpp

// beginning of sol/stack_iterator.hpp

namespace sol {
template <typename proxy_t, bool is_const>
struct stack_iterator : std::iterator<std::random_access_iterator_tag, std::conditional_t<is_const, const proxy_t, proxy_t>, std::ptrdiff_t, std::conditional_t<is_const, const proxy_t*, proxy_t*>, std::conditional_t<is_const, const proxy_t, proxy_t>> {
    typedef std::iterator<std::random_access_iterator_tag, std::conditional_t<is_const, const proxy_t, proxy_t>, std::ptrdiff_t, std::conditional_t<is_const, const proxy_t*, proxy_t*>, std::conditional_t<is_const, const proxy_t, proxy_t>> base_t;
    typedef typename base_t::reference reference;
    typedef typename base_t::pointer pointer;
    typedef typename base_t::value_type value_type;
    typedef typename base_t::difference_type difference_type;
    typedef typename base_t::iterator_category iterator_category;
    lua_State* L;
    int index;
    int stacktop;
    proxy_t sp;

    stack_iterator()
        : L(nullptr)
        , index((std::numeric_limits<int>::max)())
        , stacktop((std::numeric_limits<int>::max)())
        , sp()
    {
    }
    stack_iterator(const stack_iterator<proxy_t, true>& r)
        : L(r.L)
        , index(r.index)
        , stacktop(r.stacktop)
        , sp(r.sp)
    {
    }
    stack_iterator(lua_State* luastate, int idx, int topidx)
        : L(luastate)
        , index(idx)
        , stacktop(topidx)
        , sp(luastate, idx)
    {
    }

    reference operator*()
    {
        return proxy_t(L, index);
    }

    reference operator*() const
    {
        return proxy_t(L, index);
    }

    pointer operator->()
    {
        sp = proxy_t(L, index);
        return &sp;
    }

    pointer operator->() const
    {
        const_cast<proxy_t&>(sp) = proxy_t(L, index);
        return &sp;
    }

    stack_iterator& operator++()
    {
        ++index;
        return *this;
    }

    stack_iterator operator++(int)
    {
        auto r = *this;
        this->operator++();
        return r;
    }

    stack_iterator& operator--()
    {
        --index;
        return *this;
    }

    stack_iterator operator--(int)
    {
        auto r = *this;
        this->operator--();
        return r;
    }

    stack_iterator& operator+=(difference_type idx)
    {
        index += static_cast<int>(idx);
        return *this;
    }

    stack_iterator& operator-=(difference_type idx)
    {
        index -= static_cast<int>(idx);
        return *this;
    }

    difference_type operator-(const stack_iterator& r) const
    {
        return index - r.index;
    }

    stack_iterator operator+(difference_type idx) const
    {
        stack_iterator r = *this;
        r += idx;
        return r;
    }

    reference operator[](difference_type idx) const
    {
        return proxy_t(L, index + static_cast<int>(idx));
    }

    bool operator==(const stack_iterator& r) const
    {
        if (stacktop == (std::numeric_limits<int>::max)()) {
            return r.index == r.stacktop;
        }
        else if (r.stacktop == (std::numeric_limits<int>::max)()) {
            return index == stacktop;
        }
        return index == r.index;
    }

    bool operator!=(const stack_iterator& r) const
    {
        return !(this->operator==(r));
    }

    bool operator<(const stack_iterator& r) const
    {
        return index < r.index;
    }

    bool operator>(const stack_iterator& r) const
    {
        return index > r.index;
    }

    bool operator<=(const stack_iterator& r) const
    {
        return index <= r.index;
    }

    bool operator>=(const stack_iterator& r) const
    {
        return index >= r.index;
    }
};

template <typename proxy_t, bool is_const>
inline stack_iterator<proxy_t, is_const> operator+(typename stack_iterator<proxy_t, is_const>::difference_type n, const stack_iterator<proxy_t, is_const>& r)
{
    return r + n;
}
} // namespace sol

// end of sol/stack_iterator.hpp

// beginning of sol/stack_proxy.hpp

// beginning of sol/stack_proxy_base.hpp

namespace sol {
struct stack_proxy_base : public proxy_base<stack_proxy_base> {
private:
    lua_State* L;
    int index;

public:
    stack_proxy_base()
        : L(nullptr)
        , index(0)
    {
    }
    stack_proxy_base(lua_State* L, int index)
        : L(L)
        , index(index)
    {
    }

    template <typename T>
    decltype(auto) get() const
    {
        return stack::get<T>(L, stack_index());
    }

    template <typename T>
    bool is() const
    {
        return stack::check<T>(L, stack_index());
    }

    template <typename T>
    decltype(auto) as() const
    {
        return get<T>();
    }

    type get_type() const noexcept
    {
        return type_of(lua_state(), stack_index());
    }

    int push() const
    {
        return push(L);
    }

    int push(lua_State* Ls) const
    {
        lua_pushvalue(Ls, index);
        return 1;
    }

    lua_State* lua_state() const
    {
        return L;
    }
    int stack_index() const
    {
        return index;
    }
};

namespace stack {
template <>
struct getter<stack_proxy_base> {
    static stack_proxy_base get(lua_State* L, int index = -1)
    {
        return stack_proxy_base(L, index);
    }
};

template <>
struct pusher<stack_proxy_base> {
    static int push(lua_State*, const stack_proxy_base& ref)
    {
        return ref.push();
    }
};
} // namespace stack

} // namespace sol

// end of sol/stack_proxy_base.hpp

namespace sol {
struct stack_proxy : public stack_proxy_base {
private:
    lua_State* L;
    int index;

public:
    stack_proxy()
        : stack_proxy_base()
    {
    }
    stack_proxy(lua_State* L, int index)
        : stack_proxy_base(L, index)
    {
    }

    template <typename... Ret, typename... Args>
    decltype(auto) call(Args&&... args);

    template <typename... Args>
    decltype(auto) operator()(Args&&... args)
    {
        return call<>(std::forward<Args>(args)...);
    }
};

namespace stack {
template <>
struct getter<stack_proxy> {
    static stack_proxy get(lua_State* L, int index = -1)
    {
        return stack_proxy(L, index);
    }
};

template <>
struct pusher<stack_proxy> {
    static int push(lua_State*, const stack_proxy& ref)
    {
        return ref.push();
    }
};
} // namespace stack
} // namespace sol

// end of sol/stack_proxy.hpp

#include <cstdint>

namespace sol {
struct protected_function_result : public proxy_base<protected_function_result> {
private:
    lua_State* L;
    int index;
    int returncount;
    int popcount;
    call_status err;

    template <typename T>
    decltype(auto) tagged_get(types<optional<T>>, int index_offset) const
    {
        int target = index + index_offset;
        if (!valid()) {
            return optional<T>(nullopt);
        }
        return stack::get<optional<T>>(L, target);
    }

    template <typename T>
    decltype(auto) tagged_get(types<T>, int index_offset) const
    {
        int target = index + index_offset;
#ifdef SOL_CHECK_ARGUMENTS
        if (!valid()) {
            type t = type_of(L, target);
            type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is not an error)");
        }
#endif // Check Argument Safety
        return stack::get<T>(L, target);
    }

    optional<error> tagged_get(types<optional<error>>, int index_offset) const
    {
        int target = index + index_offset;
        if (valid()) {
            return nullopt;
        }
        return error(detail::direct_error, stack::get<std::string>(L, target));
    }

    error tagged_get(types<error>, int index_offset) const
    {
        int target = index + index_offset;
#ifdef SOL_CHECK_ARGUMENTS
        if (valid()) {
            type t = type_of(L, target);
            type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is an error)");
        }
#endif // Check Argument Safety
        return error(detail::direct_error, stack::get<std::string>(L, target));
    }

public:
    typedef stack_proxy reference_type;
    typedef stack_proxy value_type;
    typedef stack_proxy* pointer;
    typedef std::ptrdiff_t difference_type;
    typedef std::size_t size_type;
    typedef stack_iterator<stack_proxy, false> iterator;
    typedef stack_iterator<stack_proxy, true> const_iterator;
    typedef std::reverse_iterator<iterator> reverse_iterator;
    typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

    protected_function_result() = default;
    protected_function_result(lua_State* Ls, int idx = -1, int retnum = 0, int popped = 0, call_status pferr = call_status::ok) noexcept
        : L(Ls),
          index(idx),
          returncount(retnum),
          popcount(popped),
          err(pferr)
    {
    }
    protected_function_result(const protected_function_result&) = default;
    protected_function_result& operator=(const protected_function_result&) = default;
    protected_function_result(protected_function_result&& o) noexcept
        : L(o.L),
          index(o.index),
          returncount(o.returncount),
          popcount(o.popcount),
          err(o.err)
    {
        // Must be manual, otherwise destructor will screw us
        // return count being 0 is enough to keep things clean
        // but we will be thorough
        o.abandon();
    }
    protected_function_result& operator=(protected_function_result&& o) noexcept
    {
        L = o.L;
        index = o.index;
        returncount = o.returncount;
        popcount = o.popcount;
        err = o.err;
        // Must be manual, otherwise destructor will screw us
        // return count being 0 is enough to keep things clean
        // but we will be thorough
        o.abandon();
        return *this;
    }

    protected_function_result(const unsafe_function_result& o) = delete;
    protected_function_result& operator=(const unsafe_function_result& o) = delete;
    protected_function_result(unsafe_function_result&& o) noexcept;
    protected_function_result& operator=(unsafe_function_result&& o) noexcept;

    call_status status() const noexcept
    {
        return err;
    }

    bool valid() const noexcept
    {
        return status() == call_status::ok || status() == call_status::yielded;
    }

    template <typename T>
    decltype(auto) get(int index_offset = 0) const
    {
        return tagged_get(types<meta::unqualified_t<T>>(), index_offset);
    }

    type get_type(difference_type index_offset = 0) const noexcept
    {
        return type_of(L, index + static_cast<int>(index_offset));
    }

    stack_proxy operator[](difference_type index_offset) const
    {
        return stack_proxy(L, index + static_cast<int>(index_offset));
    }

    iterator begin()
    {
        return iterator(L, index, stack_index() + return_count());
    }
    iterator end()
    {
        return iterator(L, stack_index() + return_count(), stack_index() + return_count());
    }
    const_iterator begin() const
    {
        return const_iterator(L, index, stack_index() + return_count());
    }
    const_iterator end() const
    {
        return const_iterator(L, stack_index() + return_count(), stack_index() + return_count());
    }
    const_iterator cbegin() const
    {
        return begin();
    }
    const_iterator cend() const
    {
        return end();
    }

    reverse_iterator rbegin()
    {
        return std::reverse_iterator<iterator>(begin());
    }
    reverse_iterator rend()
    {
        return std::reverse_iterator<iterator>(end());
    }
    const_reverse_iterator rbegin() const
    {
        return std::reverse_iterator<const_iterator>(begin());
    }
    const_reverse_iterator rend() const
    {
        return std::reverse_iterator<const_iterator>(end());
    }
    const_reverse_iterator crbegin() const
    {
        return std::reverse_iterator<const_iterator>(cbegin());
    }
    const_reverse_iterator crend() const
    {
        return std::reverse_iterator<const_iterator>(cend());
    }

    lua_State* lua_state() const noexcept
    {
        return L;
    };
    int stack_index() const noexcept
    {
        return index;
    };
    int return_count() const noexcept
    {
        return returncount;
    };
    int pop_count() const noexcept
    {
        return popcount;
    };
    void abandon() noexcept
    {
        //L = nullptr;
        index = 0;
        returncount = 0;
        popcount = 0;
        err = call_status::runtime;
    }
    ~protected_function_result()
    {
        stack::remove(L, index, popcount);
    }
};

namespace stack {
template <>
struct pusher<protected_function_result> {
    static int push(lua_State* L, const protected_function_result& pfr)
    {
        int p = 0;
        for (int i = 0; i < pfr.pop_count(); ++i) {
            lua_pushvalue(L, i + pfr.stack_index());
            ++p;
        }
        return p;
    }
};
} // namespace stack
} // namespace sol

// end of sol/protected_function_result.hpp

// beginning of sol/unsafe_function_result.hpp

namespace sol {
struct unsafe_function_result : public proxy_base<unsafe_function_result> {
private:
    lua_State* L;
    int index;
    int returncount;

public:
    typedef stack_proxy reference_type;
    typedef stack_proxy value_type;
    typedef stack_proxy* pointer;
    typedef std::ptrdiff_t difference_type;
    typedef std::size_t size_type;
    typedef stack_iterator<stack_proxy, false> iterator;
    typedef stack_iterator<stack_proxy, true> const_iterator;
    typedef std::reverse_iterator<iterator> reverse_iterator;
    typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

    unsafe_function_result() = default;
    unsafe_function_result(lua_State* Ls, int idx = -1, int retnum = 0)
        : L(Ls)
        , index(idx)
        , returncount(retnum)
    {
    }
    unsafe_function_result(const unsafe_function_result&) = default;
    unsafe_function_result& operator=(const unsafe_function_result&) = default;
    unsafe_function_result(unsafe_function_result&& o)
        : L(o.L)
        , index(o.index)
        , returncount(o.returncount)
    {
        // Must be manual, otherwise destructor will screw us
        // return count being 0 is enough to keep things clean
        // but will be thorough
        o.abandon();
    }
    unsafe_function_result& operator=(unsafe_function_result&& o)
    {
        L = o.L;
        index = o.index;
        returncount = o.returncount;
        // Must be manual, otherwise destructor will screw us
        // return count being 0 is enough to keep things clean
        // but will be thorough
        o.abandon();
        return *this;
    }

    unsafe_function_result(const protected_function_result& o) = delete;
    unsafe_function_result& operator=(const protected_function_result& o) = delete;
    unsafe_function_result(protected_function_result&& o) noexcept;
    unsafe_function_result& operator=(protected_function_result&& o) noexcept;

    template <typename T>
    decltype(auto) get(difference_type index_offset = 0) const
    {
        return stack::get<T>(L, index + static_cast<int>(index_offset));
    }

    type get_type(difference_type index_offset = 0) const noexcept
    {
        return type_of(L, index + static_cast<int>(index_offset));
    }

    stack_proxy operator[](difference_type index_offset) const
    {
        return stack_proxy(L, index + static_cast<int>(index_offset));
    }

    iterator begin()
    {
        return iterator(L, index, stack_index() + return_count());
    }
    iterator end()
    {
        return iterator(L, stack_index() + return_count(), stack_index() + return_count());
    }
    const_iterator begin() const
    {
        return const_iterator(L, index, stack_index() + return_count());
    }
    const_iterator end() const
    {
        return const_iterator(L, stack_index() + return_count(), stack_index() + return_count());
    }
    const_iterator cbegin() const
    {
        return begin();
    }
    const_iterator cend() const
    {
        return end();
    }

    reverse_iterator rbegin()
    {
        return std::reverse_iterator<iterator>(begin());
    }
    reverse_iterator rend()
    {
        return std::reverse_iterator<iterator>(end());
    }
    const_reverse_iterator rbegin() const
    {
        return std::reverse_iterator<const_iterator>(begin());
    }
    const_reverse_iterator rend() const
    {
        return std::reverse_iterator<const_iterator>(end());
    }
    const_reverse_iterator crbegin() const
    {
        return std::reverse_iterator<const_iterator>(cbegin());
    }
    const_reverse_iterator crend() const
    {
        return std::reverse_iterator<const_iterator>(cend());
    }

    call_status status() const noexcept
    {
        return call_status::ok;
    }

    bool valid() const noexcept
    {
        return status() == call_status::ok || status() == call_status::yielded;
    }

    lua_State* lua_state() const
    {
        return L;
    };
    int stack_index() const
    {
        return index;
    };
    int return_count() const
    {
        return returncount;
    };
    void abandon() noexcept
    {
        //L = nullptr;
        index = 0;
        returncount = 0;
    }
    ~unsafe_function_result()
    {
        lua_pop(L, returncount);
    }
};

namespace stack {
template <>
struct pusher<unsafe_function_result> {
    static int push(lua_State* L, const unsafe_function_result& fr)
    {
        int p = 0;
        for (int i = 0; i < fr.return_count(); ++i) {
            lua_pushvalue(L, i + fr.stack_index());
            ++p;
        }
        return p;
    }
};
} // namespace stack
} // namespace sol

// end of sol/unsafe_function_result.hpp

namespace sol {

namespace detail {
template <>
struct is_speshul<unsafe_function_result> : std::true_type {
};
template <>
struct is_speshul<protected_function_result> : std::true_type {
};

template <std::size_t I, typename... Args, typename T>
stack_proxy get(types<Args...>, index_value<0>, index_value<I>, const T& fr)
{
    return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}

template <std::size_t I, std::size_t N, typename Arg, typename... Args, typename T, meta::enable<meta::boolean<(N > 0)>> = meta::enabler>
stack_proxy get(types<Arg, Args...>, index_value<N>, index_value<I>, const T& fr)
{
    return get(types<Args...>(), index_value<N - 1>(), index_value<I + lua_size<Arg>::value>(), fr);
}
} // namespace detail

template <>
struct tie_size<unsafe_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {
};

template <>
struct tie_size<protected_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {
};

template <std::size_t I>
stack_proxy get(const unsafe_function_result& fr)
{
    return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}

template <std::size_t I, typename... Args>
stack_proxy get(types<Args...> t, const unsafe_function_result& fr)
{
    return detail::get(t, index_value<I>(), index_value<0>(), fr);
}

template <std::size_t I>
stack_proxy get(const protected_function_result& fr)
{
    return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I));
}

template <std::size_t I, typename... Args>
stack_proxy get(types<Args...> t, const protected_function_result& fr)
{
    return detail::get(t, index_value<I>(), index_value<0>(), fr);
}
} // namespace sol

// end of sol/function_result.hpp

// beginning of sol/function_types.hpp

// beginning of sol/function_types_core.hpp

// beginning of sol/wrapper.hpp

namespace sol {

template <typename F, typename = void>
struct wrapper {
    typedef lua_bind_traits<meta::unqualified_t<F>> traits_type;
    typedef typename traits_type::args_list args_list;
    typedef typename traits_type::args_list free_args_list;
    typedef typename traits_type::returns_list returns_list;

    template <typename... Args>
    static decltype(auto) call(F& f, Args&&... args)
    {
        return f(std::forward<Args>(args)...);
    }

    struct caller {
        template <typename... Args>
        decltype(auto) operator()(F& fx, Args&&... args) const
        {
            return call(fx, std::forward<Args>(args)...);
        }
    };
};

template <typename F>
struct wrapper<F, std::enable_if_t<std::is_function<std::remove_pointer_t<meta::unqualified_t<F>>>::value>> {
    typedef lua_bind_traits<std::remove_pointer_t<meta::unqualified_t<F>>> traits_type;
    typedef typename traits_type::args_list args_list;
    typedef typename traits_type::args_list free_args_list;
    typedef typename traits_type::returns_list returns_list;

    template <F fx, typename... Args>
    static decltype(auto) invoke(Args&&... args)
    {
        return fx(std::forward<Args>(args)...);
    }

    template <typename... Args>
    static decltype(auto) call(F& fx, Args&&... args)
    {
        return fx(std::forward<Args>(args)...);
    }

    struct caller {
        template <typename... Args>
        decltype(auto) operator()(F& fx, Args&&... args) const
        {
            return call(fx, std::forward<Args>(args)...);
        }
    };

    template <F fx>
    struct invoker {
        template <typename... Args>
        decltype(auto) operator()(Args&&... args) const
        {
            return invoke<fx>(std::forward<Args>(args)...);
        }
    };
};

template <typename F>
struct wrapper<F, std::enable_if_t<std::is_member_object_pointer<meta::unqualified_t<F>>::value>> {
    typedef lua_bind_traits<meta::unqualified_t<F>> traits_type;
    typedef typename traits_type::object_type object_type;
    typedef typename traits_type::return_type return_type;
    typedef typename traits_type::args_list args_list;
    typedef types<object_type&, return_type> free_args_list;
    typedef typename traits_type::returns_list returns_list;

    template <F fx>
    static decltype(auto) invoke(object_type& mem)
    {
        return mem.*fx;
    }

    template <F fx, typename Arg, typename... Args>
    static decltype(auto) invoke(object_type& mem, Arg&& arg, Args&&...)
    {
        return mem.*fx = std::forward<Arg>(arg);
    }

    template <typename Fx>
    static decltype(auto) call(Fx&& fx, object_type& mem)
    {
        return (mem.*fx);
    }

    template <typename Fx, typename Arg, typename... Args>
    static void call(Fx&& fx, object_type& mem, Arg&& arg, Args&&...)
    {
        (mem.*fx) = std::forward<Arg>(arg);
    }

    struct caller {
        template <typename Fx, typename... Args>
        decltype(auto) operator()(Fx&& fx, object_type& mem, Args&&... args) const
        {
            return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
        }
    };

    template <F fx>
    struct invoker {
        template <typename... Args>
        decltype(auto) operator()(Args&&... args) const
        {
            return invoke<fx>(std::forward<Args>(args)...);
        }
    };
};

template <typename F, typename R, typename O, typename... FArgs>
struct member_function_wrapper {
    typedef O object_type;
    typedef lua_bind_traits<F> traits_type;
    typedef typename traits_type::args_list args_list;
    typedef types<object_type&, FArgs...> free_args_list;
    typedef meta::tuple_types<R> returns_list;

    template <F fx, typename... Args>
    static R invoke(O& mem, Args&&... args)
    {
        return (mem.*fx)(std::forward<Args>(args)...);
    }

    template <typename Fx, typename... Args>
    static R call(Fx&& fx, O& mem, Args&&... args)
    {
        return (mem.*fx)(std::forward<Args>(args)...);
    }

    struct caller {
        template <typename Fx, typename... Args>
        decltype(auto) operator()(Fx&& fx, O& mem, Args&&... args) const
        {
            return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...);
        }
    };

    template <F fx>
    struct invoker {
        template <typename... Args>
        decltype(auto) operator()(O& mem, Args&&... args) const
        {
            return invoke<fx>(mem, std::forward<Args>(args)...);
        }
    };
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...)> : public member_function_wrapper<R (O::*)(Args...), R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const> : public member_function_wrapper<R (O::*)(Args...) const, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile> : public member_function_wrapper<R (O::*)(Args...) const volatile, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...)&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...)&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) &&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const&&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile&&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) &&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const&&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile&&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> {
};

#ifdef SOL_NOEXCEPT_FUNCTION_TYPE //noexcept has become a part of a function's type

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) noexcept> : public member_function_wrapper<R (O::*)(Args...) noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const noexcept> : public member_function_wrapper<R (O::*)(Args...) const noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) & noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) & noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) && noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) && noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> {
};

template <typename R, typename O, typename... Args>
struct wrapper<R (O::*)(Args..., ...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> {
};

#endif // noexcept is part of a function's type

} // namespace sol

// end of sol/wrapper.hpp

namespace sol {
namespace function_detail {
template <typename Fx, int start = 1>
inline int call(lua_State* L)
{
    Fx& fx = stack::get<user<Fx>>(L, upvalue_index(start));
    return fx(L);
}
}
} // namespace sol::function_detail

// end of sol/function_types_core.hpp

// beginning of sol/function_types_templated.hpp

// beginning of sol/call.hpp

// beginning of sol/protect.hpp

namespace sol {

template <typename T>
struct protect_t {
    T value;

    template <typename Arg, typename... Args, meta::disable<std::is_same<protect_t, meta::unqualified_t<Arg>>> = meta::enabler>
    protect_t(Arg&& arg, Args&&... args)
        : value(std::forward<Arg>(arg), std::forward<Args>(args)...)
    {
    }

    protect_t(const protect_t&) = default;
    protect_t(protect_t&&) = default;
    protect_t& operator=(const protect_t&) = default;
    protect_t& operator=(protect_t&&) = default;
};

template <typename T>
auto protect(T&& value)
{
    return protect_t<std::decay_t<T>>(std::forward<T>(value));
}

} // namespace sol

// end of sol/protect.hpp

// beginning of sol/property.hpp

namespace sol {

struct no_prop {
};

template <typename R, typename W>
struct property_wrapper {
    typedef std::integral_constant<bool, !std::is_void<R>::value> can_read;
    typedef std::integral_constant<bool, !std::is_void<W>::value> can_write;
    typedef std::conditional_t<can_read::value, R, no_prop> Read;
    typedef std::conditional_t<can_write::value, W, no_prop> Write;
    Read read;
    Write write;

    template <typename Rx, typename Wx>
    property_wrapper(Rx&& r, Wx&& w)
        : read(std::forward<Rx>(r))
        , write(std::forward<Wx>(w))
    {
    }
};

namespace property_detail {
template <typename R, typename W>
inline decltype(auto) property(std::true_type, R&& read, W&& write)
{
    return property_wrapper<std::decay_t<R>, std::decay_t<W>>(std::forward<R>(read), std::forward<W>(write));
}
template <typename W, typename R>
inline decltype(auto) property(std::false_type, W&& write, R&& read)
{
    return property_wrapper<std::decay_t<R>, std::decay_t<W>>(std::forward<R>(read), std::forward<W>(write));
}
template <typename R>
inline decltype(auto) property(std::true_type, R&& read)
{
    return property_wrapper<std::decay_t<R>, void>(std::forward<R>(read), no_prop());
}
template <typename W>
inline decltype(auto) property(std::false_type, W&& write)
{
    return property_wrapper<void, std::decay_t<W>>(no_prop(), std::forward<W>(write));
}
} // namespace property_detail

template <typename F, typename G>
inline decltype(auto) property(F&& f, G&& g)
{
    typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
    typedef lua_bind_traits<meta::unqualified_t<G>> right_traits;
    return property_detail::property(meta::boolean<(left_traits::free_arity < right_traits::free_arity)>(), std::forward<F>(f), std::forward<G>(g));
}

template <typename F>
inline decltype(auto) property(F&& f)
{
    typedef lua_bind_traits<meta::unqualified_t<F>> left_traits;
    return property_detail::property(meta::boolean<(left_traits::free_arity < 2)>(), std::forward<F>(f));
}

template <typename F>
inline decltype(auto) readonly_property(F&& f)
{
    return property_detail::property(std::true_type(), std::forward<F>(f));
}

template <typename F>
inline decltype(auto) writeonly_property(F&& f)
{
    return property_detail::property(std::false_type(), std::forward<F>(f));
}

template <typename T>
struct readonly_wrapper {
    T v;

    readonly_wrapper(T v)
        : v(std::move(v))
    {
    }

    operator T&()
    {
        return v;
    }
    operator const T&() const
    {
        return v;
    }
};

// Allow someone to make a member variable readonly (const)
template <typename R, typename T>
inline auto readonly(R T::*v)
{
    return readonly_wrapper<meta::unqualified_t<decltype(v)>>(v);
}

template <typename T>
struct var_wrapper {
    T value;
    template <typename... Args>
    var_wrapper(Args&&... args)
        : value(std::forward<Args>(args)...)
    {
    }
    var_wrapper(const var_wrapper&) = default;
    var_wrapper(var_wrapper&&) = default;
    var_wrapper& operator=(const var_wrapper&) = default;
    var_wrapper& operator=(var_wrapper&&) = default;
};

template <typename V>
inline auto var(V&& v)
{
    typedef meta::unqualified_t<V> T;
    return var_wrapper<T>(std::forward<V>(v));
}

namespace meta {
template <typename T>
struct is_member_object : std::is_member_object_pointer<T> {
};

template <typename T>
struct is_member_object<readonly_wrapper<T>> : std::true_type {
};
} // namespace meta

} // namespace sol

// end of sol/property.hpp

namespace sol {
namespace usertype_detail {

} // namespace usertype_detail

namespace filter_detail {
template <int I, int... In>
inline void handle_filter(static_stack_dependencies<I, In...>, lua_State* L, int&)
{
    if (sizeof...(In) == 0) {
        return;
    }
    absolute_index ai(L, I);
    if (type_of(L, ai) != type::userdata) {
        return;
    }
    lua_createtable(L, static_cast<int>(sizeof...(In)), 0);
    stack_reference deps(L, -1);
    auto per_dep = [&L, &deps](int i) {
        lua_pushvalue(L, i);
        luaL_ref(L, deps.stack_index());
    };
    (void)per_dep;
    (void)detail::swallow{ int(), (per_dep(In), int())... };
    lua_setuservalue(L, ai);
}

template <int... In>
inline void handle_filter(returns_self_with<In...>, lua_State* L, int& pushed)
{
    pushed = stack::push(L, raw_index(1));
    handle_filter(static_stack_dependencies<-1, In...>(), L, pushed);
}

inline void handle_filter(const stack_dependencies& sdeps, lua_State* L, int&)
{
    absolute_index ai(L, sdeps.target);
    if (type_of(L, ai) != type::userdata) {
        return;
    }
    lua_createtable(L, static_cast<int>(sdeps.size()), 0);
    stack_reference deps(L, -1);
    for (std::size_t i = 0; i < sdeps.size(); ++i) {
        lua_pushvalue(L, sdeps.stack_indices[i]);
        luaL_ref(L, deps.stack_index());
    }
    lua_setuservalue(L, ai);
}

template <typename P, meta::disable<std::is_base_of<detail::filter_base_tag, meta::unqualified_t<P>>> = meta::enabler>
inline void handle_filter(P&& p, lua_State* L, int& pushed)
{
    pushed = std::forward<P>(p)(L, pushed);
}
} // namespace filter_detail

namespace function_detail {
inline int no_construction_error(lua_State* L)
{
    return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)");
}
} // namespace function_detail

namespace call_detail {

template <typename R, typename W>
inline auto& pick(std::true_type, property_wrapper<R, W>& f)
{
    return f.read;
}

template <typename R, typename W>
inline auto& pick(std::false_type, property_wrapper<R, W>& f)
{
    return f.write;
}

template <typename T, typename List>
struct void_call : void_call<T, meta::function_args_t<List>> {
};

template <typename T, typename... Args>
struct void_call<T, types<Args...>> {
    static void call(Args...)
    {
    }
};

template <typename T, bool checked, bool clean_stack>
struct constructor_match {
    T* obj;

    constructor_match(T* o)
        : obj(o)
    {
    }

    template <typename Fx, std::size_t I, typename... R, typename... Args>
    int operator()(types<Fx>, index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const
    {
        detail::default_construct func{};
        return stack::call_into_lua<checked, clean_stack>(r, a, L, start, func, obj);
    }
};

namespace overload_detail {
template <std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State* L, int, int, Args&&...)
{
    return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types");
}

template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args)
{
    typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
    typedef meta::tuple_types<typename traits::return_type> return_types;
    typedef typename traits::free_args_list args_list;
    // compile-time eliminate any functions that we know ahead of time are of improper arity
    if (!traits::runtime_variadics_t::value && meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
        return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
    }
    if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
        return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
    }
    stack::record tracking{};
    if (!stack::stack_detail::check_types<true>{}.check(args_list(), L, start, no_panic, tracking)) {
        return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
    }
    return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}

template <std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity_single(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args)
{
    return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}

template <typename Fx, std::size_t I, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity_single(types<Fx>, std::index_sequence<I>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args)
{
    typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
    typedef meta::tuple_types<typename traits::return_type> return_types;
    typedef typename traits::free_args_list args_list;
    // compile-time eliminate any functions that we know ahead of time are of improper arity
    if (!traits::runtime_variadics_t::value && meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
        return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
    }
    if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
        return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
    }
    return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}

template <typename Fx, typename Fx1, typename... Fxs, std::size_t I, std::size_t I1, std::size_t... In, std::size_t... M, typename Match, typename... Args>
inline int overload_match_arity_single(types<Fx, Fx1, Fxs...>, std::index_sequence<I, I1, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args)
{
    typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits;
    typedef meta::tuple_types<typename traits::return_type> return_types;
    typedef typename traits::free_args_list args_list;
    // compile-time eliminate any functions that we know ahead of time are of improper arity
    if (!traits::runtime_variadics_t::value && meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) {
        return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
    }
    if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) {
        return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
    }
    stack::record tracking{};
    if (!stack::stack_detail::check_types<true>{}.check(args_list(), L, start, no_panic, tracking)) {
        return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
    }
    return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...);
}
} // namespace overload_detail

template <typename... Functions, typename Match, typename... Args>
inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args)
{
    return overload_detail::overload_match_arity_single(types<Functions...>(), std::make_index_sequence<sizeof...(Functions)>(), std::index_sequence<>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}

template <typename... Functions, typename Match, typename... Args>
inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args)
{
    int fxarity = lua_gettop(L) - (start - 1);
    return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}

template <typename T, typename... TypeLists, typename Match, typename... Args>
inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args)
{
    // use same overload resolution matching as all other parts of the framework
    return overload_match_arity<decltype(void_call<T, TypeLists>::call)...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...);
}

template <typename T, bool checked, bool clean_stack, typename... TypeLists>
inline int construct(lua_State* L)
{
    static const auto& meta = usertype_traits<T>::metatable();
    int argcount = lua_gettop(L);
    call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, &usertype_traits<T>::user_metatable()[0], 1) : call_syntax::dot;
    argcount -= static_cast<int>(syntax);

    T* obj = detail::usertype_allocate<T>(L);
    reference userdataref(L, -1);
    userdataref.pop();

    construct_match<T, TypeLists...>(constructor_match<T, checked, clean_stack>(obj), L, argcount, 1 + static_cast<int>(syntax));

    userdataref.push();
    luaL_getmetatable(L, &meta[0]);
    if (type_of(L, -1) == type::lua_nil) {
        lua_pop(L, 1);
        return luaL_error(L, "sol: unable to get usertype metatable");
    }

    lua_setmetatable(L, -2);
    return 1;
}

template <typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename = void>
struct agnostic_lua_call_wrapper {
    typedef wrapper<meta::unqualified_t<F>> wrap;

    template <typename Fx, typename... Args>
    static int convertible_call(std::true_type, lua_State* L, Fx&& f, Args&&... args)
    {
        typedef typename wrap::traits_type traits_type;
        typedef typename traits_type::function_pointer_type fp_t;
        fp_t fx = f;
        return agnostic_lua_call_wrapper<fp_t, is_index, is_variable, checked, boost, clean_stack>{}.call(L, fx, std::forward<Args>(args)...);
    }

    template <typename Fx, typename... Args>
    static int convertible_call(std::false_type, lua_State* L, Fx&& f, Args&&... args)
    {
        typedef typename wrap::returns_list returns_list;
        typedef typename wrap::free_args_list args_list;
        typedef typename wrap::caller caller;
        return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + 1, caller(), std::forward<Fx>(f), std::forward<Args>(args)...);
    }

    template <typename Fx, typename... Args>
    static int call(lua_State* L, Fx&& f, Args&&... args)
    {
        typedef typename wrap::traits_type traits_type;
        typedef typename traits_type::function_pointer_type fp_t;
        return convertible_call(std::conditional_t<std::is_class<meta::unqualified_t<F>>::value, std::is_convertible<std::decay_t<Fx>, fp_t>, std::false_type>(), L, std::forward<Fx>(f), std::forward<Args>(args)...);
    }
};

template <typename T, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<var_wrapper<T>, true, is_variable, checked, boost, clean_stack, C> {
    template <typename F>
    static int call(lua_State* L, F&& f)
    {
        typedef is_stack_based<meta::unqualified_t<decltype(detail::unwrap(f.value))>> is_stack;
        if (clean_stack && !is_stack::value) {
            lua_settop(L, 0);
        }
        return stack::push_reference(L, detail::unwrap(f.value));
    }
};

template <typename T, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<var_wrapper<T>, false, is_variable, checked, boost, clean_stack, C> {
    template <typename V>
    static int call_assign(std::true_type, lua_State* L, V&& f)
    {
        detail::unwrap(f.value) = stack::get<meta::unwrapped_t<T>>(L, boost + (is_variable ? 3 : 1));
        if (clean_stack) {
            lua_settop(L, 0);
        }
        return 0;
    }

    template <typename... Args>
    static int call_assign(std::false_type, lua_State* L, Args&&...)
    {
        return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
    }

    template <typename... Args>
    static int call_const(std::false_type, lua_State* L, Args&&... args)
    {
        typedef meta::unwrapped_t<T> R;
        return call_assign(std::is_assignable<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>(), L, std::forward<Args>(args)...);
    }

    template <typename... Args>
    static int call_const(std::true_type, lua_State* L, Args&&...)
    {
        return luaL_error(L, "sol: cannot write to a readonly (const) variable");
    }

    template <typename V>
    static int call(lua_State* L, V&& f)
    {
        return call_const(std::is_const<meta::unwrapped_t<T>>(), L, f);
    }
};

template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<lua_CFunction_ref, is_index, is_variable, checked, boost, clean_stack, C> {
    static int call(lua_State* L, lua_CFunction_ref f)
    {
        return f(L);
    }
};

template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<lua_CFunction, is_index, is_variable, checked, boost, clean_stack, C> {
    static int call(lua_State* L, lua_CFunction f)
    {
        return f(L);
    }
};

#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<detail::lua_CFunction_noexcept, is_index, is_variable, checked, boost, clean_stack, C> {
    static int call(lua_State* L, detail::lua_CFunction_noexcept f)
    {
        return f(L);
    }
};
#endif // noexcept function types

template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<no_prop, is_index, is_variable, checked, boost, clean_stack, C> {
    static int call(lua_State* L, const no_prop&)
    {
        return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property");
    }
};

template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<no_construction, is_index, is_variable, checked, boost, clean_stack, C> {
    static int call(lua_State* L, const no_construction&)
    {
        return function_detail::no_construction_error(L);
    }
};

template <typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<bases<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
    static int call(lua_State*, const bases<Args...>&)
    {
        // Uh. How did you even call this, lul
        return 0;
    }
};

template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct agnostic_lua_call_wrapper<std::reference_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> {
    static int call(lua_State* L, std::reference_wrapper<T> f)
    {
        return agnostic_lua_call_wrapper<T, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f.get());
    }
};

template <typename T, typename F, bool is_index, bool is_variable, bool checked = stack::stack_detail::default_check_arguments, int boost = 0, bool clean_stack = true, typename = void>
struct lua_call_wrapper : agnostic_lua_call_wrapper<F, is_index, is_variable, checked, boost, clean_stack> {
};

template <typename T, typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack>
struct lua_call_wrapper<T, F, is_index, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_member_function_pointer<F>::value>> {
    typedef wrapper<meta::unqualified_t<F>> wrap;
    typedef typename wrap::object_type object_type;

    template <typename Fx>
    static int call(lua_State* L, Fx&& f, object_type& o)
    {
        typedef typename wrap::returns_list returns_list;
        typedef typename wrap::args_list args_list;
        typedef typename wrap::caller caller;
        return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(f), o);
    }

    template <typename Fx>
    static int call(lua_State* L, Fx&& f)
    {
        typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
#ifdef SOL_SAFE_USERTYPE
        auto maybeo = stack::check_get<Ta*>(L, 1);
        if (!maybeo || maybeo.value() == nullptr) {
            return luaL_error(L, "sol: received nil for 'self' argument (use ':' for accessing member functions, make sure member variables are preceeded by the actual object with '.' syntax)");
        }
        object_type* o = static_cast<object_type*>(maybeo.value());
        return call(L, std::forward<Fx>(f), *o);
#else
        object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
        return call(L, std::forward<Fx>(f), o);
#endif // Safety
    }
};

template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack>
struct lua_call_wrapper<T, F, false, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_member_object_pointer<F>::value>> {
    typedef lua_bind_traits<F> traits_type;
    typedef wrapper<meta::unqualified_t<F>> wrap;
    typedef typename wrap::object_type object_type;

    template <typename V>
    static int call_assign(std::true_type, lua_State* L, V&& f, object_type& o)
    {
        typedef typename wrap::args_list args_list;
        typedef typename wrap::caller caller;
        return stack::call_into_lua<checked, clean_stack>(types<void>(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f, o);
    }

    template <typename V>
    static int call_assign(std::true_type, lua_State* L, V&& f)
    {
        typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
#ifdef SOL_SAFE_USERTYPE
        auto maybeo = stack::check_get<Ta*>(L, 1);
        if (!maybeo || maybeo.value() == nullptr) {
            if (is_variable) {
                return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)");
            }
            return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)");
        }
        object_type* o = static_cast<object_type*>(maybeo.value());
        return call_assign(std::true_type(), L, f, *o);
#else
        object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
        return call_assign(std::true_type(), L, f, o);
#endif // Safety
    }

    template <typename... Args>
    static int call_assign(std::false_type, lua_State* L, Args&&...)
    {
        return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available");
    }

    template <typename... Args>
    static int call_const(std::false_type, lua_State* L, Args&&... args)
    {
        typedef typename traits_type::return_type R;
        return call_assign(std::is_copy_assignable<meta::unqualified_t<R>>(), L, std::forward<Args>(args)...);
    }

    template <typename... Args>
    static int call_const(std::true_type, lua_State* L, Args&&...)
    {
        return luaL_error(L, "sol: cannot write to a readonly (const) variable");
    }

    template <typename V>
    static int call(lua_State* L, V&& f)
    {
        return call_const(std::is_const<typename traits_type::return_type>(), L, std::forward<V>(f));
    }

    template <typename V>
    static int call(lua_State* L, V&& f, object_type& o)
    {
        return call_const(std::is_const<typename traits_type::return_type>(), L, std::forward<V>(f), o);
    }
};

template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack>
struct lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_member_object_pointer<F>::value>> {
    typedef lua_bind_traits<F> traits_type;
    typedef wrapper<meta::unqualified_t<F>> wrap;
    typedef typename wrap::object_type object_type;

    template <typename V>
    static int call(lua_State* L, V&& v, object_type& o)
    {
        typedef typename wrap::returns_list returns_list;
        typedef typename wrap::caller caller;
        F f(std::forward<V>(v));
        return stack::call_into_lua<checked, clean_stack>(returns_list(), types<>(), L, boost + (is_variable ? 3 : 2), caller(), f, o);
    }

    template <typename V>
    static int call(lua_State* L, V&& f)
    {
        typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta;
#ifdef SOL_SAFE_USERTYPE
        auto maybeo = stack::check_get<Ta*>(L, 1);
        if (!maybeo || maybeo.value() == nullptr) {
            if (is_variable) {
                return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
            }
            return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
        }
        object_type* o = static_cast<object_type*>(maybeo.value());
        return call(L, f, *o);
#else
        object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1));
        return call(L, f, o);
#endif // Safety
    }
};

template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, readonly_wrapper<F>, false, is_variable, checked, boost, clean_stack, C> {
    typedef lua_bind_traits<F> traits_type;
    typedef wrapper<meta::unqualified_t<F>> wrap;
    typedef typename wrap::object_type object_type;

    template <typename V>
    static int call(lua_State* L, V&&)
    {
        return luaL_error(L, "sol: cannot write to a sol::readonly variable");
    }

    template <typename V>
    static int call(lua_State* L, V&&, object_type&)
    {
        return luaL_error(L, "sol: cannot write to a sol::readonly variable");
    }
};

template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, readonly_wrapper<F>, true, is_variable, checked, boost, clean_stack, C> : lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> {
};

template <typename T, typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, constructor_list<Args...>, is_index, is_variable, checked, boost, clean_stack, C> {
    typedef constructor_list<Args...> F;

    static int call(lua_State* L, F&)
    {
        const auto& metakey = usertype_traits<T>::metatable();
        int argcount = lua_gettop(L);
        call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, &usertype_traits<T>::user_metatable()[0], 1) : call_syntax::dot;
        argcount -= static_cast<int>(syntax);

        T* obj = detail::usertype_allocate<T>(L);
        reference userdataref(L, -1);

        construct_match<T, Args...>(constructor_match<T, false, clean_stack>(obj), L, argcount, boost + 1 + static_cast<int>(syntax));

        userdataref.push();
        luaL_getmetatable(L, &metakey[0]);
        if (type_of(L, -1) == type::lua_nil) {
            lua_pop(L, 1);
            return luaL_error(L, "sol: unable to get usertype metatable");
        }

        lua_setmetatable(L, -2);
        return 1;
    }
};

template <typename T, typename... Cxs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, constructor_wrapper<Cxs...>, is_index, is_variable, checked, boost, clean_stack, C> {
    typedef constructor_wrapper<Cxs...> F;

    struct onmatch {
        template <typename Fx, std::size_t I, typename... R, typename... Args>
        int operator()(types<Fx>, index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start, F& f)
        {
            const auto& metakey = usertype_traits<T>::metatable();
            T* obj = detail::usertype_allocate<T>(L);
            reference userdataref(L, -1);

            auto& func = std::get<I>(f.functions);
            stack::call_into_lua<checked, clean_stack>(r, a, L, boost + start, func, detail::implicit_wrapper<T>(obj));

            userdataref.push();
            luaL_getmetatable(L, &metakey[0]);
            if (type_of(L, -1) == type::lua_nil) {
                lua_pop(L, 1);
                std::string err = "sol: unable to get usertype metatable for ";
                err += usertype_traits<T>::name();
                return luaL_error(L, err.c_str());
            }
            lua_setmetatable(L, -2);

            return 1;
        }
    };

    static int call(lua_State* L, F& f)
    {
        call_syntax syntax = stack::get_call_syntax(L, &usertype_traits<T>::user_metatable()[0], 1);
        int syntaxval = static_cast<int>(syntax);
        int argcount = lua_gettop(L) - syntaxval;
        return construct_match<T, meta::pop_front_type_t<meta::function_args_t<Cxs>>...>(onmatch(), L, argcount, 1 + syntaxval, f);
    }
};

template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack>
struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_void<Fx>::value>> {
    typedef destructor_wrapper<Fx> F;

    static int call(lua_State* L, const F&)
    {
        return detail::usertype_alloc_destruct<T>(L);
    }
};

template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack>
struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, std::enable_if_t<!std::is_void<Fx>::value>> {
    typedef destructor_wrapper<Fx> F;

    static int call(lua_State* L, const F& f)
    {
        T& obj = stack::get<T>(L);
        f.fx(detail::implicit_wrapper<T>(obj));
        return 0;
    }
};

template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, overload_set<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
    typedef overload_set<Fs...> F;

    struct on_match {
        template <typename Fx, std::size_t I, typename... R, typename... Args>
        int operator()(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx)
        {
            auto& f = std::get<I>(fx.functions);
            return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f);
        }
    };

    static int call(lua_State* L, F& fx)
    {
        return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L), 1, fx);
    }
};

template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, factory_wrapper<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> {
    typedef factory_wrapper<Fs...> F;

    struct on_match {
        template <typename Fx, std::size_t I, typename... R, typename... Args>
        int operator()(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx)
        {
            auto& f = std::get<I>(fx.functions);
            return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f);
        }
    };

    static int call(lua_State* L, F& fx)
    {
        return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L) - boost, 1 + boost, fx);
    }
};

template <typename T, typename R, typename W, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, property_wrapper<R, W>, is_index, is_variable, checked, boost, clean_stack, C> {
    typedef std::conditional_t<is_index, R, W> P;
    typedef meta::unqualified_t<P> U;
    typedef wrapper<U> wrap;
    typedef lua_bind_traits<U> traits_type;
    typedef meta::unqualified_t<typename traits_type::template arg_at<0>> object_type;

    template <typename F>
    static int self_call(std::true_type, lua_State* L, F&& f)
    {
        // The type being void means we don't have any arguments, so it might be a free functions?
        typedef typename traits_type::free_args_list args_list;
        typedef typename wrap::returns_list returns_list;
        typedef typename wrap::caller caller;
        return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f);
    }

    template <typename F>
    static int self_call(std::false_type, lua_State* L, F&& f)
    {
        typedef meta::pop_front_type_t<typename traits_type::free_args_list> args_list;
        typedef T Ta;
#ifdef SOL_SAFE_USERTYPE
        auto maybeo = stack::check_get<Ta*>(L, 1);
        if (!maybeo || maybeo.value() == nullptr) {
            if (is_variable) {
                return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)");
            }
            return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)");
        }
        object_type* o = static_cast<object_type*>(maybeo.value());
#else
        object_type* o = static_cast<object_type*>(stack::get<non_null<Ta*>>(L, 1));
#endif // Safety
        typedef typename wrap::returns_list returns_list;
        typedef typename wrap::caller caller;
        return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f, *o);
    }

    template <typename F, typename... Args>
    static int defer_call(std::false_type, lua_State* L, F&& f, Args&&... args)
    {
        return self_call(meta::any<std::is_void<object_type>, meta::boolean<lua_type_of<meta::unwrap_unqualified_t<object_type>>::value != type::userdata>>(), L, pick(meta::boolean<is_index>(), f), std::forward<Args>(args)...);
    }

    template <typename F, typename... Args>
    static int defer_call(std::true_type, lua_State* L, F&& f, Args&&... args)
    {
        auto& p = pick(meta::boolean<is_index>(), std::forward<F>(f));
        return lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, p, std::forward<Args>(args)...);
    }

    template <typename F, typename... Args>
    static int call(lua_State* L, F&& f, Args&&... args)
    {
        typedef meta::any<std::is_void<U>,
            std::is_same<U, no_prop>,
            meta::is_specialization_of<var_wrapper, U>,
            meta::is_specialization_of<constructor_wrapper, U>,
            meta::is_specialization_of<constructor_list, U>,
            std::is_member_pointer<U>>
            is_specialized;
        return defer_call(is_specialized(), L, std::forward<F>(f), std::forward<Args>(args)...);
    }
};

template <typename T, typename V, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, protect_t<V>, is_index, is_variable, checked, boost, clean_stack, C> {
    typedef protect_t<V> F;

    template <typename... Args>
    static int call(lua_State* L, F& fx, Args&&... args)
    {
        return lua_call_wrapper<T, V, is_index, is_variable, true, boost, clean_stack>{}.call(L, fx.value, std::forward<Args>(args)...);
    }
};

template <typename T, typename F, typename... Filters, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, filter_wrapper<F, Filters...>, is_index, is_variable, checked, boost, clean_stack, C> {
    typedef filter_wrapper<F, Filters...> P;

    template <std::size_t... In>
    static int call(std::index_sequence<In...>, lua_State* L, P& fx)
    {
        int pushed = lua_call_wrapper<T, F, is_index, is_variable, checked, boost, false, C>{}.call(L, fx.value);
        (void)detail::swallow{ int(), (filter_detail::handle_filter(std::get<In>(fx.filters), L, pushed), int())... };
        return pushed;
    }

    static int call(lua_State* L, P& fx)
    {
        typedef typename P::indices indices;
        return call(indices(), L, fx);
    }
};

template <typename T, typename Sig, typename P, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C>
struct lua_call_wrapper<T, function_arguments<Sig, P>, is_index, is_variable, checked, boost, clean_stack, C> {
    template <typename F>
    static int call(lua_State* L, F&& f)
    {
        return lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, std::get<0>(f.arguments));
    }
};

template <typename T, bool is_index, bool is_variable, int boost = 0, bool checked = stack::stack_detail::default_check_arguments, bool clean_stack = true, typename Fx, typename... Args>
inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args)
{
    return lua_call_wrapper<T, meta::unqualified_t<Fx>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
}

template <typename T, bool is_index, bool is_variable, typename F, int start = 1, bool checked = stack::stack_detail::default_check_arguments, bool clean_stack = true>
inline int call_user(lua_State* L)
{
    auto& fx = stack::get<user<F>>(L, upvalue_index(start));
    return call_wrapped<T, is_index, is_variable, 0, checked, clean_stack>(L, fx);
}

template <typename T, typename = void>
struct is_var_bind : std::false_type {
};

template <typename T>
struct is_var_bind<T, std::enable_if_t<std::is_member_object_pointer<T>::value>> : std::true_type {
};

template <>
struct is_var_bind<no_prop> : std::true_type {
};

template <typename R, typename W>
struct is_var_bind<property_wrapper<R, W>> : std::true_type {
};

template <typename T>
struct is_var_bind<var_wrapper<T>> : std::true_type {
};

template <typename T>
struct is_var_bind<readonly_wrapper<T>> : is_var_bind<meta::unqualified_t<T>> {
};

template <typename F, typename... Filters>
struct is_var_bind<filter_wrapper<F, Filters...>> : is_var_bind<meta::unqualified_t<F>> {
};
} // namespace call_detail

template <typename T>
struct is_variable_binding : call_detail::is_var_bind<meta::unqualified_t<T>> {
};

template <typename T>
struct is_function_binding : meta::neg<is_variable_binding<T>> {
};

} // namespace sol

// end of sol/call.hpp

namespace sol {
namespace function_detail {
template <typename F, F fx>
inline int call_wrapper_variable(std::false_type, lua_State* L)
{
    typedef meta::bind_traits<meta::unqualified_t<F>> traits_type;
    typedef typename traits_type::args_list args_list;
    typedef meta::tuple_types<typename traits_type::return_type> return_type;
    return stack::call_into_lua(return_type(), args_list(), L, 1, fx);
}

template <typename R, typename V, V, typename T>
inline int call_set_assignable(std::false_type, T&&, lua_State* L)
{
    return luaL_error(L, "cannot write to this type: copy assignment/constructor not available");
}

template <typename R, typename V, V variable, typename T>
inline int call_set_assignable(std::true_type, lua_State* L, T&& mem)
{
    (mem.*variable) = stack::get<R>(L, 2);
    return 0;
}

template <typename R, typename V, V, typename T>
inline int call_set_variable(std::false_type, lua_State* L, T&&)
{
    return luaL_error(L, "cannot write to a const variable");
}

template <typename R, typename V, V variable, typename T>
inline int call_set_variable(std::true_type, lua_State* L, T&& mem)
{
    return call_set_assignable<R, V, variable>(std::is_assignable<std::add_lvalue_reference_t<R>, R>(), L, std::forward<T>(mem));
}

template <typename V, V variable>
inline int call_wrapper_variable(std::true_type, lua_State* L)
{
    typedef meta::bind_traits<meta::unqualified_t<V>> traits_type;
    typedef typename traits_type::object_type T;
    typedef typename traits_type::return_type R;
    auto& mem = stack::get<T>(L, 1);
    switch (lua_gettop(L)) {
    case 1: {
        decltype(auto) r = (mem.*variable);
        stack::push_reference(L, std::forward<decltype(r)>(r));
        return 1;
    }
    case 2:
        return call_set_variable<R, V, variable>(meta::neg<std::is_const<R>>(), L, mem);
    default:
        return luaL_error(L, "incorrect number of arguments to member variable function call");
    }
}

template <typename F, F fx>
inline int call_wrapper_function(std::false_type, lua_State* L)
{
    return call_wrapper_variable<F, fx>(std::is_member_object_pointer<F>(), L);
}

template <typename F, F fx>
inline int call_wrapper_function(std::true_type, lua_State* L)
{
    return call_detail::call_wrapped<void, false, false>(L, fx);
}

template <typename F, F fx>
int call_wrapper_entry(lua_State* L) noexcept(meta::bind_traits<F>::is_noexcept)
{
    return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L);
}

template <typename... Fxs>
struct c_call_matcher {
    template <typename Fx, std::size_t I, typename R, typename... Args>
    int operator()(types<Fx>, index_value<I>, types<R>, types<Args...>, lua_State* L, int, int) const
    {
        typedef meta::at_in_pack_t<I, Fxs...> target;
        return target::call(L);
    }
};

template <typename F, F fx>
inline int c_call_raw(std::true_type, lua_State* L)
{
    return fx(L);
}

template <typename F, F fx>
inline int c_call_raw(std::false_type, lua_State* L)
{
#ifdef __clang__
    return detail::trampoline(L, function_detail::call_wrapper_entry<F, fx>);
#else
    return detail::typed_static_trampoline<decltype(&function_detail::call_wrapper_entry<F, fx>), (&function_detail::call_wrapper_entry<F, fx>)>(L);
#endif // fuck you clang :c
}

} // namespace function_detail

template <typename F, F fx>
inline int c_call(lua_State* L)
{
    typedef meta::unqualified_t<F> Fu;
    return function_detail::c_call_raw<F, fx>(std::integral_constant < bool, std::is_same<Fu, lua_CFunction>::value
#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
            || std::is_same<Fu, detail::lua_CFunction_noexcept>::value
#endif
                > (),
        L);
}

template <typename F, F f>
struct wrap {
    typedef F type;

    static int call(lua_State* L)
    {
        return c_call<type, f>(L);
    }
};

template <typename... Fxs>
inline int c_call(lua_State* L)
{
    if (sizeof...(Fxs) < 2) {
        return meta::at_in_pack_t<0, Fxs...>::call(L);
    }
    else {
        return call_detail::overload_match_arity<typename Fxs::type...>(function_detail::c_call_matcher<Fxs...>(), L, lua_gettop(L), 1);
    }
}

} // namespace sol

// end of sol/function_types_templated.hpp

// beginning of sol/function_types_stateless.hpp

namespace sol {
namespace function_detail {
template <typename Function>
struct upvalue_free_function {
    typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
    typedef meta::bind_traits<function_type> traits_type;

    static int real_call(lua_State* L) noexcept(traits_type::is_noexcept)
    {
        auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L);
        function_type* fx = udata.first;
        return call_detail::call_wrapped<void, true, false>(L, fx);
    }

    static int call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
    }

    int operator()(lua_State* L)
    {
        return call(L);
    }
};

template <typename T, typename Function>
struct upvalue_member_function {
    typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
    typedef lua_bind_traits<function_type> traits_type;

    static int real_call(lua_State* L) noexcept(traits_type::is_noexcept)
    {
        // Layout:
        // idx 1...n: verbatim data of member function pointer
        // idx n + 1: is the object's void pointer
        // We don't need to store the size, because the other side is templated
        // with the same member function pointer type
        auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
        auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
        function_type& memfx = memberdata.first;
        auto& item = *objdata.first;
        return call_detail::call_wrapped<T, true, false, -1>(L, memfx, item);
    }

    static int call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
    }

    int operator()(lua_State* L)
    {
        return call(L);
    }
};

template <typename T, typename Function>
struct upvalue_member_variable {
    typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
    typedef lua_bind_traits<function_type> traits_type;

    static int real_call(lua_State* L) noexcept(traits_type::is_noexcept)
    {
        // Layout:
        // idx 1...n: verbatim data of member variable pointer
        // idx n + 1: is the object's void pointer
        // We don't need to store the size, because the other side is templated
        // with the same member function pointer type
        auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
        auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
        auto& mem = *objdata.first;
        function_type& var = memberdata.first;
        switch (lua_gettop(L)) {
        case 0:
            return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
        case 1:
            return call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
        default:
            return luaL_error(L, "sol: incorrect number of arguments to member variable function");
        }
    }

    static int call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
    }

    int operator()(lua_State* L)
    {
        return call(L);
    }
};

template <typename T, typename Function>
struct upvalue_member_variable<T, readonly_wrapper<Function>> {
    typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
    typedef lua_bind_traits<function_type> traits_type;

    static int real_call(lua_State* L) noexcept(traits_type::is_noexcept)
    {
        // Layout:
        // idx 1...n: verbatim data of member variable pointer
        // idx n + 1: is the object's void pointer
        // We don't need to store the size, because the other side is templated
        // with the same member function pointer type
        auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
        auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
        auto& mem = *objdata.first;
        function_type& var = memberdata.first;
        switch (lua_gettop(L)) {
        case 0:
            return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
        default:
            return luaL_error(L, "sol: incorrect number of arguments to member variable function");
        }
    }

    static int call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
    }

    int operator()(lua_State* L)
    {
        return call(L);
    }
};

template <typename T, typename Function>
struct upvalue_this_member_function {
    typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
    typedef lua_bind_traits<function_type> traits_type;

    static int real_call(lua_State* L) noexcept(traits_type::is_noexcept)
    {
        // Layout:
        // idx 1...n: verbatim data of member variable pointer
        auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
        function_type& memfx = memberdata.first;
        return call_detail::call_wrapped<T, false, false>(L, memfx);
    }

    static int call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
    }

    int operator()(lua_State* L)
    {
        return call(L);
    }
};

template <typename T, typename Function>
struct upvalue_this_member_variable {
    typedef std::remove_pointer_t<std::decay_t<Function>> function_type;

    static int real_call(lua_State* L) noexcept(false)
    {
        // Layout:
        // idx 1...n: verbatim data of member variable pointer
        auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
        function_type& var = memberdata.first;
        switch (lua_gettop(L)) {
        case 1:
            return call_detail::call_wrapped<T, true, false>(L, var);
        case 2:
            return call_detail::call_wrapped<T, false, false>(L, var);
        default:
            return luaL_error(L, "sol: incorrect number of arguments to member variable function");
        }
    }

    static int call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
    }

    int operator()(lua_State* L)
    {
        return call(L);
    }
};

template <typename T, typename Function>
struct upvalue_this_member_variable<T, readonly_wrapper<Function>> {
    typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
    typedef lua_bind_traits<function_type> traits_type;

    static int real_call(lua_State* L) noexcept(false)
    {
        // Layout:
        // idx 1...n: verbatim data of member variable pointer
        auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
        function_type& var = memberdata.first;
        switch (lua_gettop(L)) {
        case 1:
            return call_detail::call_wrapped<T, true, false>(L, var);
        default:
            return luaL_error(L, "sol: incorrect number of arguments to member variable function");
        }
    }

    static int call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
    }

    int operator()(lua_State* L)
    {
        return call(L);
    }
};
}
} // namespace sol::function_detail

// end of sol/function_types_stateless.hpp

// beginning of sol/function_types_stateful.hpp

namespace sol {
namespace function_detail {
template <typename Func>
struct functor_function {
    typedef std::decay_t<meta::unwrap_unqualified_t<Func>> function_type;
    function_type fx;

    template <typename... Args>
    functor_function(function_type f, Args&&... args)
        : fx(std::move(f), std::forward<Args>(args)...)
    {
    }

    int call(lua_State* L)
    {
        return call_detail::call_wrapped<void, true, false>(L, fx);
    }

    int operator()(lua_State* L)
    {
        auto f = [&](lua_State*) -> int { return this->call(L); };
        return detail::trampoline(L, f);
    }
};

template <typename T, typename Function>
struct member_function {
    typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
    typedef meta::function_return_t<function_type> return_type;
    typedef meta::function_args_t<function_type> args_lists;
    function_type invocation;
    T member;

    template <typename... Args>
    member_function(function_type f, Args&&... args)
        : invocation(std::move(f))
        , member(std::forward<Args>(args)...)
    {
    }

    int call(lua_State* L)
    {
        return call_detail::call_wrapped<T, true, false, -1>(L, invocation, detail::unwrap(detail::deref(member)));
    }

    int operator()(lua_State* L)
    {
        auto f = [&](lua_State*) -> int { return this->call(L); };
        return detail::trampoline(L, f);
    }
};

template <typename T, typename Function>
struct member_variable {
    typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
    typedef typename meta::bind_traits<function_type>::return_type return_type;
    typedef typename meta::bind_traits<function_type>::args_list args_lists;
    function_type var;
    T member;
    typedef std::add_lvalue_reference_t<meta::unwrapped_t<std::remove_reference_t<decltype(detail::deref(member))>>> M;

    template <typename... Args>
    member_variable(function_type v, Args&&... args)
        : var(std::move(v))
        , member(std::forward<Args>(args)...)
    {
    }

    int call(lua_State* L)
    {
        M mem = detail::unwrap(detail::deref(member));
        switch (lua_gettop(L)) {
        case 0:
            return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
        case 1:
            return call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
        default:
            return luaL_error(L, "sol: incorrect number of arguments to member variable function");
        }
    }

    int operator()(lua_State* L)
    {
        auto f = [&](lua_State*) -> int { return this->call(L); };
        return detail::trampoline(L, f);
    }
};
}
} // namespace sol::function_detail

// end of sol/function_types_stateful.hpp

// beginning of sol/function_types_overloaded.hpp

namespace sol {
namespace function_detail {
template <int start_skew = 0, typename... Functions>
struct overloaded_function {
    typedef std::tuple<Functions...> overload_list;
    typedef std::make_index_sequence<sizeof...(Functions)> indices;
    overload_list overloads;

    overloaded_function(overload_list set)
        : overloads(std::move(set))
    {
    }

    overloaded_function(Functions... fxs)
        : overloads(fxs...)
    {
    }

    template <typename Fx, std::size_t I, typename... R, typename... Args>
    int call(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int)
    {
        auto& func = std::get<I>(overloads);
        return call_detail::call_wrapped<void, true, false, start_skew>(L, func);
    }

    int operator()(lua_State* L)
    {
        auto mfx = [&](auto&&... args) { return this->call(std::forward<decltype(args)>(args)...); };
        return call_detail::overload_match<Functions...>(mfx, L, 1 + start_skew);
    }
};
}
} // namespace sol::function_detail

// end of sol/function_types_overloaded.hpp

// beginning of sol/resolve.hpp

namespace sol {

#ifndef __clang__
// constexpr is fine for not-clang

namespace detail {
template <typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>>
inline constexpr auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...)
{
    using Sig = R(Args...);
    typedef meta::unqualified_t<F> Fu;
    return static_cast<Sig Fu::*>(&Fu::operator());
}

template <typename F, typename U = meta::unqualified_t<F>>
inline constexpr auto resolve_f(std::true_type, F&& f)
    -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f)))
{
    return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
}

template <typename F>
inline constexpr void resolve_f(std::false_type, F&&)
{
    static_assert(meta::has_deducible_signature<F>::value,
        "Cannot use no-template-parameter call with an overloaded functor: specify the signature");
}

template <typename F, typename U = meta::unqualified_t<F>>
inline constexpr auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f)))
{
    return resolve_f(meta::has_deducible_signature<U>{}, std::forward<F>(f));
}

template <typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>>
inline constexpr auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f)))
{
    return resolve_i(types<R(Args...)>(), std::forward<F>(f));
}

template <typename Sig, typename C>
inline constexpr Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr)
{
    return mem_func_ptr;
}

template <typename Sig, typename C>
inline constexpr Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr)
{
    return mem_variable_ptr;
}
} // namespace detail

template <typename... Args, typename R>
inline constexpr auto resolve(R fun_ptr(Args...)) -> R (*)(Args...)
{
    return fun_ptr;
}

template <typename Sig>
inline constexpr Sig* resolve(Sig* fun_ptr)
{
    return fun_ptr;
}

template <typename... Args, typename R, typename C>
inline constexpr auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...)
{
    return mem_ptr;
}

template <typename Sig, typename C>
inline constexpr Sig C::*resolve(Sig C::*mem_ptr)
{
    return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
}

template <typename... Sig, typename F, meta::disable<std::is_function<meta::unqualified_t<F>>> = meta::enabler>
inline constexpr auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f)))
{
    return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
}
#else

// Clang has distinct problems with constexpr arguments,
// so don't use the constexpr versions inside of clang.

namespace detail {
template <typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>>
inline auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...)
{
    using Sig = R(Args...);
    typedef meta::unqualified_t<F> Fu;
    return static_cast<Sig Fu::*>(&Fu::operator());
}

template <typename F, typename U = meta::unqualified_t<F>>
inline auto resolve_f(std::true_type, F&& f)
    -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f)))
{
    return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f));
}

template <typename F>
inline void resolve_f(std::false_type, F&&)
{
    static_assert(meta::has_deducible_signature<F>::value,
        "Cannot use no-template-parameter call with an overloaded functor: specify the signature");
}

template <typename F, typename U = meta::unqualified_t<F>>
inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f)))
{
    return resolve_f(meta::has_deducible_signature<U>{}, std::forward<F>(f));
}

template <typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>>
inline auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f)))
{
    return resolve_i(types<R(Args...)>(), std::forward<F>(f));
}

template <typename Sig, typename C>
inline Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr)
{
    return mem_func_ptr;
}

template <typename Sig, typename C>
inline Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr)
{
    return mem_variable_ptr;
}
} // namespace detail

template <typename... Args, typename R>
inline auto resolve(R fun_ptr(Args...)) -> R (*)(Args...)
{
    return fun_ptr;
}

template <typename Sig>
inline Sig* resolve(Sig* fun_ptr)
{
    return fun_ptr;
}

template <typename... Args, typename R, typename C>
inline auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...)
{
    return mem_ptr;
}

template <typename Sig, typename C>
inline Sig C::*resolve(Sig C::*mem_ptr)
{
    return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr);
}

template <typename... Sig, typename F>
inline auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f)))
{
    return detail::resolve_i(types<Sig...>(), std::forward<F>(f));
}

#endif

} // namespace sol

// end of sol/resolve.hpp

namespace sol {
namespace function_detail {
template <typename T>
struct class_indicator {
};

struct call_indicator {
};
} // namespace function_detail
namespace stack {
template <typename... Sigs>
struct pusher<function_sig<Sigs...>> {
    template <typename... Sig, typename Fx, typename... Args>
    static void select_convertible(std::false_type, types<Sig...>, lua_State* L, Fx&& fx, Args&&... args)
    {
        typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx;
        typedef function_detail::functor_function<clean_fx> F;
        set_fx<F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...);
    }

    template <typename R, typename... A, typename Fx, typename... Args>
    static void select_convertible(std::true_type, types<R(A...)>, lua_State* L, Fx&& fx, Args&&... args)
    {
        using fx_ptr_t = R (*)(A...);
        fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx));
        select_function(std::true_type(), L, fxptr, std::forward<Args>(args)...);
    }

    template <typename R, typename... A, typename Fx, typename... Args>
    static void select_convertible(types<R(A...)> t, lua_State* L, Fx&& fx, Args&&... args)
    {
        typedef std::decay_t<meta::unwrap_unqualified_t<Fx>> raw_fx_t;
        typedef R (*fx_ptr_t)(A...);
        typedef std::is_convertible<raw_fx_t, fx_ptr_t> is_convertible;
        select_convertible(is_convertible(), t, L, std::forward<Fx>(fx), std::forward<Args>(args)...);
    }

    template <typename Fx, typename... Args>
    static void select_convertible(types<>, lua_State* L, Fx&& fx, Args&&... args)
    {
        typedef meta::function_signature_t<meta::unwrap_unqualified_t<Fx>> Sig;
        select_convertible(types<Sig>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
    }

    template <typename Fx, typename T, typename... Args>
    static void select_reference_member_variable(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args)
    {
        typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx;
        typedef function_detail::member_variable<meta::unwrap_unqualified_t<T>, clean_fx> F;
        set_fx<F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
    }

    template <typename Fx, typename T, typename... Args>
    static void select_reference_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args)
    {
        typedef std::decay_t<Fx> dFx;
        dFx memfxptr(std::forward<Fx>(fx));
        auto userptr = detail::ptr(std::forward<T>(obj), std::forward<Args>(args)...);
        lua_CFunction freefunc = &function_detail::upvalue_member_variable<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>>::call;

        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::stack_detail::push_as_upvalues(L, memfxptr);
        upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr)));
        stack::push(L, c_closure(freefunc, upvalues));
    }

    template <typename Fx, typename... Args>
    static void select_member_variable(std::false_type, lua_State* L, Fx&& fx, Args&&... args)
    {
        select_convertible(types<Sigs...>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
    }

    template <typename Fx, typename T, typename... Args, meta::disable<meta::is_specialization_of<function_detail::class_indicator, meta::unqualified_t<T>>> = meta::enabler>
    static void select_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args)
    {
        typedef meta::boolean<meta::is_specialization_of<std::reference_wrapper, meta::unqualified_t<T>>::value || std::is_pointer<T>::value> is_reference;
        select_reference_member_variable(is_reference(), L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
    }

    template <typename Fx, typename C>
    static void select_member_variable(std::true_type, lua_State* L, Fx&& fx, function_detail::class_indicator<C>)
    {
        lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx>::call;
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::stack_detail::push_as_upvalues(L, fx);
        stack::push(L, c_closure(freefunc, upvalues));
    }

    template <typename Fx>
    static void select_member_variable(std::true_type, lua_State* L, Fx&& fx)
    {
        typedef typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type C;
        lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx>::call;
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::stack_detail::push_as_upvalues(L, fx);
        stack::push(L, c_closure(freefunc, upvalues));
    }

    template <typename Fx, typename T, typename... Args>
    static void select_reference_member_function(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args)
    {
        typedef std::decay_t<Fx> clean_fx;
        typedef function_detail::member_function<meta::unwrap_unqualified_t<T>, clean_fx> F;
        set_fx<F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
    }

    template <typename Fx, typename T, typename... Args>
    static void select_reference_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args)
    {
        typedef std::decay_t<Fx> dFx;
        dFx memfxptr(std::forward<Fx>(fx));
        auto userptr = detail::ptr(std::forward<T>(obj), std::forward<Args>(args)...);
        lua_CFunction freefunc = &function_detail::upvalue_member_function<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>>::call;

        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::stack_detail::push_as_upvalues(L, memfxptr);
        upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr)));
        stack::push(L, c_closure(freefunc, upvalues));
    }

    template <typename Fx, typename... Args>
    static void select_member_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args)
    {
        select_member_variable(meta::is_member_object<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
    }

    template <typename Fx, typename T, typename... Args, meta::disable<meta::is_specialization_of<function_detail::class_indicator, meta::unqualified_t<T>>> = meta::enabler>
    static void select_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args)
    {
        typedef meta::boolean<meta::is_specialization_of<std::reference_wrapper, meta::unqualified_t<T>>::value || std::is_pointer<T>::value> is_reference;
        select_reference_member_function(is_reference(), L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...);
    }

    template <typename Fx, typename C>
    static void select_member_function(std::true_type, lua_State* L, Fx&& fx, function_detail::class_indicator<C>)
    {
        lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, Fx>::call;
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::stack_detail::push_as_upvalues(L, fx);
        stack::push(L, c_closure(freefunc, upvalues));
    }

    template <typename Fx>
    static void select_member_function(std::true_type, lua_State* L, Fx&& fx)
    {
        typedef typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type C;
        lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, Fx>::call;
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::stack_detail::push_as_upvalues(L, fx);
        stack::push(L, c_closure(freefunc, upvalues));
    }

    template <typename Fx, typename... Args>
    static void select_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args)
    {
        select_member_function(std::is_member_function_pointer<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
    }

    template <typename Fx, typename... Args>
    static void select_function(std::true_type, lua_State* L, Fx&& fx, Args&&... args)
    {
        std::decay_t<Fx> target(std::forward<Fx>(fx), std::forward<Args>(args)...);
        lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx>::call;

        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::stack_detail::push_as_upvalues(L, target);
        stack::push(L, c_closure(freefunc, upvalues));
    }

    static void select_function(std::true_type, lua_State* L, lua_CFunction f)
    {
        stack::push(L, f);
    }

#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
    static void select_function(std::true_type, lua_State* L, detail::lua_CFunction_noexcept f)
    {
        stack::push(L, f);
    }
#endif // noexcept function type

    template <typename Fx, typename... Args, meta::disable<is_lua_reference<meta::unqualified_t<Fx>>> = meta::enabler>
    static void select(lua_State* L, Fx&& fx, Args&&... args)
    {
        select_function(std::is_function<std::remove_pointer_t<meta::unqualified_t<Fx>>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...);
    }

    template <typename Fx, meta::enable<is_lua_reference<meta::unqualified_t<Fx>>> = meta::enabler>
    static void select(lua_State* L, Fx&& fx)
    {
        stack::push(L, std::forward<Fx>(fx));
    }

    template <typename Fx, typename... Args>
    static void set_fx(lua_State* L, Args&&... args)
    {
        lua_CFunction freefunc = function_detail::call<meta::unqualified_t<Fx>, 2>;

        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::push<user<Fx>>(L, std::forward<Args>(args)...);
        stack::push(L, c_closure(freefunc, upvalues));
    }

    template <typename... Args>
    static int push(lua_State* L, Args&&... args)
    {
        // Set will always place one thing (function) on the stack
        select(L, std::forward<Args>(args)...);
        return 1;
    }
};

template <typename T, typename... Args>
struct pusher<function_arguments<T, Args...>> {
    template <std::size_t... I, typename FP>
    static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp)
    {
        return stack::push<T>(L, detail::forward_get<I>(fp.arguments)...);
    }

    static int push(lua_State* L, const function_arguments<T, Args...>& fp)
    {
        return push_func(std::make_index_sequence<sizeof...(Args)>(), L, fp);
    }

    static int push(lua_State* L, function_arguments<T, Args...>&& fp)
    {
        return push_func(std::make_index_sequence<sizeof...(Args)>(), L, std::move(fp));
    }
};

template <typename Signature>
struct pusher<std::function<Signature>> {
    static int push(lua_State* L, const std::function<Signature>& fx)
    {
        return pusher<function_sig<Signature>>{}.push(L, fx);
    }

    static int push(lua_State* L, std::function<Signature>&& fx)
    {
        return pusher<function_sig<Signature>>{}.push(L, std::move(fx));
    }
};

template <typename Signature>
struct pusher<Signature, std::enable_if_t<std::is_member_pointer<Signature>::value>> {
    template <typename F, typename... Args>
    static int push(lua_State* L, F&& f, Args&&... args)
    {
        return pusher<function_sig<>>{}.push(L, std::forward<F>(f), std::forward<Args>(args)...);
    }
};

template <typename Signature>
struct pusher<Signature, std::enable_if_t<meta::all<std::is_function<std::remove_pointer_t<Signature>>, meta::neg<std::is_same<Signature, lua_CFunction>>, meta::neg<std::is_same<Signature, std::remove_pointer_t<lua_CFunction>>>
#ifdef SOL_NOEXCEPT_FUNCTION_TYPE
                             ,
                             meta::neg<std::is_same<Signature, detail::lua_CFunction_noexcept>>, meta::neg<std::is_same<Signature, std::remove_pointer_t<detail::lua_CFunction_noexcept>>>
#endif // noexcept function types
                             >::value>> {
    template <typename F>
    static int push(lua_State* L, F&& f)
    {
        return pusher<function_sig<>>{}.push(L, std::forward<F>(f));
    }
};

template <typename... Functions>
struct pusher<overload_set<Functions...>> {
    static int push(lua_State* L, overload_set<Functions...>&& set)
    {
        typedef function_detail::overloaded_function<0, Functions...> F;
        pusher<function_sig<>>{}.set_fx<F>(L, std::move(set.functions));
        return 1;
    }

    static int push(lua_State* L, const overload_set<Functions...>& set)
    {
        typedef function_detail::overloaded_function<0, Functions...> F;
        pusher<function_sig<>>{}.set_fx<F>(L, set.functions);
        return 1;
    }
};

template <typename T>
struct pusher<protect_t<T>> {
    static int push(lua_State* L, protect_t<T>&& pw)
    {
        lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>;
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::push<user<protect_t<T>>>(L, std::move(pw.value));
        return stack::push(L, c_closure(cf, upvalues));
    }

    static int push(lua_State* L, const protect_t<T>& pw)
    {
        lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>;
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::push<user<protect_t<T>>>(L, pw.value);
        return stack::push(L, c_closure(cf, upvalues));
    }
};

template <typename F, typename G>
struct pusher<property_wrapper<F, G>, std::enable_if_t<!std::is_void<F>::value && !std::is_void<G>::value>> {
    static int push(lua_State* L, property_wrapper<F, G>&& pw)
    {
        return stack::push(L, overload(std::move(pw.read), std::move(pw.write)));
    }
    static int push(lua_State* L, const property_wrapper<F, G>& pw)
    {
        return stack::push(L, overload(pw.read, pw.write));
    }
};

template <typename F>
struct pusher<property_wrapper<F, void>> {
    static int push(lua_State* L, property_wrapper<F, void>&& pw)
    {
        return stack::push(L, std::move(pw.read));
    }
    static int push(lua_State* L, const property_wrapper<F, void>& pw)
    {
        return stack::push(L, pw.read);
    }
};

template <typename F>
struct pusher<property_wrapper<void, F>> {
    static int push(lua_State* L, property_wrapper<void, F>&& pw)
    {
        return stack::push(L, std::move(pw.write));
    }
    static int push(lua_State* L, const property_wrapper<void, F>& pw)
    {
        return stack::push(L, pw.write);
    }
};

template <typename T>
struct pusher<var_wrapper<T>> {
    static int push(lua_State* L, var_wrapper<T>&& vw)
    {
        return stack::push(L, std::move(vw.value));
    }
    static int push(lua_State* L, const var_wrapper<T>& vw)
    {
        return stack::push(L, vw.value);
    }
};

template <typename... Functions>
struct pusher<factory_wrapper<Functions...>> {
    static int push(lua_State* L, const factory_wrapper<Functions...>& fw)
    {
        typedef function_detail::overloaded_function<0, Functions...> F;
        pusher<function_sig<>>{}.set_fx<F>(L, fw.functions);
        return 1;
    }

    static int push(lua_State* L, factory_wrapper<Functions...>&& fw)
    {
        typedef function_detail::overloaded_function<0, Functions...> F;
        pusher<function_sig<>>{}.set_fx<F>(L, std::move(fw.functions));
        return 1;
    }

    static int push(lua_State* L, const factory_wrapper<Functions...>& set, function_detail::call_indicator)
    {
        typedef function_detail::overloaded_function<1, Functions...> F;
        pusher<function_sig<>>{}.set_fx<F>(L, set.functions);
        return 1;
    }

    static int push(lua_State* L, factory_wrapper<Functions...>&& set, function_detail::call_indicator)
    {
        typedef function_detail::overloaded_function<1, Functions...> F;
        pusher<function_sig<>>{}.set_fx<F>(L, std::move(set.functions));
        return 1;
    }
};

template <>
struct pusher<no_construction> {
    static int push(lua_State* L, no_construction)
    {
        lua_CFunction cf = &function_detail::no_construction_error;
        return stack::push(L, cf);
    }

    static int push(lua_State* L, no_construction c, function_detail::call_indicator)
    {
        return push(L, c);
    }
};

template <typename T, typename... Lists>
struct pusher<detail::tagged<T, constructor_list<Lists...>>> {
    static int push(lua_State* L, detail::tagged<T, constructor_list<Lists...>>)
    {
        lua_CFunction cf = call_detail::construct<T, stack_detail::default_check_arguments, true, Lists...>;
        return stack::push(L, cf);
    }
};

template <typename T, typename... Fxs>
struct pusher<detail::tagged<T, constructor_wrapper<Fxs...>>> {
    template <typename C>
    static int push(lua_State* L, C&& c)
    {
        lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>;
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, std::forward<C>(c));
        return stack::push(L, c_closure(cf, upvalues));
    }
};

template <typename T>
struct pusher<detail::tagged<T, destructor_wrapper<void>>> {
    static int push(lua_State* L, destructor_wrapper<void>)
    {
        lua_CFunction cf = detail::usertype_alloc_destruct<T>;
        return stack::push(L, cf);
    }
};

template <typename T, typename Fx>
struct pusher<detail::tagged<T, destructor_wrapper<Fx>>> {
    static int push(lua_State* L, destructor_wrapper<Fx> c)
    {
        lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>;
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::push<user<T>>(L, std::move(c));
        return stack::push(L, c_closure(cf, upvalues));
    }
};

template <typename F, typename... Filters>
struct pusher<filter_wrapper<F, Filters...>> {
    typedef filter_wrapper<F, Filters...> P;

    static int push(lua_State* L, const P& p)
    {
        lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>;
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::push<user<P>>(L, p);
        return stack::push(L, c_closure(cf, upvalues));
    }

    static int push(lua_State* L, P&& p)
    {
        lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>;
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::push<user<P>>(L, std::move(p));
        return stack::push(L, c_closure(cf, upvalues));
    }
};
} // namespace stack
} // namespace sol

// end of sol/function_types.hpp

namespace sol {
template <typename base_t, bool aligned = false>
class basic_function : public base_t {
private:
    void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount) const
    {
        lua_call(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount));
    }

    template <std::size_t... I, typename... Ret>
    auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) const
    {
        luacall(n, lua_size<std::tuple<Ret...>>::value);
        return stack::pop<std::tuple<Ret...>>(lua_state());
    }

    template <std::size_t I, typename Ret>
    Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) const
    {
        luacall(n, lua_size<Ret>::value);
        return stack::pop<Ret>(lua_state());
    }

    template <std::size_t I>
    void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const
    {
        luacall(n, 0);
    }

    unsafe_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) const
    {
        int stacksize = lua_gettop(lua_state());
        int firstreturn = (std::max)(1, stacksize - static_cast<int>(n));
        luacall(n, LUA_MULTRET);
        int poststacksize = lua_gettop(lua_state());
        int returncount = poststacksize - (firstreturn - 1);
        return unsafe_function_result(lua_state(), firstreturn, returncount);
    }

public:
    using base_t::lua_state;

    basic_function() = default;
    template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_function>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_function(T&& r) noexcept
        : base_t(std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        if (!is_function<meta::unqualified_t<T>>::value) {
            auto pp = stack::push_pop(*this);
            constructor_handler handler{};
            stack::check<basic_function>(lua_state(), -1, handler);
        }
#endif // Safety
    }
    basic_function(const basic_function&) = default;
    basic_function& operator=(const basic_function&) = default;
    basic_function(basic_function&&) = default;
    basic_function& operator=(basic_function&&) = default;
    basic_function(const stack_reference& r)
        : basic_function(r.lua_state(), r.stack_index())
    {
    }
    basic_function(stack_reference&& r)
        : basic_function(r.lua_state(), r.stack_index())
    {
    }
    template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_function(lua_State* L, T&& r)
        : base_t(L, std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_function>(lua_state(), -1, handler);
#endif // Safety
    }
    basic_function(lua_State* L, int index = -1)
        : base_t(L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<basic_function>(L, index, handler);
#endif // Safety
    }
    basic_function(lua_State* L, ref_index index)
        : base_t(L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_function>(lua_state(), -1, handler);
#endif // Safety
    }

    template <typename... Args>
    unsafe_function_result operator()(Args&&... args) const
    {
        return call<>(std::forward<Args>(args)...);
    }

    template <typename... Ret, typename... Args>
    decltype(auto) operator()(types<Ret...>, Args&&... args) const
    {
        return call<Ret...>(std::forward<Args>(args)...);
    }

    template <typename... Ret, typename... Args>
    decltype(auto) call(Args&&... args) const
    {
        if (!aligned) {
            base_t::push();
        }
        int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
        return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount);
    }
};
} // namespace sol

// end of sol/unsafe_function.hpp

// beginning of sol/protected_function.hpp

namespace sol {
namespace detail {
inline const char (&default_handler_name())[9]
{
    static const char name[9] = "sol.\xF0\x9F\x94\xA9";
    return name;
}

template <bool b, typename target_t = reference>
struct protected_handler {
    typedef is_stack_based<target_t> is_stack;
    const target_t& target;
    int stackindex;

    protected_handler(std::false_type, const target_t& target)
        : target(target)
        , stackindex(0)
    {
        if (b) {
            stackindex = lua_gettop(target.lua_state()) + 1;
            target.push();
        }
    }

    protected_handler(std::true_type, const target_t& target)
        : target(target)
        , stackindex(0)
    {
        if (b) {
            stackindex = target.stack_index();
        }
    }

    protected_handler(const target_t& target)
        : protected_handler(is_stack(), target)
    {
    }

    bool valid() const noexcept
    {
        return b;
    }

    ~protected_handler()
    {
        if (!is_stack::value && stackindex != 0) {
            lua_remove(target.lua_state(), stackindex);
        }
    }
};

template <typename base_t, typename T>
basic_function<base_t> force_cast(T& p)
{
    return p;
}
} // namespace detail

template <typename base_t, bool aligned = false, typename handler_t = reference>
class basic_protected_function : public base_t {
public:
    typedef is_stack_based<handler_t> is_stack_handler;

    static handler_t get_default_handler(lua_State* L)
    {
        if (is_stack_handler::value || L == nullptr)
            return handler_t(L, lua_nil);
        L = is_main_threaded<base_t>::value ? main_thread(L, L) : L;
        lua_getglobal(L, detail::default_handler_name());
        auto pp = stack::pop_n(L, 1);
        return handler_t(L, -1);
    }

    template <typename T>
    static void set_default_handler(const T& ref)
    {
        if (ref.lua_state() == nullptr) {
            return;
        }
        lua_State* L = ref.lua_state();
        if (!ref.valid()) {
            lua_pushnil(L);
            lua_setglobal(L, detail::default_handler_name());
        }
        else {
            ref.push();
            lua_setglobal(L, detail::default_handler_name());
        }
    }

private:
    template <bool b>
    call_status luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, detail::protected_handler<b, handler_t>& h) const
    {
        return static_cast<call_status>(lua_pcall(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), h.stackindex));
    }

    template <std::size_t... I, bool b, typename... Ret>
    auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const
    {
        luacall(n, sizeof...(Ret), h);
        return stack::pop<std::tuple<Ret...>>(lua_state());
    }

    template <std::size_t I, bool b, typename Ret>
    Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const
    {
        luacall(n, 1, h);
        return stack::pop<Ret>(lua_state());
    }

    template <std::size_t I, bool b>
    void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const
    {
        luacall(n, 0, h);
    }

    template <bool b>
    protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const
    {
        int stacksize = lua_gettop(lua_state());
        int poststacksize = stacksize;
        int firstreturn = 1;
        int returncount = 0;
        call_status code = call_status::ok;
#ifndef SOL_NO_EXCEPTIONS
        auto onexcept = [&](const char* error) {
            h.stackindex = 0;
            if (b) {
                h.target.push();
                stack::push(lua_state(), error);
                lua_call(lua_state(), 1, 1);
            }
            else {
                stack::push(lua_state(), error);
            }
        };
#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || defined(SOL_LUAJIT)
        try {
#endif // Safe Exception Propagation
#endif // No Exceptions
            firstreturn = (std::max)(1, static_cast<int>(stacksize - n - static_cast<int>(h.valid())));
            code = luacall(n, LUA_MULTRET, h);
            poststacksize = lua_gettop(lua_state()) - static_cast<int>(h.valid());
            returncount = poststacksize - (firstreturn - 1);
#ifndef SOL_NO_EXCEPTIONS
#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || defined(SOL_LUAJIT)
        }
        // Handle C++ errors thrown from C++ functions bound inside of lua
        catch (const char* error) {
            onexcept(error);
            firstreturn = lua_gettop(lua_state());
            return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
        }
        catch (const std::string& error) {
            onexcept(error.c_str());
            firstreturn = lua_gettop(lua_state());
            return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
        }
        catch (const std::exception& error) {
            onexcept(error.what());
            firstreturn = lua_gettop(lua_state());
            return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
        }
#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION)
        // LuaJIT cannot have the catchall when the safe propagation is on
        // but LuaJIT will swallow all C++ errors
        // if we don't at least catch std::exception ones
        catch (...) {
            onexcept("caught (...) unknown error during protected_function call");
            firstreturn = lua_gettop(lua_state());
            return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime);
        }
#endif // LuaJIT
#else
// do not handle exceptions: they can be propogated into C++ and keep all type information / rich information
#endif // Safe Exception Propagation
#endif // Exceptions vs. No Exceptions
        return protected_function_result(lua_state(), firstreturn, returncount, returncount, code);
    }

public:
    using base_t::lua_state;

    handler_t error_handler;

    basic_protected_function() = default;
    template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_protected_function>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_protected_function(T&& r) noexcept
        : base_t(std::forward<T>(r)),
          error_handler(get_default_handler(r.lua_state()))
    {
#ifdef SOL_CHECK_ARGUMENTS
        if (!is_function<meta::unqualified_t<T>>::value) {
            auto pp = stack::push_pop(*this);
            constructor_handler handler{};
            stack::check<basic_protected_function>(lua_state(), -1, handler);
        }
#endif // Safety
    }
    basic_protected_function(const basic_protected_function&) = default;
    basic_protected_function& operator=(const basic_protected_function&) = default;
    basic_protected_function(basic_protected_function&&) = default;
    basic_protected_function& operator=(basic_protected_function&&) = default;
    basic_protected_function(const basic_function<base_t>& b)
        : basic_protected_function(b, get_default_handler(b.lua_state()))
    {
    }
    basic_protected_function(basic_function<base_t>&& b)
        : basic_protected_function(std::move(b), get_default_handler(b.lua_state()))
    {
    }
    basic_protected_function(const basic_function<base_t>& b, handler_t eh)
        : base_t(b)
        , error_handler(std::move(eh))
    {
    }
    basic_protected_function(basic_function<base_t>&& b, handler_t eh)
        : base_t(std::move(b))
        , error_handler(std::move(eh))
    {
    }
    basic_protected_function(const stack_reference& r)
        : basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state()))
    {
    }
    basic_protected_function(stack_reference&& r)
        : basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state()))
    {
    }
    basic_protected_function(const stack_reference& r, handler_t eh)
        : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh))
    {
    }
    basic_protected_function(stack_reference&& r, handler_t eh)
        : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh))
    {
    }

    template <typename Super>
    basic_protected_function(const proxy_base<Super>& p)
        : basic_protected_function(p, get_default_handler(p.lua_state()))
    {
    }
    template <typename Super>
    basic_protected_function(proxy_base<Super>&& p)
        : basic_protected_function(std::move(p), get_default_handler(p.lua_state()))
    {
    }
    template <typename Proxy, typename Handler, meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler>
    basic_protected_function(Proxy&& p, Handler&& eh)
        : basic_protected_function(detail::force_cast<base_t>(p), std::forward<Handler>(eh))
    {
    }

    template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_protected_function(lua_State* L, T&& r)
        : basic_protected_function(L, std::forward<T>(r), get_default_handler(L))
    {
    }
    template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_protected_function(lua_State* L, T&& r, handler_t eh)
        : base_t(L, std::forward<T>(r))
        , error_handler(std::move(eh))
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_protected_function>(lua_state(), -1, handler);
#endif // Safety
    }

    basic_protected_function(lua_State* L, int index = -1)
        : basic_protected_function(L, index, get_default_handler(L))
    {
    }
    basic_protected_function(lua_State* L, int index, handler_t eh)
        : base_t(L, index)
        , error_handler(std::move(eh))
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<basic_protected_function>(L, index, handler);
#endif // Safety
    }
    basic_protected_function(lua_State* L, absolute_index index)
        : basic_protected_function(L, index, get_default_handler(L))
    {
    }
    basic_protected_function(lua_State* L, absolute_index index, handler_t eh)
        : base_t(L, index)
        , error_handler(std::move(eh))
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<basic_protected_function>(L, index, handler);
#endif // Safety
    }
    basic_protected_function(lua_State* L, raw_index index)
        : basic_protected_function(L, index, get_default_handler(L))
    {
    }
    basic_protected_function(lua_State* L, raw_index index, handler_t eh)
        : base_t(L, index)
        , error_handler(std::move(eh))
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<basic_protected_function>(L, index, handler);
#endif // Safety
    }
    basic_protected_function(lua_State* L, ref_index index)
        : basic_protected_function(L, index, get_default_handler(L))
    {
    }
    basic_protected_function(lua_State* L, ref_index index, handler_t eh)
        : base_t(L, index)
        , error_handler(std::move(eh))
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_protected_function>(lua_state(), -1, handler);
#endif // Safety
    }

    template <typename... Args>
    protected_function_result operator()(Args&&... args) const
    {
        return call<>(std::forward<Args>(args)...);
    }

    template <typename... Ret, typename... Args>
    decltype(auto) operator()(types<Ret...>, Args&&... args) const
    {
        return call<Ret...>(std::forward<Args>(args)...);
    }

    template <typename... Ret, typename... Args>
    decltype(auto) call(Args&&... args) const
    {
        if (!aligned) {
            // we do not expect the function to already be on the stack: push it
            if (error_handler.valid()) {
                detail::protected_handler<true, handler_t> h(error_handler);
                base_t::push();
                int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
                return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
            }
            else {
                detail::protected_handler<false, handler_t> h(error_handler);
                base_t::push();
                int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
                return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
            }
        }
        else {
            // the function is already on the stack at the right location
            if (error_handler.valid()) {
                // the handler will be pushed onto the stack manually,
                // since it's not already on the stack this means we need to push our own
                // function on the stack too and swap things to be in-place
                if (!is_stack_handler::value) {
                    // so, we need to remove the function at the top and then dump the handler out ourselves
                    base_t::push();
                }
                detail::protected_handler<true, handler_t> h(error_handler);
                if (!is_stack_handler::value) {
                    lua_replace(lua_state(), -3);
                    h.stackindex = lua_absindex(lua_state(), -2);
                }
                int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
                return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
            }
            else {
                detail::protected_handler<false, handler_t> h(error_handler);
                int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
                return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h);
            }
        }
    }
};
} // namespace sol

// end of sol/protected_function.hpp

namespace sol {
template <typename... Ret, typename... Args>
inline decltype(auto) stack_proxy::call(Args&&... args)
{
    stack_function sf(this->lua_state(), this->stack_index());
    return sf.template call<Ret...>(std::forward<Args>(args)...);
}

inline protected_function_result::protected_function_result(unsafe_function_result&& o) noexcept
    : L(o.lua_state()),
      index(o.stack_index()),
      returncount(o.return_count()),
      popcount(o.return_count()),
      err(o.status())
{
    // Must be manual, otherwise destructor will screw us
    // return count being 0 is enough to keep things clean
    // but we will be thorough
    o.abandon();
}

inline protected_function_result& protected_function_result::operator=(unsafe_function_result&& o) noexcept
{
    L = o.lua_state();
    index = o.stack_index();
    returncount = o.return_count();
    popcount = o.return_count();
    err = o.status();
    // Must be manual, otherwise destructor will screw us
    // return count being 0 is enough to keep things clean
    // but we will be thorough
    o.abandon();
    return *this;
}

inline unsafe_function_result::unsafe_function_result(protected_function_result&& o) noexcept
    : L(o.lua_state()),
      index(o.stack_index()),
      returncount(o.return_count())
{
    // Must be manual, otherwise destructor will screw us
    // return count being 0 is enough to keep things clean
    // but we will be thorough
    o.abandon();
}
inline unsafe_function_result& unsafe_function_result::operator=(protected_function_result&& o) noexcept
{
    L = o.lua_state();
    index = o.stack_index();
    returncount = o.return_count();
    // Must be manual, otherwise destructor will screw us
    // return count being 0 is enough to keep things clean
    // but we will be thorough
    o.abandon();
    return *this;
}

namespace stack {
template <typename Signature>
struct getter<std::function<Signature>> {
    typedef meta::bind_traits<Signature> fx_t;
    typedef typename fx_t::args_list args_lists;
    typedef meta::tuple_types<typename fx_t::return_type> return_types;

    template <typename... Args, typename... Ret>
    static std::function<Signature> get_std_func(types<Ret...>, types<Args...>, lua_State* L, int index)
    {
        unsafe_function f(L, index);
        auto fx = [ f = std::move(f), L, index ](Args && ... args)->meta::return_type_t<Ret...>
        {
            return f.call<Ret...>(std::forward<Args>(args)...);
        };
        return std::move(fx);
    }

    template <typename... FxArgs>
    static std::function<Signature> get_std_func(types<void>, types<FxArgs...>, lua_State* L, int index)
    {
        unsafe_function f(L, index);
        auto fx = [ f = std::move(f), L, index ](FxArgs && ... args)->void
        {
            f(std::forward<FxArgs>(args)...);
        };
        return std::move(fx);
    }

    template <typename... FxArgs>
    static std::function<Signature> get_std_func(types<>, types<FxArgs...> t, lua_State* L, int index)
    {
        return get_std_func(types<void>(), t, L, index);
    }

    static std::function<Signature> get(lua_State* L, int index, record& tracking)
    {
        tracking.last = 1;
        tracking.used += 1;
        type t = type_of(L, index);
        if (t == type::none || t == type::lua_nil) {
            return nullptr;
        }
        return get_std_func(return_types(), args_lists(), L, index);
    }
};
} // namespace stack

} // namespace sol

// end of sol/function.hpp

namespace sol {
template <typename Table, typename Key>
struct proxy : public proxy_base<proxy<Table, Key>> {
private:
    typedef meta::condition<meta::is_specialization_of<std::tuple, Key>, Key, std::tuple<meta::condition<std::is_array<meta::unqualified_t<Key>>, Key&, meta::unqualified_t<Key>>>> key_type;

    template <typename T, std::size_t... I>
    decltype(auto) tuple_get(std::index_sequence<I...>) const
    {
        return tbl.template traverse_get<T>(std::get<I>(key)...);
    }

    template <std::size_t... I, typename T>
    void tuple_set(std::index_sequence<I...>, T&& value)
    {
        tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value));
    }

    auto setup_table(std::true_type)
    {
        auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, tbl.stack_index());
        lua_pop(lua_state(), p.levels);
        return p;
    }

    bool is_valid(std::false_type)
    {
        auto pp = stack::push_pop(tbl);
        auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
        lua_pop(lua_state(), p.levels);
        return p;
    }

public:
    Table tbl;
    key_type key;

    template <typename T>
    proxy(Table table, T&& k)
        : tbl(table)
        , key(std::forward<T>(k))
    {
    }

    template <typename T>
    proxy& set(T&& item)
    {
        tuple_set(std::make_index_sequence<std::tuple_size<meta::unqualified_t<key_type>>::value>(), std::forward<T>(item));
        return *this;
    }

    template <typename... Args>
    proxy& set_function(Args&&... args)
    {
        tbl.set_function(key, std::forward<Args>(args)...);
        return *this;
    }

    template <typename U, meta::enable<meta::neg<is_lua_reference_or_proxy<meta::unwrap_unqualified_t<U>>>, meta::is_callable<meta::unwrap_unqualified_t<U>>> = meta::enabler>
    proxy& operator=(U&& other)
    {
        return set_function(std::forward<U>(other));
    }

    template <typename U, meta::disable<meta::neg<is_lua_reference_or_proxy<meta::unwrap_unqualified_t<U>>>, meta::is_callable<meta::unwrap_unqualified_t<U>>> = meta::enabler>
    proxy& operator=(U&& other)
    {
        return set(std::forward<U>(other));
    }

    template <typename T>
    proxy& operator=(std::initializer_list<T> other)
    {
        return set(std::move(other));
    }

    template <typename T>
    decltype(auto) get() const
    {
        return tuple_get<T>(std::make_index_sequence<std::tuple_size<meta::unqualified_t<key_type>>::value>());
    }

    template <typename T>
    decltype(auto) get_or(T&& otherwise) const
    {
        typedef decltype(get<T>()) U;
        optional<U> option = get<optional<U>>();
        if (option) {
            return static_cast<U>(option.value());
        }
        return static_cast<U>(std::forward<T>(otherwise));
    }

    template <typename T, typename D>
    decltype(auto) get_or(D&& otherwise) const
    {
        optional<T> option = get<optional<T>>();
        if (option) {
            return static_cast<T>(option.value());
        }
        return static_cast<T>(std::forward<D>(otherwise));
    }

    template <typename K>
    decltype(auto) operator[](K&& k) const
    {
        auto keys = meta::tuplefy(key, std::forward<K>(k));
        return proxy<Table, decltype(keys)>(tbl, std::move(keys));
    }

    template <typename... Ret, typename... Args>
    decltype(auto) call(Args&&... args)
    {
        return get<function>().template call<Ret...>(std::forward<Args>(args)...);
    }

    template <typename... Args>
    decltype(auto) operator()(Args&&... args)
    {
        return call<>(std::forward<Args>(args)...);
    }

    bool valid() const
    {
        auto pp = stack::push_pop(tbl);
        auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
        lua_pop(lua_state(), p.levels);
        return p;
    }

    type get_type() const
    {
        type t = type::none;
        auto pp = stack::push_pop(tbl);
        auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state()));
        if (p) {
            t = type_of(lua_state(), -1);
        }
        lua_pop(lua_state(), p.levels);
        return t;
    }

    lua_State* lua_state() const
    {
        return tbl.lua_state();
    }
};

template <typename Table, typename Key, typename T>
inline bool operator==(T&& left, const proxy<Table, Key>& right)
{
    typedef decltype(stack::get<T>(nullptr, 0)) U;
    return right.template get<optional<U>>() == left;
}

template <typename Table, typename Key, typename T>
inline bool operator==(const proxy<Table, Key>& right, T&& left)
{
    typedef decltype(stack::get<T>(nullptr, 0)) U;
    return right.template get<optional<U>>() == left;
}

template <typename Table, typename Key, typename T>
inline bool operator!=(T&& left, const proxy<Table, Key>& right)
{
    typedef decltype(stack::get<T>(nullptr, 0)) U;
    return right.template get<optional<U>>() != left;
}

template <typename Table, typename Key, typename T>
inline bool operator!=(const proxy<Table, Key>& right, T&& left)
{
    typedef decltype(stack::get<T>(nullptr, 0)) U;
    return right.template get<optional<U>>() != left;
}

template <typename Table, typename Key>
inline bool operator==(lua_nil_t, const proxy<Table, Key>& right)
{
    return !right.valid();
}

template <typename Table, typename Key>
inline bool operator==(const proxy<Table, Key>& right, lua_nil_t)
{
    return !right.valid();
}

template <typename Table, typename Key>
inline bool operator!=(lua_nil_t, const proxy<Table, Key>& right)
{
    return right.valid();
}

template <typename Table, typename Key>
inline bool operator!=(const proxy<Table, Key>& right, lua_nil_t)
{
    return right.valid();
}

template <bool b>
template <typename Super>
basic_reference<b>& basic_reference<b>::operator=(proxy_base<Super>&& r)
{
    this->operator=(r.operator basic_reference<b>());
    return *this;
}

template <bool b>
template <typename Super>
basic_reference<b>& basic_reference<b>::operator=(const proxy_base<Super>& r)
{
    this->operator=(r.operator basic_reference<b>());
    return *this;
}

namespace stack {
template <typename Table, typename Key>
struct pusher<proxy<Table, Key>> {
    static int push(lua_State* L, const proxy<Table, Key>& p)
    {
        reference r = p;
        return r.push(L);
    }
};
} // namespace stack
} // namespace sol

// end of sol/proxy.hpp

// beginning of sol/usertype.hpp

// beginning of sol/usertype_metatable.hpp

// beginning of sol/deprecate.hpp

#ifndef SOL_DEPRECATED
#ifdef _MSC_VER
#define SOL_DEPRECATED __declspec(deprecated)
#elif __GNUC__
#define SOL_DEPRECATED __attribute__((deprecated))
#else
#define SOL_DEPRECATED [[deprecated]]
#endif // compilers
#endif // SOL_DEPRECATED

namespace sol {
namespace detail {
template <typename T>
struct SOL_DEPRECATED deprecate_type {
    using type = T;
};
}
} // namespace sol::detail

// end of sol/deprecate.hpp

// beginning of sol/object.hpp

// beginning of sol/object_base.hpp

namespace sol {

template <typename base_t>
class basic_object_base : public base_t {
private:
    template <typename T>
    decltype(auto) as_stack(std::true_type) const
    {
        return stack::get<T>(base_t::lua_state(), base_t::stack_index());
    }

    template <typename T>
    decltype(auto) as_stack(std::false_type) const
    {
        base_t::push();
        return stack::pop<T>(base_t::lua_state());
    }

    template <typename T>
    bool is_stack(std::true_type) const
    {
        return stack::check<T>(base_t::lua_state(), base_t::stack_index(), no_panic);
    }

    template <typename T>
    bool is_stack(std::false_type) const
    {
        int r = base_t::registry_index();
        if (r == LUA_REFNIL)
            return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false;
        if (r == LUA_NOREF)
            return false;
        auto pp = stack::push_pop(*this);
        return stack::check<T>(base_t::lua_state(), -1, no_panic);
    }

public:
    basic_object_base() noexcept = default;
    basic_object_base(const basic_object_base&) = default;
    basic_object_base(basic_object_base&&) = default;
    basic_object_base& operator=(const basic_object_base&) = default;
    basic_object_base& operator=(basic_object_base&&) = default;
    template <typename T, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object_base>>> = meta::enabler>
    basic_object_base(T&& arg, Args&&... args)
        : base_t(std::forward<T>(arg), std::forward<Args>(args)...)
    {
    }

    template <typename T>
    decltype(auto) as() const
    {
        return as_stack<T>(is_stack_based<base_t>());
    }

    template <typename T>
    bool is() const
    {
        return is_stack<T>(is_stack_based<base_t>());
    }
};
} // namespace sol

// end of sol/object_base.hpp

// beginning of sol/userdata.hpp

namespace sol {
template <typename base_type>
class basic_userdata : public basic_table<base_type> {
    typedef basic_table<base_type> base_t;

public:
    using base_t::lua_state;

    basic_userdata() noexcept = default;
    template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_userdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_userdata(T&& r) noexcept
        : base_t(std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        if (!is_userdata<meta::unqualified_t<T>>::value) {
            auto pp = stack::push_pop(*this);
            type_assert(lua_state(), -1, type::userdata);
        }
#endif // Safety
    }
    basic_userdata(const basic_userdata&) = default;
    basic_userdata(basic_userdata&&) = default;
    basic_userdata& operator=(const basic_userdata&) = default;
    basic_userdata& operator=(basic_userdata&&) = default;
    basic_userdata(const stack_reference& r)
        : basic_userdata(r.lua_state(), r.stack_index())
    {
    }
    basic_userdata(stack_reference&& r)
        : basic_userdata(r.lua_state(), r.stack_index())
    {
    }
    template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_userdata(lua_State* L, T&& r)
        : base_t(L, std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_userdata>(L, -1, handler);
#endif // Safety
    }
    basic_userdata(lua_State* L, int index = -1)
        : base_t(detail::no_safety, L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<basic_userdata>(L, index, handler);
#endif // Safety
    }
    basic_userdata(lua_State* L, ref_index index)
        : base_t(detail::no_safety, L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_userdata>(L, -1, handler);
#endif // Safety
    }
};

template <typename base_type>
class basic_lightuserdata : public basic_object_base<base_type> {
    typedef basic_object_base<base_type> base_t;

public:
    using base_t::lua_state;

    basic_lightuserdata() noexcept = default;
    template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_lightuserdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_lightuserdata(T&& r) noexcept
        : base_t(std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        if (!is_lightuserdata<meta::unqualified_t<T>>::value) {
            auto pp = stack::push_pop(*this);
            type_assert(lua_state(), -1, type::lightuserdata);
        }
#endif // Safety
    }
    basic_lightuserdata(const basic_lightuserdata&) = default;
    basic_lightuserdata(basic_lightuserdata&&) = default;
    basic_lightuserdata& operator=(const basic_lightuserdata&) = default;
    basic_lightuserdata& operator=(basic_lightuserdata&&) = default;
    basic_lightuserdata(const stack_reference& r)
        : basic_lightuserdata(r.lua_state(), r.stack_index())
    {
    }
    basic_lightuserdata(stack_reference&& r)
        : basic_lightuserdata(r.lua_state(), r.stack_index())
    {
    }
    template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_lightuserdata(lua_State* L, T&& r)
        : basic_lightuserdata(L, std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_lightuserdata>(lua_state(), -1, handler);
#endif // Safety
    }
    basic_lightuserdata(lua_State* L, int index = -1)
        : base_t(L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<basic_lightuserdata>(L, index, handler);
#endif // Safety
    }
    basic_lightuserdata(lua_State* L, ref_index index)
        : base_t(L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_lightuserdata>(lua_state(), index, handler);
#endif // Safety
    }
};

} // namespace sol

// end of sol/userdata.hpp

// beginning of sol/as_args.hpp

namespace sol {
template <typename T>
struct as_args_t {
    T src;
};

template <typename Source>
auto as_args(Source&& source)
{
    return as_args_t<Source>{ std::forward<Source>(source) };
}

namespace stack {
template <typename T>
struct pusher<as_args_t<T>> {
    int push(lua_State* L, const as_args_t<T>& e)
    {
        int p = 0;
        for (const auto& i : e.src) {
            p += stack::push(L, i);
        }
        return p;
    }
};
} // namespace stack
} // namespace sol

// end of sol/as_args.hpp

// beginning of sol/variadic_args.hpp

namespace sol {
struct variadic_args {
private:
    lua_State* L;
    int index;
    int stacktop;

public:
    typedef stack_proxy reference_type;
    typedef stack_proxy value_type;
    typedef stack_proxy* pointer;
    typedef std::ptrdiff_t difference_type;
    typedef std::size_t size_type;
    typedef stack_iterator<stack_proxy, false> iterator;
    typedef stack_iterator<stack_proxy, true> const_iterator;
    typedef std::reverse_iterator<iterator> reverse_iterator;
    typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

    variadic_args() = default;
    variadic_args(lua_State* luastate, int stackindex = -1)
        : L(luastate)
        , index(lua_absindex(luastate, stackindex))
        , stacktop(lua_gettop(luastate))
    {
    }
    variadic_args(lua_State* luastate, int stackindex, int lastindex)
        : L(luastate)
        , index(lua_absindex(luastate, stackindex))
        , stacktop(lastindex)
    {
    }
    variadic_args(const variadic_args&) = default;
    variadic_args& operator=(const variadic_args&) = default;
    variadic_args(variadic_args&& o)
        : L(o.L)
        , index(o.index)
        , stacktop(o.stacktop)
    {
        // Must be manual, otherwise destructor will screw us
        // return count being 0 is enough to keep things clean
        // but will be thorough
        o.L = nullptr;
        o.index = 0;
        o.stacktop = 0;
    }
    variadic_args& operator=(variadic_args&& o)
    {
        L = o.L;
        index = o.index;
        stacktop = o.stacktop;
        // Must be manual, otherwise destructor will screw us
        // return count being 0 is enough to keep things clean
        // but will be thorough
        o.L = nullptr;
        o.index = 0;
        o.stacktop = 0;
        return *this;
    }

    iterator begin()
    {
        return iterator(L, index, stacktop + 1);
    }
    iterator end()
    {
        return iterator(L, stacktop + 1, stacktop + 1);
    }
    const_iterator begin() const
    {
        return const_iterator(L, index, stacktop + 1);
    }
    const_iterator end() const
    {
        return const_iterator(L, stacktop + 1, stacktop + 1);
    }
    const_iterator cbegin() const
    {
        return begin();
    }
    const_iterator cend() const
    {
        return end();
    }

    reverse_iterator rbegin()
    {
        return std::reverse_iterator<iterator>(begin());
    }
    reverse_iterator rend()
    {
        return std::reverse_iterator<iterator>(end());
    }
    const_reverse_iterator rbegin() const
    {
        return std::reverse_iterator<const_iterator>(begin());
    }
    const_reverse_iterator rend() const
    {
        return std::reverse_iterator<const_iterator>(end());
    }
    const_reverse_iterator crbegin() const
    {
        return std::reverse_iterator<const_iterator>(cbegin());
    }
    const_reverse_iterator crend() const
    {
        return std::reverse_iterator<const_iterator>(cend());
    }

    int push() const
    {
        return push(L);
    }

    int push(lua_State* target) const
    {
        int pushcount = 0;
        for (int i = index; i <= stacktop; ++i) {
            lua_pushvalue(L, i);
            pushcount += 1;
        }
        if (target != L) {
            lua_xmove(L, target, pushcount);
        }
        return pushcount;
    }

    template <typename T>
    decltype(auto) get(difference_type index_offset = 0) const
    {
        return stack::get<T>(L, index + static_cast<int>(index_offset));
    }

    type get_type(difference_type index_offset = 0) const noexcept
    {
        return type_of(L, index + static_cast<int>(index_offset));
    }

    stack_proxy operator[](difference_type index_offset) const
    {
        return stack_proxy(L, index + static_cast<int>(index_offset));
    }

    lua_State* lua_state() const
    {
        return L;
    };
    int stack_index() const
    {
        return index;
    };
    int leftover_count() const
    {
        return stacktop - (index - 1);
    }
    std::size_t size() const
    {
        return static_cast<std::size_t>(leftover_count());
    }
    int top() const
    {
        return stacktop;
    }
};

namespace stack {
template <>
struct getter<variadic_args> {
    static variadic_args get(lua_State* L, int index, record& tracking)
    {
        tracking.last = 0;
        return variadic_args(L, index);
    }
};

template <>
struct pusher<variadic_args> {
    static int push(lua_State* L, const variadic_args& ref)
    {
        return ref.push(L);
    }
};
} // namespace stack
} // namespace sol

// end of sol/variadic_args.hpp

namespace sol {

template <typename R = reference, bool should_pop = !is_stack_based<R>::value, typename T>
R make_reference(lua_State* L, T&& value)
{
    int backpedal = stack::push(L, std::forward<T>(value));
    R r = stack::get<R>(L, -backpedal);
    if (should_pop) {
        lua_pop(L, backpedal);
    }
    return r;
}

template <typename T, typename R = reference, bool should_pop = !is_stack_based<R>::value, typename... Args>
R make_reference(lua_State* L, Args&&... args)
{
    int backpedal = stack::push<T>(L, std::forward<Args>(args)...);
    R r = stack::get<R>(L, -backpedal);
    if (should_pop) {
        lua_pop(L, backpedal);
    }
    return r;
}

template <typename base_type>
class basic_object : public basic_object_base<base_type> {
private:
    typedef basic_object_base<base_type> base_t;

    template <bool invert_and_pop = false>
    basic_object(std::integral_constant<bool, invert_and_pop>, lua_State* L, int index = -1) noexcept
        : base_t(L, index)
    {
        if (invert_and_pop) {
            lua_pop(L, -index);
        }
    }

public:
    basic_object() noexcept = default;
    template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_object(T&& r)
        : base_t(std::forward<T>(r))
    {
    }
    template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_object(lua_State* L, T&& r)
        : base_t(L, std::forward<T>(r))
    {
    }
    basic_object(lua_nil_t r)
        : base_t(r)
    {
    }
    basic_object(const basic_object&) = default;
    basic_object(basic_object&&) = default;
    basic_object(const stack_reference& r) noexcept
        : basic_object(r.lua_state(), r.stack_index())
    {
    }
    basic_object(stack_reference&& r) noexcept
        : basic_object(r.lua_state(), r.stack_index())
    {
    }
    template <typename Super>
    basic_object(const proxy_base<Super>& r) noexcept
        : basic_object(r.operator basic_object())
    {
    }
    template <typename Super>
    basic_object(proxy_base<Super>&& r) noexcept
        : basic_object(r.operator basic_object())
    {
    }
    basic_object(lua_State* L, lua_nil_t r) noexcept
        : base_t(L, r)
    {
    }
    basic_object(lua_State* L, int index = -1) noexcept
        : base_t(L, index)
    {
    }
    basic_object(lua_State* L, absolute_index index) noexcept
        : base_t(L, index)
    {
    }
    basic_object(lua_State* L, raw_index index) noexcept
        : base_t(L, index)
    {
    }
    basic_object(lua_State* L, ref_index index) noexcept
        : base_t(L, index)
    {
    }
    template <typename T, typename... Args>
    basic_object(lua_State* L, in_place_type_t<T>, Args&&... args) noexcept
        : basic_object(std::integral_constant<bool, !is_stack_based<base_t>::value>(), L, -stack::push<T>(L, std::forward<Args>(args)...))
    {
    }
    template <typename T, typename... Args>
    basic_object(lua_State* L, in_place_t, T&& arg, Args&&... args) noexcept
        : basic_object(L, in_place_type<T>, std::forward<T>(arg), std::forward<Args>(args)...)
    {
    }
    basic_object& operator=(const basic_object&) = default;
    basic_object& operator=(basic_object&&) = default;
    basic_object& operator=(const base_type& b)
    {
        base_t::operator=(b);
        return *this;
    }
    basic_object& operator=(base_type&& b)
    {
        base_t::operator=(std::move(b));
        return *this;
    }
    template <typename Super>
    basic_object& operator=(const proxy_base<Super>& r)
    {
        this->operator=(r.operator basic_object());
        return *this;
    }
    template <typename Super>
    basic_object& operator=(proxy_base<Super>&& r)
    {
        this->operator=(r.operator basic_object());
        return *this;
    }
};

template <typename T>
object make_object(lua_State* L, T&& value)
{
    return make_reference<object, true>(L, std::forward<T>(value));
}

template <typename T, typename... Args>
object make_object(lua_State* L, Args&&... args)
{
    return make_reference<T, object, true>(L, std::forward<Args>(args)...);
}
} // namespace sol

// end of sol/object.hpp

// beginning of sol/container_usertype_metatable.hpp

// beginning of sol/container_traits.hpp

#include <unordered_map>

namespace sol {

template <typename T>
struct container_traits;

template <typename T>
struct as_container_t {
    T source;

    as_container_t(T value)
        : source(std::move(value))
    {
    }

    operator std::add_rvalue_reference_t<T>()
    {
        return std::move(source);
    }

    operator std::add_lvalue_reference_t<std::add_const_t<T>>() const
    {
        return source;
    }
};

template <typename T>
struct as_container_t<T&> {
    std::reference_wrapper<T> source;

    as_container_t(T& value)
        : source(value)
    {
    }

    operator T&()
    {
        return source;
    }
};

template <typename T>
auto as_container(T&& value)
{
    return as_container_t<T>(std::forward<T>(value));
}

namespace container_detail {

template <typename T>
struct has_clear_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::clear));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_empty_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::empty));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_erase_after_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(std::declval<C>().erase_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>()))*);
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T, typename = void>
struct has_find_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*);
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_find_test<T, std::enable_if_t<meta::is_lookup<T>::value>> {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::key_type>>()))*);
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_erase_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(std::declval<C>().erase(std::declval<typename C::iterator>()))*);
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_traits_find_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::find));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_traits_insert_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::insert));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_traits_erase_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::erase));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_traits_index_set_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::index_set));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_traits_index_get_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::index_get));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_traits_set_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::set));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_traits_get_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::get));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_traits_pairs_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::pairs));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_traits_ipairs_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::ipairs));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
struct has_traits_add_test {
private:
    typedef std::array<char, 1> one;
    typedef std::array<char, 2> two;

    template <typename C>
    static one test(decltype(&C::add));
    template <typename C>
    static two test(...);

public:
    static const bool value = sizeof(test<T>(0)) == sizeof(char);
};

template <typename T>
using has_clear = meta::boolean<has_clear_test<T>::value>;

template <typename T>
using has_empty = meta::boolean<has_empty_test<T>::value>;

template <typename T>
using has_find = meta::boolean<has_find_test<T>::value>;

template <typename T>
using has_erase = meta::boolean<has_erase_test<T>::value>;

template <typename T>
using has_erase_after = meta::boolean<has_erase_after_test<T>::value>;

template <typename T>
using has_traits_get = meta::boolean<has_traits_get_test<T>::value>;

template <typename T>
using has_traits_set = meta::boolean<has_traits_set_test<T>::value>;

template <typename T>
using has_traits_index_get = meta::boolean<has_traits_index_get_test<T>::value>;

template <typename T>
using has_traits_index_set = meta::boolean<has_traits_index_set_test<T>::value>;

template <typename T>
using has_traits_pairs = meta::boolean<has_traits_pairs_test<T>::value>;

template <typename T>
using has_traits_ipairs = meta::boolean<has_traits_ipairs_test<T>::value>;

template <typename T>
using has_traits_add = meta::boolean<has_traits_add_test<T>::value>;

template <typename T>
using has_traits_size = meta::has_size<T>;

template <typename T>
using has_traits_clear = has_clear<T>;

template <typename T>
using has_traits_empty = has_empty<T>;

template <typename T>
using has_traits_find = meta::boolean<has_traits_find_test<T>::value>;

template <typename T>
using has_traits_insert = meta::boolean<has_traits_insert_test<T>::value>;

template <typename T>
using has_traits_erase = meta::boolean<has_traits_erase_test<T>::value>;

template <typename T>
struct is_forced_container : is_container<T> {
};

template <typename T>
struct is_forced_container<as_container_t<T>> : std::true_type {
};

template <typename T>
struct container_decay {
    typedef T type;
};

template <typename T>
struct container_decay<as_container_t<T>> {
    typedef T type;
};

template <typename T>
using container_decay_t = typename container_decay<meta::unqualified_t<T>>::type;

template <typename T>
decltype(auto) get_key(std::false_type, T&& t)
{
    return std::forward<T>(t);
}

template <typename T>
decltype(auto) get_key(std::true_type, T&& t)
{
    return t.first;
}

template <typename T>
decltype(auto) get_value(std::false_type, T&& t)
{
    return std::forward<T>(t);
}

template <typename T>
decltype(auto) get_value(std::true_type, T&& t)
{
    return t.second;
}

template <typename X, typename = void>
struct container_traits_default {
private:
    typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T;

public:
    typedef lua_nil_t iterator;
    typedef lua_nil_t value_type;

    static int get(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'get(key)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int index_get(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'container[key]' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int set(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'set(key, value)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int index_set(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'container[key] = value' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int add(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'add' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int insert(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'insert' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int find(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'find' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int size(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int clear(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'clear' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int empty(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'empty' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int erase(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'erase' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int pairs(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call '__pairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static int ipairs(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call '__ipairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
    }

    static iterator begin(lua_State* L, T&)
    {
        luaL_error(L, "sol: cannot call 'being' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
        return lua_nil;
    }

    static iterator end(lua_State* L, T&)
    {
        luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str());
        return lua_nil;
    }
};

template <typename X>
struct container_traits_default<X, std::enable_if_t<meta::all<is_forced_container<meta::unqualified_t<X>>, meta::has_value_type<meta::unqualified_t<container_decay_t<X>>>, meta::has_iterator<meta::unqualified_t<container_decay_t<X>>>>::value>> {
private:
    typedef std::remove_pointer_t<meta::unwrap_unqualified_t<container_decay_t<X>>> T;

private:
    typedef container_traits<X> deferred_traits;
    typedef meta::is_associative<T> is_associative;
    typedef meta::is_lookup<T> is_lookup;
    typedef typename T::iterator iterator;
    typedef typename T::value_type value_type;
    typedef std::conditional_t<is_associative::value,
        value_type,
        std::conditional_t<is_lookup::value, std::pair<value_type, value_type>, std::pair<std::ptrdiff_t, value_type>>>
        KV;
    typedef typename KV::first_type K;
    typedef typename KV::second_type V;
    typedef decltype(*std::declval<iterator&>()) iterator_return;
    typedef typename meta::iterator_tag<iterator>::type iterator_category;
    typedef std::is_same<iterator_category, std::input_iterator_tag> is_input_iterator;
    typedef std::conditional_t<is_input_iterator::value,
        V,
        decltype(detail::deref(std::declval<std::conditional_t<is_associative::value, std::add_lvalue_reference_t<V>, iterator_return>>()))>
        push_type;
    typedef std::is_copy_assignable<V> is_copyable;
    typedef meta::neg<meta::any<std::is_const<V>, std::is_const<std::remove_reference_t<iterator_return>>, meta::neg<is_copyable>>>
        is_writable;
    typedef meta::unqualified_t<decltype(get_key(is_associative(), std::declval<std::add_lvalue_reference_t<value_type>>()))> key_type;
    typedef meta::all<std::is_integral<K>, meta::neg<meta::any<is_associative, is_lookup>>> is_linear_integral;

    struct iter {
        T& source;
        iterator it;
        std::size_t i;

        iter(T& source, iterator it)
            : source(source)
            , it(std::move(it))
            , i(0)
        {
        }
    };

    static auto& get_src(lua_State* L)
    {
        typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> Tu;
#ifdef SOL_SAFE_USERTYPE
        auto p = stack::check_get<Tu*>(L, 1);
        if (!p) {
            luaL_error(L, "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)", detail::demangle<T>().c_str());
        }
        if (p.value() == nullptr) {
            luaL_error(L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str());
        }
        return *p.value();
#else
        return stack::get<Tu>(L, 1);
#endif // Safe getting with error
    }

    static int get_associative(std::true_type, lua_State* L, iterator& it)
    {
        auto& v = *it;
        return stack::stack_detail::push_reference<push_type>(L, detail::deref(v.second));
    }

    static int get_associative(std::false_type, lua_State* L, iterator& it)
    {
        return stack::stack_detail::push_reference<push_type>(L, detail::deref(*it));
    }

    static int get_category(std::input_iterator_tag, lua_State* L, T& self, K& key)
    {
        if (key < 1) {
            return stack::push(L, lua_nil);
        }
        auto it = begin(L, self);
        auto e = end(L, self);
        if (it == e) {
            return stack::push(L, lua_nil);
        }
        while (key > 1) {
            --key;
            ++it;
            if (it == e) {
                return stack::push(L, lua_nil);
            }
        }
        return get_associative(is_associative(), L, it);
    }

    static int get_category(std::random_access_iterator_tag, lua_State* L, T& self, K& key)
    {
        std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self));
        if (key < 1 || key > len) {
            return stack::push(L, lua_nil);
        }
        --key;
        auto it = std::next(begin(L, self), key);
        return get_associative(is_associative(), L, it);
    }

    static int get_it(std::true_type, lua_State* L, T& self, K& key)
    {
        return get_category(iterator_category(), L, self, key);
    }

    static int get_comparative(std::true_type, lua_State* L, T& self, K& key)
    {
        auto fx = [&](const value_type& r) -> bool {
            return key == get_key(is_associative(), r);
        };
        auto e = end(L, self);
        auto it = std::find_if(begin(L, self), e, std::ref(fx));
        if (it == e) {
            return stack::push(L, lua_nil);
        }
        return get_associative(is_associative(), L, it);
    }

    static int get_comparative(std::false_type, lua_State* L, T&, K&)
    {
        return luaL_error(L, "cannot get this key on '%s': no suitable way to increment iterator and compare to key value '%s'", detail::demangle<T>().data(), detail::demangle<K>().data());
    }

    static int get_it(std::false_type, lua_State* L, T& self, K& key)
    {
        return get_comparative(meta::supports_op_equal<K, key_type>(), L, self, key);
    }

    static void set_associative(std::true_type, iterator& it, stack_object value)
    {
        auto& v = *it;
        v.second = value.as<V>();
    }

    static void set_associative(std::false_type, iterator& it, stack_object value)
    {
        auto& v = *it;
        v = value.as<V>();
    }

    static void set_writable(std::true_type, lua_State*, T&, iterator& it, stack_object value)
    {
        set_associative(is_associative(), it, std::move(value));
    }

    static void set_writable(std::false_type, lua_State* L, T&, iterator&, stack_object)
    {
        luaL_error(L, "cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data());
    }

    static void set_category(std::input_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value)
    {
        decltype(auto) key = okey.as<K>();
        auto e = end(L, self);
        auto it = begin(L, self);
        auto backit = it;
        for (; key > 1 && it != e; --key, ++it) {
            backit = it;
        }
        if (it == e) {
            if (key == 1) {
                add_copyable(is_copyable(), L, self, std::move(value), meta::has_insert_after<T>::value ? backit : it);
                return;
            }
            luaL_error(L, "out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
            return;
        }
        set_writable(is_writable(), L, self, it, std::move(value));
    }

    static void set_category(std::random_access_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value)
    {
        decltype(auto) key = okey.as<K>();
        if (key < 1) {
            luaL_error(L, "sol: out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str());
            return;
        }
        --key;
        std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self));
        if (key == len) {
            add_copyable(is_copyable(), L, self, std::move(value));
            return;
        }
        else if (key > len) {
            luaL_error(L, "sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
            return;
        }
        auto it = std::next(begin(L, self), key);
        set_writable(is_writable(), L, self, it, std::move(value));
    }

    static void set_comparative(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value)
    {
        decltype(auto) key = okey.as<K>();
        if (!is_writable::value) {
            luaL_error(L, "cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data());
            ;
            return;
        }
        auto fx = [&](const value_type& r) -> bool {
            return key == get_key(is_associative(), r);
        };
        auto e = end(L, self);
        auto it = std::find_if(begin(L, self), e, std::ref(fx));
        if (it == e) {
            return;
        }
        set_writable(is_writable(), L, self, it, std::move(value));
    }

    static void set_comparative(std::false_type, lua_State* L, T&, stack_object, stack_object)
    {
        luaL_error(L, "cannot set this value on '%s': no suitable way to increment iterator or compare to '%s' key", detail::demangle<T>().data(), detail::demangle<K>().data());
    }

    static void set_associative_insert(std::true_type, lua_State*, T& self, iterator& it, K& key, stack_object value)
    {
        self.insert(it, value_type(key, value.as<V>()));
    }

    static void set_associative_insert(std::false_type, lua_State*, T& self, iterator& it, K& key, stack_object)
    {
        self.insert(it, key);
    }

    static void set_associative_find(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value)
    {
        decltype(auto) key = okey.as<K>();
        auto it = self.find(key);
        if (it == end(L, self)) {
            set_associative_insert(is_associative(), L, self, it, key, std::move(value));
            return;
        }
        set_writable(is_writable(), L, self, it, std::move(value));
    }

    static void set_associative_find(std::false_type, lua_State* L, T& self, stack_object key, stack_object value)
    {
        set_comparative(meta::supports_op_equal<K, key_type>(), L, self, std::move(key), std::move(value));
    }

    static void set_it(std::true_type, lua_State* L, T& self, stack_object key, stack_object value)
    {
        set_category(iterator_category(), L, self, std::move(key), std::move(value));
    }

    static void set_it(std::false_type, lua_State* L, T& self, stack_object key, stack_object value)
    {
        set_associative_find(meta::all<has_find<T>, meta::any<is_associative, is_lookup>>(), L, self, std::move(key), std::move(value));
    }

    static int find_has_associative_lookup(std::true_type, lua_State* L, T& self)
    {
        decltype(auto) key = stack::get<K>(L, 2);
        auto it = self.find(key);
        if (it == end(L, self)) {
            return stack::push(L, lua_nil);
        }
        return get_associative(is_associative(), L, it);
    }

    static int find_has_associative_lookup(std::false_type, lua_State* L, T& self)
    {
        decltype(auto) value = stack::get<V>(L, 2);
        auto it = self.find(value);
        if (it == end(L, self)) {
            return stack::push(L, lua_nil);
        }
        return get_associative(is_associative(), L, it);
    }

    static int find_has(std::true_type, lua_State* L, T& self)
    {
        return find_has_associative_lookup(meta::any<is_lookup, is_associative>(), L, self);
    }

    static int find_associative_lookup(std::true_type, lua_State* L, iterator& it, std::size_t)
    {
        return get_associative(is_associative(), L, it);
    }

    static int find_associative_lookup(std::false_type, lua_State* L, iterator&, std::size_t index)
    {
        return stack::push(L, index);
    }

    static int find_comparative(std::false_type, lua_State* L, T&)
    {
        return luaL_error(L, "cannot call 'find' on '%s': there is no 'find' function and the value_type is not equality comparable", detail::demangle<T>().c_str());
    }

    static int find_comparative(std::true_type, lua_State* L, T& self)
    {
        decltype(auto) value = stack::get<V>(L, 2);
        auto it = begin(L, self);
        auto e = end(L, self);
        std::size_t index = 1;
        for (;; ++it, ++index) {
            if (it == e) {
                return stack::push(L, lua_nil);
            }
            if (value == get_value(is_associative(), *it)) {
                break;
            }
        }
        return find_associative_lookup(meta::any<is_lookup, is_associative>(), L, it, index);
    }

    static int find_has(std::false_type, lua_State* L, T& self)
    {
        return find_comparative(meta::supports_op_equal<V>(), L, self);
    }

    static void add_insert_after(std::false_type, lua_State* L, T& self, stack_object value, iterator&)
    {
        add_insert_after(std::false_type(), L, self, value);
    }

    static void add_insert_after(std::false_type, lua_State* L, T&, stack_object)
    {
        luaL_error(L, "cannot call 'add' on type '%s': no suitable insert/push_back C++ functions", detail::demangle<T>().data());
    }

    static void add_insert_after(std::true_type, lua_State*, T& self, stack_object value, iterator& at)
    {
        self.insert_after(at, value.as<V>());
    }

    static void add_insert_after(std::true_type, lua_State* L, T& self, stack_object value)
    {
        auto backit = self.before_begin();
        {
            auto e = end(L, self);
            for (auto it = begin(L, self); it != e; ++backit, ++it) {
            }
        }
        return add_insert_after(std::true_type(), L, self, value, backit);
    }

    static void add_insert(std::true_type, lua_State*, T& self, stack_object value, iterator& at)
    {
        self.insert(at, value.as<V>());
    }

    static void add_insert(std::true_type, lua_State* L, T& self, stack_object value)
    {
        auto at = end(L, self);
        add_insert(std::true_type(), L, self, value, at);
    }

    static void add_insert(std::false_type, lua_State* L, T& self, stack_object value, iterator& at)
    {
        return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value), at);
    }

    static void add_insert(std::false_type, lua_State* L, T& self, stack_object value)
    {
        return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value));
    }

    static void add_push_back(std::true_type, lua_State*, T& self, stack_object value, iterator&)
    {
        self.push_back(value.as<V>());
    }

    static void add_push_back(std::true_type, lua_State*, T& self, stack_object value)
    {
        self.push_back(value.as<V>());
    }

    static void add_push_back(std::false_type, lua_State* L, T& self, stack_object value, iterator& at)
    {
        add_insert(meta::has_insert<T>(), L, self, value, at);
    }

    static void add_push_back(std::false_type, lua_State* L, T& self, stack_object value)
    {
        add_insert(meta::has_insert<T>(), L, self, value);
    }

    static void add_associative(std::true_type, lua_State* L, T& self, stack_object key, iterator& at)
    {
        self.insert(at, value_type(key.as<K>(), stack::get<V>(L, 3)));
    }

    static void add_associative(std::true_type, lua_State* L, T& self, stack_object key)
    {
        auto at = end(L, self);
        add_associative(std::true_type(), L, self, std::move(key), at);
    }

    static void add_associative(std::false_type, lua_State* L, T& self, stack_object value, iterator& at)
    {
        add_push_back(meta::has_push_back<T>(), L, self, value, at);
    }

    static void add_associative(std::false_type, lua_State* L, T& self, stack_object value)
    {
        add_push_back(meta::has_push_back<T>(), L, self, value);
    }

    static void add_copyable(std::true_type, lua_State* L, T& self, stack_object value, iterator& at)
    {
        add_associative(is_associative(), L, self, std::move(value), at);
    }

    static void add_copyable(std::true_type, lua_State* L, T& self, stack_object value)
    {
        add_associative(is_associative(), L, self, value);
    }

    static void add_copyable(std::false_type, lua_State* L, T& self, stack_object value, iterator&)
    {
        add_copyable(std::false_type(), L, self, std::move(value));
    }

    static void add_copyable(std::false_type, lua_State* L, T&, stack_object)
    {
        luaL_error(L, "cannot call 'add' on '%s': value_type is non-copyable", detail::demangle<T>().data());
    }

    static void insert_lookup(std::true_type, lua_State* L, T& self, stack_object, stack_object value)
    {
        // TODO: should we warn or error about someone calling insert on an ordered / lookup container with no associativity?
        add_copyable(std::true_type(), L, self, std::move(value));
    }

    static void insert_lookup(std::false_type, lua_State* L, T& self, stack_object where, stack_object value)
    {
        auto it = begin(L, self);
        auto key = where.as<K>();
        --key;
        std::advance(it, key);
        self.insert(it, value.as<V>());
    }

    static void insert_after_has(std::true_type, lua_State* L, T& self, stack_object where, stack_object value)
    {
        auto key = where.as<K>();
        auto backit = self.before_begin();
        {
            --key;
            auto e = end(L, self);
            for (auto it = begin(L, self); key > 0; ++backit, ++it, --key) {
                if (backit == e) {
                    luaL_error(L, "sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
                    return;
                }
            }
        }
        self.insert_after(backit, value.as<V>());
    }

    static void insert_after_has(std::false_type, lua_State* L, T&, stack_object, stack_object)
    {
        luaL_error(L, "cannot call 'insert' on '%s': no suitable or similar functionality detected on this container", detail::demangle<T>().data());
    }

    static void insert_has(std::true_type, lua_State* L, T& self, stack_object key, stack_object value)
    {
        insert_lookup(meta::all<is_associative, is_lookup>(), L, self, std::move(key), std::move(value));
    }

    static void insert_has(std::false_type, lua_State* L, T& self, stack_object where, stack_object value)
    {
        insert_after_has(meta::has_insert_after<T>(), L, self, where, value);
    }

    static void insert_copyable(std::true_type, lua_State* L, T& self, stack_object key, stack_object value)
    {
        insert_has(meta::has_insert<T>(), L, self, std::move(key), std::move(value));
    }

    static void insert_copyable(std::false_type, lua_State* L, T&, stack_object, stack_object)
    {
        luaL_error(L, "cannot call 'insert' on '%s': value_type is non-copyable", detail::demangle<T>().data());
    }

    static void erase_integral(std::true_type, lua_State* L, T& self, K& key)
    {
        auto it = begin(L, self);
        --key;
        std::advance(it, key);
        self.erase(it);
    }

    static void erase_integral(std::false_type, lua_State* L, T& self, const K& key)
    {
        auto fx = [&](const value_type& r) -> bool {
            return key == r;
        };
        auto e = end(L, self);
        auto it = std::find_if(begin(L, self), e, std::ref(fx));
        if (it == e) {
            return;
        }
        self.erase(it);
    }

    static void erase_associative_lookup(std::true_type, lua_State*, T& self, const K& key)
    {
        self.erase(key);
    }

    static void erase_associative_lookup(std::false_type, lua_State* L, T& self, K& key)
    {
        erase_integral(std::is_integral<K>(), L, self, key);
    }

    static void erase_after_has(std::true_type, lua_State* L, T& self, K& key)
    {
        auto backit = self.before_begin();
        {
            --key;
            auto e = end(L, self);
            for (auto it = begin(L, self); key > 0; ++backit, ++it, --key) {
                if (backit == e) {
                    luaL_error(L, "sol: out of bounds for erase on '%s'", detail::demangle<T>().c_str());
                    return;
                }
            }
        }
        self.erase_after(backit);
    }

    static void erase_after_has(std::false_type, lua_State* L, T&, const K&)
    {
        luaL_error(L, "sol: cannot call erase on '%s'", detail::demangle<T>().c_str());
    }

    static void erase_has(std::true_type, lua_State* L, T& self, K& key)
    {
        erase_associative_lookup(meta::any<is_associative, is_lookup>(), L, self, key);
    }

    static void erase_has(std::false_type, lua_State* L, T& self, K& key)
    {
        erase_after_has(has_erase_after<T>(), L, self, key);
    }

    static auto size_has(std::false_type, lua_State* L, T& self)
    {
        return std::distance(deferred_traits::begin(L, self), deferred_traits::end(L, self));
    }

    static auto size_has(std::true_type, lua_State*, T& self)
    {
        return self.size();
    }

    static void clear_has(std::true_type, lua_State*, T& self)
    {
        self.clear();
    }

    static void clear_has(std::false_type, lua_State* L, T&)
    {
        luaL_error(L, "sol: cannot call clear on '%s'", detail::demangle<T>().c_str());
    }

    static bool empty_has(std::true_type, lua_State*, T& self)
    {
        return self.empty();
    }

    static bool empty_has(std::false_type, lua_State* L, T& self)
    {
        return deferred_traits::begin(L, self) == deferred_traits::end(L, self);
    }

    static int get_start(lua_State* L, T& self, K& key)
    {
        return get_it(is_linear_integral(), L, self, key);
    }

    static void set_start(lua_State* L, T& self, stack_object key, stack_object value)
    {
        set_it(is_linear_integral(), L, self, std::move(key), std::move(value));
    }

    static std::size_t size_start(lua_State* L, T& self)
    {
        return size_has(meta::has_size<T>(), L, self);
    }

    static void clear_start(lua_State* L, T& self)
    {
        clear_has(has_clear<T>(), L, self);
    }

    static bool empty_start(lua_State* L, T& self)
    {
        return empty_has(has_empty<T>(), L, self);
    }

    static void erase_start(lua_State* L, T& self, K& key)
    {
        erase_has(has_erase<T>(), L, self, key);
    }

    template <bool ip>
    static int next_associative(std::true_type, lua_State* L)
    {
        iter& i = stack::get<user<iter>>(L, 1);
        auto& source = i.source;
        auto& it = i.it;
        if (it == deferred_traits::end(L, source)) {
            return 0;
        }
        int p;
        if (ip) {
            ++i.i;
            p = stack::push_reference(L, i.i);
        }
        else {
            p = stack::push_reference(L, it->first);
        }
        p += stack::stack_detail::push_reference<push_type>(L, detail::deref(it->second));
        std::advance(it, 1);
        return p;
    }

    template <bool ip>
    static int pairs_associative(std::true_type, lua_State* L)
    {
        auto& src = get_src(L);
        stack::push(L, next<ip>);
        stack::push<user<iter>>(L, src, deferred_traits::begin(L, src));
        stack::push(L, lua_nil);
        return 3;
    }

    template <bool>
    static int next_associative(std::false_type, lua_State* L)
    {
        iter& i = stack::get<user<iter>>(L, 1);
        auto& source = i.source;
        auto& it = i.it;
        K k = stack::get<K>(L, 2);
        if (it == deferred_traits::end(L, source)) {
            return 0;
        }
        int p;
        p = stack::push_reference(L, k + 1);
        p += stack::stack_detail::push_reference<push_type>(L, detail::deref(*it));
        std::advance(it, 1);
        return p;
    }

    template <bool ip>
    static int pairs_associative(std::false_type, lua_State* L)
    {
        auto& src = get_src(L);
        stack::push(L, next<ip>);
        stack::push<user<iter>>(L, src, deferred_traits::begin(L, src));
        stack::push(L, 0);
        return 3;
    }

    template <bool ip>
    static int next(lua_State* L)
    {
        return next_associative<ip>(is_associative(), L);
    }

public:
    static int get(lua_State* L)
    {
        auto& self = get_src(L);
        decltype(auto) key = stack::get<K>(L);
        return get_start(L, self, key);
    }

    static int index_get(lua_State* L)
    {
        return get(L);
    }

    static int set(lua_State* L)
    {
        stack_object value = stack_object(L, raw_index(3));
        if (type_of(L, 3) == type::lua_nil) {
            return erase(L);
        }
        auto& self = get_src(L);
        set_start(L, self, stack_object(L, raw_index(2)), std::move(value));
        return 0;
    }

    static int index_set(lua_State* L)
    {
        return set(L);
    }

    static int add(lua_State* L)
    {
        auto& self = get_src(L);
        add_copyable(is_copyable(), L, self, stack_object(L, raw_index(2)));
        return 0;
    }

    static int insert(lua_State* L)
    {
        auto& self = get_src(L);
        insert_copyable(is_copyable(), L, self, stack_object(L, raw_index(2)), stack_object(L, raw_index(3)));
        return 0;
    }

    static int find(lua_State* L)
    {
        auto& self = get_src(L);
        return find_has(has_find<T>(), L, self);
    }

    static iterator begin(lua_State*, T& self)
    {
        using std::begin;
        return begin(self);
    }

    static iterator end(lua_State*, T& self)
    {
        using std::end;
        return end(self);
    }

    static int size(lua_State* L)
    {
        auto& self = get_src(L);
        std::size_t r = size_start(L, self);
        return stack::push(L, r);
    }

    static int clear(lua_State* L)
    {
        auto& self = get_src(L);
        clear_start(L, self);
        return 0;
    }

    static int erase(lua_State* L)
    {
        auto& self = get_src(L);
        decltype(auto) key = stack::get<K>(L, 2);
        erase_start(L, self, key);
        return 0;
    }

    static int empty(lua_State* L)
    {
        auto& self = get_src(L);
        return stack::push(L, empty_start(L, self));
    }

    static int pairs(lua_State* L)
    {
        return pairs_associative<false>(is_associative(), L);
    }

    static int ipairs(lua_State* L)
    {
        return pairs_associative<true>(is_associative(), L);
    }
};

template <typename X>
struct container_traits_default<X, std::enable_if_t<std::is_array<std::remove_pointer_t<meta::unwrap_unqualified_t<X>>>::value>> {
private:
    typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T;
    typedef container_traits<X> deferred_traits;

public:
    typedef std::remove_extent_t<T> value_type;
    typedef value_type* iterator;

private:
    struct iter {
        T& source;
        iterator it;

        iter(T& source, iterator it)
            : source(source)
            , it(std::move(it))
        {
        }
    };

    static auto& get_src(lua_State* L)
    {
        auto p = stack::check_get<T*>(L, 1);
#ifdef SOL_SAFE_USERTYPE
        if (!p || p.value() == nullptr) {
            luaL_error(L, "sol: 'self' argument is nil or not of type '%s' (pass 'self' as first argument with ':' or call on proper type)", detail::demangle<T>().c_str());
        }
#endif // Safe getting with error
        return *p.value();
    }

    static int find(std::true_type, lua_State* L)
    {
        T& self = get_src(L);
        decltype(auto) value = stack::get<value_type>(L, 2);
        std::size_t N = std::extent<T>::value;
        for (std::size_t idx = 0; idx < N; ++idx) {
            const auto& v = self[idx];
            if (v == value) {
                return stack::push(L, idx + 1);
            }
        }
        return stack::push(L, lua_nil);
    }

    static int find(std::false_type, lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'find' on '%s': no supported comparison operator for the value type", detail::demangle<T>().c_str());
    }

    static int next(lua_State* L)
    {
        iter& i = stack::get<user<iter>>(L, 1);
        auto& source = i.source;
        auto& it = i.it;
        std::size_t k = stack::get<std::size_t>(L, 2);
        if (it == deferred_traits::end(L, source)) {
            return 0;
        }
        int p;
        p = stack::push_reference(L, k + 1);
        p += stack::push_reference(L, detail::deref(*it));
        std::advance(it, 1);
        return p;
    }

public:
    static int clear(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'clear' on type '%s': cannot remove all items from a fixed array", detail::demangle<T>().c_str());
    }

    static int erase(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'erase' on type '%s': cannot remove an item from fixed arrays", detail::demangle<T>().c_str());
    }

    static int add(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'add' on type '%s': cannot add to fixed arrays", detail::demangle<T>().c_str());
    }

    static int insert(lua_State* L)
    {
        return luaL_error(L, "sol: cannot call 'insert' on type '%s': cannot insert new entries into fixed arrays", detail::demangle<T>().c_str());
    }

    static int get(lua_State* L)
    {
        T& self = get_src(L);
        std::ptrdiff_t idx = stack::get<std::ptrdiff_t>(L, 2);
        if (idx > static_cast<std::ptrdiff_t>(std::extent<T>::value) || idx < 1) {
            return stack::push(L, lua_nil);
        }
        --idx;
        return stack::push_reference(L, detail::deref(self[idx]));
    }

    static int index_get(lua_State* L)
    {
        return get(L);
    }

    static int set(lua_State* L)
    {
        T& self = get_src(L);
        std::ptrdiff_t idx = stack::get<std::ptrdiff_t>(L, 2);
        if (idx > static_cast<std::ptrdiff_t>(std::extent<T>::value)) {
            return luaL_error(L, "sol: index out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str());
        }
        if (idx < 1) {
            return luaL_error(L, "sol: index out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str());
        }
        --idx;
        self[idx] = stack::get<value_type>(L, 3);
        return 0;
    }

    static int index_set(lua_State* L)
    {
        return set(L);
    }

    static int find(lua_State* L)
    {
        return find(meta::supports_op_equal<value_type, value_type>(), L);
    }

    static int size(lua_State* L)
    {
        return stack::push(L, std::extent<T>::value);
    }

    static int empty(lua_State* L)
    {
        return stack::push(L, std::extent<T>::value > 0);
    }

    static int pairs(lua_State* L)
    {
        auto& src = get_src(L);
        stack::push(L, next);
        stack::push<user<iter>>(L, src, deferred_traits::begin(L, src));
        stack::push(L, 0);
        return 3;
    }

    static int ipairs(lua_State* L)
    {
        return pairs(L);
    }

    static iterator begin(lua_State*, T& self)
    {
        return std::addressof(self[0]);
    }

    static iterator end(lua_State*, T& self)
    {
        return std::addressof(self[0]) + std::extent<T>::value;
    }
};

template <typename X>
struct container_traits_default<container_traits<X>> : container_traits_default<X> {
};
} // namespace container_detail

template <typename T>
struct container_traits : container_detail::container_traits_default<T> {
};

} // namespace sol

// end of sol/container_traits.hpp

namespace sol {

template <typename X>
struct container_usertype_metatable {
    typedef std::remove_pointer_t<meta::unqualified_t<X>> T;
    typedef container_traits<T> traits;
    typedef container_detail::container_traits_default<T> default_traits;

    static int real_index_get_traits(std::true_type, lua_State* L)
    {
        return traits::index_get(L);
    }

    static int real_index_get_traits(std::false_type, lua_State* L)
    {
        return default_traits::index_get(L);
    }

    static int real_index_call(lua_State* L)
    {
        static std::unordered_map<std::string, lua_CFunction> calls{
            { "get", &real_get_call },
            { "set", &real_set_call },
            { "size", &real_length_call },
            { "add", &real_add_call },
            { "empty", &real_empty_call },
            { "insert", &real_insert_call },
            { "clear", &real_clear_call },
            { "find", &real_find_call },
            { "erase", &real_erase_call }
        };
        auto maybename = stack::check_get<std::string>(L, 2);
        if (maybename) {
            const std::string& name = *maybename;
            auto it = calls.find(name);
            if (it != calls.cend()) {
                return stack::push(L, it->second);
            }
        }
        return real_index_get_traits(container_detail::has_traits_index_get<traits>(), L);
    }

    static int real_get_traits(std::true_type, lua_State* L)
    {
        return traits::get(L);
    }

    static int real_get_traits(std::false_type, lua_State* L)
    {
        return default_traits::get(L);
    }

    static int real_get_call(lua_State* L)
    {
        return real_get_traits(container_detail::has_traits_get<traits>(), L);
    }

    static int real_set_traits(std::true_type, lua_State* L)
    {
        return traits::set(L);
    }

    static int real_set_traits(std::false_type, lua_State* L)
    {
        return default_traits::set(L);
    }

    static int real_set_call(lua_State* L)
    {
        return real_set_traits(container_detail::has_traits_set<traits>(), L);
    }

    static int real_index_set_traits(std::true_type, lua_State* L)
    {
        return traits::index_set(L);
    }

    static int real_index_set_traits(std::false_type, lua_State* L)
    {
        return default_traits::index_set(L);
    }

    static int real_new_index_call(lua_State* L)
    {
        return real_index_set_traits(container_detail::has_traits_index_set<traits>(), L);
    }

    static int real_pairs_traits(std::true_type, lua_State* L)
    {
        return traits::pairs(L);
    }

    static int real_pairs_traits(std::false_type, lua_State* L)
    {
        return default_traits::pairs(L);
    }

    static int real_pairs_call(lua_State* L)
    {
        return real_pairs_traits(container_detail::has_traits_pairs<traits>(), L);
    }

    static int real_ipairs_traits(std::true_type, lua_State* L)
    {
        return traits::ipairs(L);
    }

    static int real_ipairs_traits(std::false_type, lua_State* L)
    {
        return default_traits::ipairs(L);
    }

    static int real_ipairs_call(lua_State* L)
    {
        return real_ipairs_traits(container_detail::has_traits_ipairs<traits>(), L);
    }

    static int real_size_traits(std::true_type, lua_State* L)
    {
        return traits::size(L);
    }

    static int real_size_traits(std::false_type, lua_State* L)
    {
        return default_traits::size(L);
    }

    static int real_length_call(lua_State* L)
    {
        return real_size_traits(container_detail::has_traits_size<traits>(), L);
    }

    static int real_add_traits(std::true_type, lua_State* L)
    {
        return traits::add(L);
    }

    static int real_add_traits(std::false_type, lua_State* L)
    {
        return default_traits::add(L);
    }

    static int real_add_call(lua_State* L)
    {
        return real_add_traits(container_detail::has_traits_add<traits>(), L);
    }

    static int real_insert_traits(std::true_type, lua_State* L)
    {
        return traits::insert(L);
    }

    static int real_insert_traits(std::false_type, lua_State* L)
    {
        return default_traits::insert(L);
    }

    static int real_insert_call(lua_State* L)
    {
        return real_insert_traits(container_detail::has_traits_insert<traits>(), L);
    }

    static int real_clear_traits(std::true_type, lua_State* L)
    {
        return traits::clear(L);
    }

    static int real_clear_traits(std::false_type, lua_State* L)
    {
        return default_traits::clear(L);
    }

    static int real_clear_call(lua_State* L)
    {
        return real_clear_traits(container_detail::has_traits_clear<traits>(), L);
    }

    static int real_empty_traits(std::true_type, lua_State* L)
    {
        return traits::empty(L);
    }

    static int real_empty_traits(std::false_type, lua_State* L)
    {
        return default_traits::empty(L);
    }

    static int real_empty_call(lua_State* L)
    {
        return real_empty_traits(container_detail::has_traits_empty<traits>(), L);
    }

    static int real_erase_traits(std::true_type, lua_State* L)
    {
        return traits::erase(L);
    }

    static int real_erase_traits(std::false_type, lua_State* L)
    {
        return default_traits::erase(L);
    }

    static int real_erase_call(lua_State* L)
    {
        return real_erase_traits(container_detail::has_traits_erase<traits>(), L);
    }

    static int real_find_traits(std::true_type, lua_State* L)
    {
        return traits::find(L);
    }

    static int real_find_traits(std::false_type, lua_State* L)
    {
        return default_traits::find(L);
    }

    static int real_find_call(lua_State* L)
    {
        return real_find_traits(container_detail::has_traits_find<traits>(), L);
    }

    static int add_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_add_call), (&real_add_call)>(L);
    }

    static int erase_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_erase_call), (&real_erase_call)>(L);
    }

    static int insert_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_insert_call), (&real_insert_call)>(L);
    }

    static int clear_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_clear_call), (&real_clear_call)>(L);
    }

    static int empty_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_empty_call), (&real_empty_call)>(L);
    }

    static int find_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_find_call), (&real_find_call)>(L);
    }

    static int length_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_length_call), (&real_length_call)>(L);
    }

    static int pairs_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_pairs_call), (&real_pairs_call)>(L);
    }

    static int ipairs_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_ipairs_call), (&real_ipairs_call)>(L);
    }

    static int get_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_get_call), (&real_get_call)>(L);
    }

    static int set_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_set_call), (&real_set_call)>(L);
    }

    static int index_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_index_call), (&real_index_call)>(L);
    }

    static int new_index_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_new_index_call), (&real_new_index_call)>(L);
    }
};

namespace stack {
namespace stack_detail {
template <typename T, bool is_shim = false>
struct metatable_setup {
    lua_State* L;

    metatable_setup(lua_State* L)
        : L(L)
    {
    }

    void operator()()
    {
        typedef container_usertype_metatable<std::conditional_t<is_shim,
            as_container_t<std::remove_pointer_t<T>>,
            std::remove_pointer_t<T>>>
            meta_cumt;
        static const char* metakey = is_shim ? &usertype_traits<as_container_t<std::remove_pointer_t<T>>>::metatable()[0] : &usertype_traits<T>::metatable()[0];
        static const std::array<luaL_Reg, 16> reg = { { { "__pairs", &meta_cumt::pairs_call },
            { "__ipairs", &meta_cumt::ipairs_call },
            { "__len", &meta_cumt::length_call },
            { "__index", &meta_cumt::index_call },
            { "__newindex", &meta_cumt::new_index_call },
            { "get", &meta_cumt::get_call },
            { "set", &meta_cumt::set_call },
            { "size", &meta_cumt::length_call },
            { "empty", &meta_cumt::empty_call },
            { "clear", &meta_cumt::clear_call },
            { "insert", &meta_cumt::insert_call },
            { "add", &meta_cumt::add_call },
            { "find", &meta_cumt::find_call },
            { "erase", &meta_cumt::erase_call },
            std::is_pointer<T>::value ? luaL_Reg{ nullptr, nullptr } : luaL_Reg{ "__gc", &detail::usertype_alloc_destruct<T> },
            { nullptr, nullptr } } };

        if (luaL_newmetatable(L, metakey) == 1) {
            luaL_setfuncs(L, reg.data(), 0);
        }
        lua_setmetatable(L, -2);
    }
};
} // namespace stack_detail

template <typename T>
struct pusher<as_container_t<T>> {
    typedef meta::unqualified_t<T> C;

    static int push_lvalue(std::true_type, lua_State* L, const C& cont)
    {
        stack_detail::metatable_setup<C*, true> fx(L);
        return pusher<detail::as_pointer_tag<const C>>{}.push_fx(L, fx, detail::ptr(cont));
    }

    static int push_lvalue(std::false_type, lua_State* L, const C& cont)
    {
        stack_detail::metatable_setup<C, true> fx(L);
        return pusher<detail::as_value_tag<C>>{}.push_fx(L, fx, cont);
    }

    static int push_rvalue(std::true_type, lua_State* L, C&& cont)
    {
        stack_detail::metatable_setup<C, true> fx(L);
        return pusher<detail::as_value_tag<C>>{}.push_fx(L, fx, std::move(cont));
    }

    static int push_rvalue(std::false_type, lua_State* L, const C& cont)
    {
        return push_lvalue(std::is_lvalue_reference<T>(), L, cont);
    }

    static int push(lua_State* L, const as_container_t<T>& as_cont)
    {
        return push_lvalue(std::is_lvalue_reference<T>(), L, as_cont.source);
    }

    static int push(lua_State* L, as_container_t<T>&& as_cont)
    {
        return push_rvalue(meta::all<std::is_rvalue_reference<T>, meta::neg<std::is_lvalue_reference<T>>>(), L, std::forward<T>(as_cont.source));
    }
};

template <typename T>
struct pusher<as_container_t<T*>> {
    typedef std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>> C;

    static int push(lua_State* L, T* cont)
    {
        stack_detail::metatable_setup<C> fx(L);
        return pusher<detail::as_pointer_tag<T>>{}.push_fx(L, fx, cont);
    }
};

template <typename T>
struct pusher<T, std::enable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<is_lua_reference<meta::unqualified_t<T>>>>::value>> {
    typedef meta::unqualified_t<T> C;

    static int push(lua_State* L, const T& cont)
    {
        stack_detail::metatable_setup<C> fx(L);
        return pusher<detail::as_value_tag<T>>{}.push_fx(L, fx, cont);
    }

    static int push(lua_State* L, T&& cont)
    {
        stack_detail::metatable_setup<C> fx(L);
        return pusher<detail::as_value_tag<T>>{}.push_fx(L, fx, std::move(cont));
    }
};

template <typename T>
struct pusher<T*, std::enable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<is_lua_reference<meta::unqualified_t<T>>>>::value>> {
    typedef std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>> C;

    static int push(lua_State* L, T* cont)
    {
        stack_detail::metatable_setup<C> fx(L);
        return pusher<detail::as_pointer_tag<T>>{}.push_fx(L, fx, cont);
    }
};

template <typename T, typename C>
struct checker<as_container_t<T>, type::userdata, C> {
    template <typename Handler>
    static bool check(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        return stack::check<T>(L, index, std::forward<Handler>(handler), tracking);
    }
};

template <typename T>
struct getter<as_container_t<T>> {
    static decltype(auto) get(lua_State* L, int index, record& tracking)
    {
        return stack::get<T>(L, index, tracking);
    }
};

template <typename T>
struct getter<as_container_t<T>*> {
    static decltype(auto) get(lua_State* L, int index, record& tracking)
    {
        return stack::get<T*>(L, index, tracking);
    }
};
} // namespace stack

} // namespace sol

// end of sol/container_usertype_metatable.hpp

// beginning of sol/usertype_core.hpp

#include <sstream>

namespace sol {
namespace usertype_detail {
struct no_comp {
    template <typename A, typename B>
    bool operator()(A&&, B&&) const
    {
        return false;
    }
};

template <typename T>
int is_check(lua_State* L)
{
    return stack::push(L, stack::check<T>(L, 1, &no_panic));
}

template <typename T>
inline int member_default_to_string(std::true_type, lua_State* L)
{
    decltype(auto) ts = stack::get<T>(L, 1).to_string();
    return stack::push(L, std::forward<decltype(ts)>(ts));
}

template <typename T>
inline int member_default_to_string(std::false_type, lua_State* L)
{
    return luaL_error(L, "cannot perform to_string on '%s': no 'to_string' overload in namespace, 'to_string' member function, or operator<<(ostream&, ...) present", detail::demangle<T>().data());
}

template <typename T>
inline int adl_default_to_string(std::true_type, lua_State* L)
{
    using namespace std;
    decltype(auto) ts = to_string(stack::get<T>(L, 1));
    return stack::push(L, std::forward<decltype(ts)>(ts));
}

template <typename T>
inline int adl_default_to_string(std::false_type, lua_State* L)
{
    return member_default_to_string<T>(meta::supports_to_string_member<T>(), L);
}

template <typename T>
inline int oss_default_to_string(std::true_type, lua_State* L)
{
    std::ostringstream oss;
    oss << stack::get<T>(L, 1);
    return stack::push(L, oss.str());
}

template <typename T>
inline int oss_default_to_string(std::false_type, lua_State* L)
{
    return adl_default_to_string<T>(meta::supports_adl_to_string<T>(), L);
}

template <typename T>
inline int default_to_string(lua_State* L)
{
    return oss_default_to_string<T>(meta::supports_ostream_op<T>(), L);
}

template <typename T, typename Op>
int comparsion_operator_wrap(lua_State* L)
{
    auto maybel = stack::check_get<T>(L, 1);
    if (maybel) {
        auto mayber = stack::check_get<T>(L, 2);
        if (mayber) {
            auto& l = *maybel;
            auto& r = *mayber;
            if (std::is_same<no_comp, Op>::value) {
                return stack::push(L, detail::ptr(l) == detail::ptr(r));
            }
            else {
                Op op;
                return stack::push(L, (detail::ptr(l) == detail::ptr(r)) || op(detail::deref(l), detail::deref(r)));
            }
        }
    }
    return stack::push(L, false);
}

template <typename T, typename Op, typename Supports, typename Regs, meta::enable<Supports> = meta::enabler>
inline void make_reg_op(Regs& l, int& index, const char* name)
{
    lua_CFunction f = &comparsion_operator_wrap<T, Op>;
    l[index] = luaL_Reg{ name, f };
    ++index;
}

template <typename T, typename Op, typename Supports, typename Regs, meta::disable<Supports> = meta::enabler>
inline void make_reg_op(Regs&, int&, const char*)
{
    // Do nothing if there's no support
}

template <typename T, typename Supports, typename Regs, meta::enable<Supports> = meta::enabler>
inline void make_to_string_op(Regs& l, int& index)
{
    const char* name = to_string(meta_function::to_string).c_str();
    lua_CFunction f = &detail::static_trampoline<&default_to_string<T>>;
    l[index] = luaL_Reg{ name, f };
    ++index;
}

template <typename T, typename Supports, typename Regs, meta::disable<Supports> = meta::enabler>
inline void make_to_string_op(Regs&, int&)
{
    // Do nothing if there's no support
}

template <typename T, typename Regs, meta::enable<meta::has_deducible_signature<T>> = meta::enabler>
inline void make_call_op(Regs& l, int& index)
{
    const char* name = to_string(meta_function::call).c_str();
    lua_CFunction f = &c_call<decltype(&T::operator()), &T::operator()>;
    l[index] = luaL_Reg{ name, f };
    ++index;
}

template <typename T, typename Regs, meta::disable<meta::has_deducible_signature<T>> = meta::enabler>
inline void make_call_op(Regs&, int&)
{
    // Do nothing if there's no support
}

template <typename T, typename Regs, meta::enable<meta::has_size<T>> = meta::enabler>
inline void make_length_op(Regs& l, int& index)
{
    const char* name = to_string(meta_function::length).c_str();
    l[index] = luaL_Reg{ name, &c_call<decltype(&T::size), &T::size> };
    ++index;
}

template <typename T, typename Regs, meta::disable<meta::has_size<T>> = meta::enabler>
inline void make_length_op(Regs&, int&)
{
    // Do nothing if there's no support
}

template <typename T, typename Regs, meta::enable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>>>
void make_destructor(Regs& l, int& index)
{
    const char* name = to_string(meta_function::garbage_collect).c_str();
    l[index] = luaL_Reg{ name, is_unique_usertype<T>::value ? &detail::unique_destruct<T> : &detail::usertype_alloc_destruct<T> };
    ++index;
}

template <typename T, typename Regs, meta::disable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>>>
void make_destructor(Regs& l, int& index)
{
    if (!std::is_destructible<T>::value) {
        // if the value is not destructible, plant an erroring __gc method
        // to warn the user of a problem when it comes around
        // this won't trigger if the user performs `new_usertype` / `new_simple_usertype` and
        // rigs the class up properly
        const char* name = to_string(meta_function::garbage_collect).c_str();
        l[index] = luaL_Reg{ name, &detail::cannot_destruct<T> };
        ++index;
    }
}

template <typename T, typename Regs, typename Fx>
void insert_default_registrations(Regs& l, int& index, Fx&& fx)
{
    if (fx(meta_function::less_than)) {
        const char* name = to_string(meta_function::less_than).c_str();
        usertype_detail::make_reg_op<T, std::less<>, meta::supports_op_less<T>>(l, index, name);
    }
    if (fx(meta_function::less_than_or_equal_to)) {
        const char* name = to_string(meta_function::less_than_or_equal_to).c_str();
        usertype_detail::make_reg_op<T, std::less_equal<>, meta::supports_op_less_equal<T>>(l, index, name);
    }
    if (fx(meta_function::equal_to)) {
        const char* name = to_string(meta_function::equal_to).c_str();
        usertype_detail::make_reg_op<T, std::conditional_t<meta::supports_op_equal<T>::value, std::equal_to<>, usertype_detail::no_comp>, std::true_type>(l, index, name);
    }
    if (fx(meta_function::pairs)) {
        const char* name = to_string(meta_function::pairs).c_str();
        l[index] = luaL_Reg{ name, container_usertype_metatable<as_container_t<T>>::pairs_call };
        ++index;
    }
    if (fx(meta_function::length)) {
        usertype_detail::make_length_op<T>(l, index);
    }
    if (fx(meta_function::to_string)) {
        usertype_detail::make_to_string_op<T, is_to_stringable<T>>(l, index);
    }
    if (fx(meta_function::call_function)) {
        usertype_detail::make_call_op<T>(l, index);
    }
}
} // namespace usertype_detail

namespace stack {
namespace stack_detail {
template <typename T>
struct undefined_metatable {
    typedef meta::all<meta::neg<std::is_pointer<T>>, std::is_destructible<T>> is_destructible;
    typedef std::remove_pointer_t<T> P;
    lua_State* L;
    const char* key;

    undefined_metatable(lua_State* l, const char* k)
        : L(l)
        , key(k)
    {
    }

    void operator()() const
    {
        if (luaL_newmetatable(L, key) == 1) {
            luaL_Reg l[32]{};
            int index = 0;
            auto fx = [](meta_function) { return true; };
            usertype_detail::insert_default_registrations<P>(l, index, fx);
            usertype_detail::make_destructor<T>(l, index);
            luaL_setfuncs(L, l, 0);

            // __type table
            lua_createtable(L, 0, 2);
            const std::string& name = detail::demangle<T>();
            lua_pushlstring(L, name.c_str(), name.size());
            lua_setfield(L, -2, "name");
            lua_CFunction is_func = &usertype_detail::is_check<T>;
            lua_pushcclosure(L, is_func, 0);
            lua_setfield(L, -2, "is");
            lua_setfield(L, -2, to_string(meta_function::type).c_str());
        }
        lua_setmetatable(L, -2);
    }
};
}
} // namespace stack::stack_detail
} // namespace sol

// end of sol/usertype_core.hpp

#include <cstdio>

namespace sol {
namespace usertype_detail {
const int metatable_index = 2;
const int metatable_core_index = 3;
const int filler_index = 4;
const int magic_index = 5;

const int simple_metatable_index = 2;
const int index_function_index = 3;
const int newindex_function_index = 4;

typedef void (*base_walk)(lua_State*, bool&, int&, string_view&);
typedef int (*member_search)(lua_State*, void*, int);

struct call_information {
    member_search index;
    member_search new_index;
    int runtime_target;

    call_information(member_search index, member_search newindex)
        : call_information(index, newindex, -1)
    {
    }
    call_information(member_search index, member_search newindex, int runtimetarget)
        : index(index)
        , new_index(newindex)
        , runtime_target(runtimetarget)
    {
    }
};

typedef std::unordered_map<std::string, call_information> mapping_t;

struct variable_wrapper {
    virtual int index(lua_State* L) = 0;
    virtual int new_index(lua_State* L) = 0;
    virtual ~variable_wrapper(){};
};

template <typename T, typename F>
struct callable_binding : variable_wrapper {
    F fx;

    template <typename Arg>
    callable_binding(Arg&& arg)
        : fx(std::forward<Arg>(arg))
    {
    }

    virtual int index(lua_State* L) override
    {
        return call_detail::call_wrapped<T, true, true>(L, fx);
    }

    virtual int new_index(lua_State* L) override
    {
        return call_detail::call_wrapped<T, false, true>(L, fx);
    }
};

typedef std::unordered_map<std::string, std::unique_ptr<variable_wrapper>> variable_map;
typedef std::unordered_map<std::string, object> function_map;

struct simple_map {
    const char* metakey;
    variable_map variables;
    function_map functions;
    object index;
    object newindex;
    base_walk indexbaseclasspropogation;
    base_walk newindexbaseclasspropogation;

    simple_map(const char* mkey, base_walk index, base_walk newindex, object i, object ni, variable_map&& vars, function_map&& funcs)
        : metakey(mkey)
        , variables(std::move(vars))
        , functions(std::move(funcs))
        , index(std::move(i))
        , newindex(std::move(ni))
        , indexbaseclasspropogation(index)
        , newindexbaseclasspropogation(newindex)
    {
    }
};
} // namespace usertype_detail

struct usertype_metatable_core {
    usertype_detail::mapping_t mapping;
    lua_CFunction indexfunc;
    lua_CFunction newindexfunc;
    std::vector<object> runtime;
    bool mustindex;

    usertype_metatable_core(lua_CFunction ifx, lua_CFunction nifx)
        : mapping()
        , indexfunc(ifx)
        , newindexfunc(nifx)
        , runtime()
        , mustindex(false)
    {
    }

    usertype_metatable_core(const usertype_metatable_core&) = default;
    usertype_metatable_core(usertype_metatable_core&&) = default;
    usertype_metatable_core& operator=(const usertype_metatable_core&) = default;
    usertype_metatable_core& operator=(usertype_metatable_core&&) = default;
};

namespace usertype_detail {
const lua_Integer toplevel_magic = static_cast<lua_Integer>(0xCCC2CCC1);

inline int is_indexer(string_view s)
{
    if (s == to_string(meta_function::index)) {
        return 1;
    }
    else if (s == to_string(meta_function::new_index)) {
        return 2;
    }
    return 0;
}

inline int is_indexer(meta_function mf)
{
    if (mf == meta_function::index) {
        return 1;
    }
    else if (mf == meta_function::new_index) {
        return 2;
    }
    return 0;
}

inline int is_indexer(call_construction)
{
    return 0;
}

inline int is_indexer(base_classes_tag)
{
    return 0;
}

inline auto make_string_view(string_view s)
{
    return s;
}

inline auto make_string_view(call_construction)
{
    return string_view(to_string(meta_function::call_function));
}

inline auto make_string_view(meta_function mf)
{
    return string_view(to_string(mf));
}

inline auto make_string_view(base_classes_tag)
{
    return string_view(detail::base_class_cast_key());
}

template <typename Arg>
inline std::string make_string(Arg&& arg)
{
    string_view s = make_string_view(arg);
    return std::string(s.data(), s.size());
}

template <typename N>
inline luaL_Reg make_reg(N&& n, lua_CFunction f)
{
    luaL_Reg l{ make_string_view(std::forward<N>(n)).data(), f };
    return l;
}

struct registrar {
    registrar() = default;
    registrar(const registrar&) = default;
    registrar(registrar&&) = default;
    registrar& operator=(const registrar&) = default;
    registrar& operator=(registrar&&) = default;
    virtual int push_um(lua_State* L) = 0;
    virtual ~registrar()
    {
    }
};

inline bool is_toplevel(lua_State* L, int index = magic_index)
{
    int isnum = 0;
    lua_Integer magic = lua_tointegerx(L, upvalue_index(index), &isnum);
    return isnum != 0 && magic == toplevel_magic;
}

inline int runtime_object_call(lua_State* L, void*, int runtimetarget)
{
    usertype_metatable_core& umc = stack::get<light<usertype_metatable_core>>(L, upvalue_index(metatable_core_index));
    std::vector<object>& runtime = umc.runtime;
    object& runtimeobj = runtime[runtimetarget];
    return stack::push(L, runtimeobj);
}

template <typename T, bool is_index>
inline int indexing_fail(lua_State* L)
{
    if (is_index) {
#if 0 //def SOL_SAFE_USERTYPE
				auto maybeaccessor = stack::get<optional<string_detail::string_shim>>(L, is_index ? -1 : -2);
				string_detail::string_shim accessor = maybeaccessor.value_or(string_detail::string_shim("(unknown)"));
				return luaL_error(L, "sol: attempt to index (get) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.data());
#else
        if (is_toplevel(L)) {
            if (lua_getmetatable(L, 1) == 1) {
                int metatarget = lua_gettop(L);
                stack::get_field(L, stack_reference(L, raw_index(2)), metatarget);
                return 1;
            }
        }
        // With runtime extensibility, we can't hard-error things. They have to return nil, like regular table types, unfortunately...
        return stack::push(L, lua_nil);
#endif
    }
    else {
        auto maybeaccessor = stack::get<optional<string_view>>(L, is_index ? -1 : -2);
        string_view accessor = maybeaccessor.value_or(string_view("(unknown)"));
        return luaL_error(L, "sol: attempt to index (set) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.data());
    }
}

int runtime_new_index(lua_State* L, void*, int runtimetarget);

template <typename T, bool is_simple>
inline int metatable_newindex(lua_State* L)
{
    if (is_toplevel(L)) {
        auto non_indexable = [&L]() {
            if (is_simple) {
                simple_map& sm = stack::get<user<simple_map>>(L, upvalue_index(simple_metatable_index));
                function_map& functions = sm.functions;
                optional<std::string> maybeaccessor = stack::get<optional<std::string>>(L, 2);
                if (!maybeaccessor) {
                    return;
                }
                std::string& accessor = maybeaccessor.value();
                auto preexistingit = functions.find(accessor);
                if (preexistingit == functions.cend()) {
                    functions.emplace_hint(preexistingit, std::move(accessor), object(L, 3));
                }
                else {
                    preexistingit->second = object(L, 3);
                }
                return;
            }
            usertype_metatable_core& umc = stack::get<light<usertype_metatable_core>>(L, upvalue_index(metatable_core_index));
            bool mustindex = umc.mustindex;
            if (!mustindex)
                return;
            optional<std::string> maybeaccessor = stack::get<optional<std::string>>(L, 2);
            if (!maybeaccessor) {
                return;
            }
            std::string& accessor = maybeaccessor.value();
            mapping_t& mapping = umc.mapping;
            std::vector<object>& runtime = umc.runtime;
            int target = static_cast<int>(runtime.size());
            auto preexistingit = mapping.find(accessor);
            if (preexistingit == mapping.cend()) {
                runtime.emplace_back(L, 3);
                mapping.emplace_hint(mapping.cend(), accessor, call_information(&runtime_object_call, &runtime_new_index, target));
            }
            else {
                target = preexistingit->second.runtime_target;
                runtime[target] = object(L, 3);
                preexistingit->second = call_information(&runtime_object_call, &runtime_new_index, target);
            }
        };
        non_indexable();
        for (std::size_t i = 0; i < 4; lua_settop(L, 3), ++i) {
            const char* metakey = nullptr;
            switch (i) {
            case 0:
                metakey = &usertype_traits<T*>::metatable()[0];
                luaL_getmetatable(L, metakey);
                break;
            case 1:
                metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
                luaL_getmetatable(L, metakey);
                break;
            case 2:
                metakey = &usertype_traits<T>::metatable()[0];
                luaL_getmetatable(L, metakey);
                break;
            case 3:
            default:
                metakey = &usertype_traits<T>::user_metatable()[0];
                {
                    luaL_getmetatable(L, metakey);
                    lua_getmetatable(L, -1);
                }
                break;
            }
            int tableindex = lua_gettop(L);
            if (type_of(L, tableindex) == type::lua_nil) {
                continue;
            }
            stack::set_field<false, true>(L, stack_reference(L, raw_index(2)), stack_reference(L, raw_index(3)), tableindex);
        }
        lua_settop(L, 0);
        return 0;
    }
    return indexing_fail<T, false>(L);
}

inline int runtime_new_index(lua_State* L, void*, int runtimetarget)
{
    usertype_metatable_core& umc = stack::get<light<usertype_metatable_core>>(L, upvalue_index(metatable_core_index));
    std::vector<object>& runtime = umc.runtime;
    object& runtimeobj = runtime[runtimetarget];
    runtimeobj = object(L, 3);
    return 0;
}

template <bool is_index, typename Base>
static void walk_single_base(lua_State* L, bool& found, int& ret, string_view&)
{
    if (found)
        return;
    const char* metakey = &usertype_traits<Base>::metatable()[0];
    const char* gcmetakey = &usertype_traits<Base>::gc_table()[0];
    const char* basewalkkey = is_index ? detail::base_class_index_propogation_key() : detail::base_class_new_index_propogation_key();

    luaL_getmetatable(L, metakey);
    if (type_of(L, -1) == type::lua_nil) {
        lua_pop(L, 1);
        return;
    }

    stack::get_field(L, basewalkkey);
    if (type_of(L, -1) == type::lua_nil) {
        lua_pop(L, 2);
        return;
    }
    lua_CFunction basewalkfunc = stack::pop<lua_CFunction>(L);
    lua_pop(L, 1);

    stack::get_field<true>(L, gcmetakey);
    int value = basewalkfunc(L);
    if (value > -1) {
        found = true;
        ret = value;
    }
}

template <bool is_index, typename... Bases>
static void walk_all_bases(lua_State* L, bool& found, int& ret, string_view& accessor)
{
    (void)L;
    (void)found;
    (void)ret;
    (void)accessor;
    (void)detail::swallow{ 0, (walk_single_base<is_index, Bases>(L, found, ret, accessor), 0)... };
}
} // namespace usertype_detail

template <typename T>
struct clean_type {
    typedef std::conditional_t<std::is_array<meta::unqualified_t<T>>::value, T&, std::decay_t<T>> type;
};

template <typename T>
using clean_type_t = typename clean_type<T>::type;

template <typename T, typename IndexSequence, typename... Tn>
struct usertype_metatable : usertype_detail::registrar {
};

template <typename T, std::size_t... I, typename... Tn>
struct usertype_metatable<T, std::index_sequence<I...>, Tn...> : usertype_metatable_core, usertype_detail::registrar {
    typedef std::make_index_sequence<sizeof...(I)*2> indices;
    typedef std::index_sequence<I...> half_indices;
    typedef std::array<luaL_Reg, sizeof...(Tn) / 2 + 1 + 31> regs_t;
    typedef std::tuple<Tn...> RawTuple;
    typedef std::tuple<clean_type_t<Tn>...> Tuple;
    template <std::size_t Idx>
    struct check_binding : is_variable_binding<meta::unqualified_tuple_element_t<Idx, Tuple>> {
    };
    Tuple functions;
    lua_CFunction destructfunc;
    lua_CFunction callconstructfunc;
    lua_CFunction indexbase;
    lua_CFunction newindexbase;
    usertype_detail::base_walk indexbaseclasspropogation;
    usertype_detail::base_walk newindexbaseclasspropogation;
    void* baseclasscheck;
    void* baseclasscast;
    bool secondarymeta;
    std::array<bool, 32> properties;

    template <std::size_t Idx, meta::enable<std::is_same<lua_CFunction, meta::unqualified_tuple_element<Idx + 1, RawTuple>>> = meta::enabler>
    lua_CFunction make_func() const
    {
        return std::get<Idx + 1>(functions);
    }

    template <std::size_t Idx, meta::disable<std::is_same<lua_CFunction, meta::unqualified_tuple_element<Idx + 1, RawTuple>>> = meta::enabler>
    lua_CFunction make_func() const
    {
        const auto& name = std::get<Idx>(functions);
        return (usertype_detail::make_string_view(name) == "__newindex") ? &call<Idx + 1, false> : &call<Idx + 1, true>;
    }

    static bool contains_variable()
    {
        typedef meta::any<check_binding<(I * 2 + 1)>...> has_variables;
        return has_variables::value;
    }

    bool contains_index() const
    {
        bool idx = false;
        (void)detail::swallow{ 0, ((idx |= (usertype_detail::is_indexer(std::get<I * 2>(functions)) != 0)), 0)... };
        return idx;
    }

    int finish_regs(regs_t& l, int& index)
    {
        auto prop_fx = [&](meta_function mf) { return !properties[static_cast<int>(mf)]; };
        usertype_detail::insert_default_registrations<T>(l, index, prop_fx);
        if (destructfunc != nullptr) {
            l[index] = luaL_Reg{ to_string(meta_function::garbage_collect).c_str(), destructfunc };
            ++index;
        }
        return index;
    }

    template <std::size_t Idx, typename F>
    void make_regs(regs_t&, int&, call_construction, F&&)
    {
        callconstructfunc = call<Idx + 1>;
        secondarymeta = true;
    }

    template <std::size_t, typename... Bases>
    void make_regs(regs_t&, int&, base_classes_tag, bases<Bases...>)
    {
        static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases");
        if (sizeof...(Bases) < 1) {
            return;
        }
        mustindex = true;
        (void)detail::swallow{ 0, ((detail::has_derived<Bases>::value = true), 0)... };

        static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report.");
        static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report.");
        baseclasscheck = (void*)&detail::inheritance<T, Bases...>::type_check;
        baseclasscast = (void*)&detail::inheritance<T, Bases...>::type_cast;
        indexbaseclasspropogation = usertype_detail::walk_all_bases<true, Bases...>;
        newindexbaseclasspropogation = usertype_detail::walk_all_bases<false, Bases...>;
    }

    template <std::size_t Idx, typename N, typename F, typename = std::enable_if_t<!meta::any_same<meta::unqualified_t<N>, base_classes_tag, call_construction>::value>>
    void make_regs(regs_t& l, int& index, N&& n, F&&)
    {
        if (is_variable_binding<meta::unqualified_t<F>>::value) {
            return;
        }
        luaL_Reg reg = usertype_detail::make_reg(std::forward<N>(n), make_func<Idx>());
        for (std::size_t i = 0; i < properties.size(); ++i) {
            meta_function mf = static_cast<meta_function>(i);
            bool& prop = properties[i];
            const std::string& mfname = to_string(mf);
            if (mfname == reg.name) {
                switch (mf) {
                case meta_function::construct:
                    if (prop) {
#ifndef SOL_NO_EXCEPTIONS
                        throw error(
#else
                        assert(false &&
#endif
                            "sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems");
                    }
                    break;
                case meta_function::garbage_collect:
                    if (destructfunc != nullptr) {
#ifndef SOL_NO_EXCEPTIONS
                        throw error(
#else
                        assert(false &&
#endif
                            "sol: 2 separate garbage_collect functions were set on this type. Please specify only 1 sol::meta_function::gc type AND wrap the function in a sol::destruct call, as shown by the documentation and examples");
                    }
                    destructfunc = reg.func;
                    return;
                case meta_function::index:
                    indexfunc = reg.func;
                    mustindex = true;
                    prop = true;
                    return;
                case meta_function::new_index:
                    newindexfunc = reg.func;
                    mustindex = true;
                    prop = true;
                    return;
                default:
                    break;
                }
                prop = true;
                break;
            }
        }
        l[index] = reg;
        ++index;
    }

    template <typename... Args, typename = std::enable_if_t<sizeof...(Args) == sizeof...(Tn)>>
    usertype_metatable(Args&&... args)
        : usertype_metatable_core(&usertype_detail::indexing_fail<T, true>, &usertype_detail::metatable_newindex<T, false>)
        , usertype_detail::registrar()
        , functions(std::forward<Args>(args)...)
        , destructfunc(nullptr)
        , callconstructfunc(nullptr)
        , indexbase(&core_indexing_call<true>)
        , newindexbase(&core_indexing_call<false>)
        , indexbaseclasspropogation(usertype_detail::walk_all_bases<true>)
        , newindexbaseclasspropogation(usertype_detail::walk_all_bases<false>)
        , baseclasscheck(nullptr)
        , baseclasscast(nullptr)
        , secondarymeta(contains_variable())
        , properties()
    {
        properties.fill(false);
        std::initializer_list<typename usertype_detail::mapping_t::value_type> ilist{ { std::pair<std::string, usertype_detail::call_information>(usertype_detail::make_string(std::get<I * 2>(functions)),
            usertype_detail::call_information(&usertype_metatable::real_find_call<I * 2, I * 2 + 1, true>,
                                                                                                                                                      &usertype_metatable::real_find_call<I * 2, I * 2 + 1, false>)) }... };
        this->mapping.insert(ilist);
        for (const auto& n : meta_function_names()) {
            this->mapping.erase(n);
        }
        this->mustindex = contains_variable() || contains_index();
    }

    usertype_metatable(const usertype_metatable&) = default;
    usertype_metatable(usertype_metatable&&) = default;
    usertype_metatable& operator=(const usertype_metatable&) = default;
    usertype_metatable& operator=(usertype_metatable&&) = default;

    template <std::size_t I0, std::size_t I1, bool is_index>
    static int real_find_call(lua_State* L, void* um, int)
    {
        auto& f = *static_cast<usertype_metatable*>(um);
        if (is_variable_binding<decltype(std::get<I1>(f.functions))>::value) {
            return real_call_with<I1, is_index, true>(L, f);
        }
        // set up upvalues
        // for a chained call
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::push(L, light<usertype_metatable>(f));
        auto cfunc = &call<I1, is_index>;
        return stack::push(L, c_closure(cfunc, upvalues));
    }

    template <bool is_index>
    static int real_meta_call(lua_State* L, void* um, int)
    {
        auto& f = *static_cast<usertype_metatable*>(um);
        return is_index ? f.indexfunc(L) : f.newindexfunc(L);
    }

    template <bool is_index, bool toplevel = false>
    static int core_indexing_call(lua_State* L)
    {
        usertype_metatable& f = toplevel
            ? stack::get<light<usertype_metatable>>(L, upvalue_index(usertype_detail::metatable_index))
            : stack::pop<light<usertype_metatable>>(L);
        static const int keyidx = -2 + static_cast<int>(is_index);
        if (toplevel && stack::get<type>(L, keyidx) != type::string) {
            return is_index ? f.indexfunc(L) : f.newindexfunc(L);
        }
        std::string name = stack::get<std::string>(L, keyidx);
        auto memberit = f.mapping.find(name);
        if (memberit != f.mapping.cend()) {
            const usertype_detail::call_information& ci = memberit->second;
            const usertype_detail::member_search& member = is_index ? ci.index : ci.new_index;
            return (member)(L, static_cast<void*>(&f), ci.runtime_target);
        }
        string_view accessor = name;
        int ret = 0;
        bool found = false;
        // Otherwise, we need to do propagating calls through the bases
        if (is_index)
            f.indexbaseclasspropogation(L, found, ret, accessor);
        else
            f.newindexbaseclasspropogation(L, found, ret, accessor);
        if (found) {
            return ret;
        }
        return toplevel ? (is_index ? f.indexfunc(L) : f.newindexfunc(L)) : -1;
    }

    static int real_index_call(lua_State* L)
    {
        return core_indexing_call<true, true>(L);
    }

    static int real_new_index_call(lua_State* L)
    {
        return core_indexing_call<false, true>(L);
    }

    template <std::size_t Idx, bool is_index = true, bool is_variable = false>
    static int real_call(lua_State* L)
    {
        usertype_metatable& f = stack::get<light<usertype_metatable>>(L, upvalue_index(usertype_detail::metatable_index));
        return real_call_with<Idx, is_index, is_variable>(L, f);
    }

    template <std::size_t Idx, bool is_index = true, bool is_variable = false>
    static int real_call_with(lua_State* L, usertype_metatable& um)
    {
        typedef meta::unqualified_tuple_element_t<Idx - 1, Tuple> K;
        typedef meta::unqualified_tuple_element_t<Idx, Tuple> F;
        static const int boost = !detail::is_non_factory_constructor<F>::value
                && std::is_same<K, call_construction>::value
            ? 1
            : 0;
        auto& f = std::get<Idx>(um.functions);
        return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f);
    }

    template <std::size_t Idx, bool is_index = true, bool is_variable = false>
    static int call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_call<Idx, is_index, is_variable>), (&real_call<Idx, is_index, is_variable>)>(L);
    }

    template <std::size_t Idx, bool is_index = true, bool is_variable = false>
    static int call_with(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_call_with<Idx, is_index, is_variable>), (&real_call_with<Idx, is_index, is_variable>)>(L);
    }

    static int index_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_index_call), (&real_index_call)>(L);
    }

    static int new_index_call(lua_State* L)
    {
        return detail::typed_static_trampoline<decltype(&real_new_index_call), (&real_new_index_call)>(L);
    }

    virtual int push_um(lua_State* L) override
    {
        return stack::push(L, std::move(*this));
    }

    ~usertype_metatable() override
    {
    }
};

namespace stack {

template <typename T, std::size_t... I, typename... Args>
struct pusher<usertype_metatable<T, std::index_sequence<I...>, Args...>> {
    typedef usertype_metatable<T, std::index_sequence<I...>, Args...> umt_t;
    typedef typename umt_t::regs_t regs_t;

    static umt_t& make_cleanup(lua_State* L, umt_t&& umx)
    {
        // ensure some sort of uniqueness
        static int uniqueness = 0;
        std::string uniquegcmetakey = usertype_traits<T>::user_gc_metatable();
        // std::to_string doesn't exist in android still, with NDK, so this bullshit
        // is necessary
        // thanks, Android :v
        int appended = snprintf(nullptr, 0, "%d", uniqueness);
        std::size_t insertionpoint = uniquegcmetakey.length() - 1;
        uniquegcmetakey.append(appended, '\0');
        char* uniquetarget = &uniquegcmetakey[insertionpoint];
        snprintf(uniquetarget, uniquegcmetakey.length(), "%d", uniqueness);
        ++uniqueness;

        const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
        // Make sure userdata's memory is properly in lua first,
        // otherwise all the light userdata we make later will become invalid
        stack::push<user<umt_t>>(L, metatable_key, uniquegcmetakey, std::move(umx));
        // Create the top level thing that will act as our deleter later on
        stack_reference umt(L, -1);
        stack::set_field<true>(L, gcmetakey, umt);
        umt.pop();

        stack::get_field<true>(L, gcmetakey);
        umt_t& target_umt = stack::pop<user<umt_t>>(L);
        return target_umt;
    }

    static int push(lua_State* L, umt_t&& umx)
    {

        umt_t& um = make_cleanup(L, std::move(umx));
        usertype_metatable_core& umc = um;
        regs_t value_table{ {} };
        int lastreg = 0;
        (void)detail::swallow{ 0, (um.template make_regs<(I * 2)>(value_table, lastreg, std::get<(I * 2)>(um.functions), std::get<(I * 2 + 1)>(um.functions)), 0)... };
        um.finish_regs(value_table, lastreg);
        value_table[lastreg] = { nullptr, nullptr };
        regs_t ref_table = value_table;
        regs_t unique_table = value_table;
        bool hasdestructor = !value_table.empty() && to_string(meta_function::garbage_collect) == value_table[lastreg - 1].name;
        if (hasdestructor) {
            ref_table[lastreg - 1] = { nullptr, nullptr };
        }
        unique_table[lastreg - 1] = { value_table[lastreg - 1].name, detail::unique_destruct<T> };

        lua_createtable(L, 0, 2);
        stack_reference type_table(L, -1);

        stack::set_field(L, "name", detail::demangle<T>(), type_table.stack_index());
        stack::set_field(L, "is", &usertype_detail::is_check<T>, type_table.stack_index());

        // Now use um
        const bool& mustindex = umc.mustindex;
        for (std::size_t i = 0; i < 3; ++i) {
            // Pointer types, AKA "references" from C++
            const char* metakey = nullptr;
            luaL_Reg* metaregs = nullptr;
            switch (i) {
            case 0:
                metakey = &usertype_traits<T*>::metatable()[0];
                metaregs = ref_table.data();
                break;
            case 1:
                metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
                metaregs = unique_table.data();
                break;
            case 2:
            default:
                metakey = &usertype_traits<T>::metatable()[0];
                metaregs = value_table.data();
                break;
            }
            luaL_newmetatable(L, metakey);
            stack_reference t(L, -1);
            stack::set_field(L, meta_function::type, type_table, t.stack_index());
            int upvalues = 0;
            upvalues += stack::push(L, nullptr);
            upvalues += stack::push(L, make_light(um));
            luaL_setfuncs(L, metaregs, upvalues);

            if (um.baseclasscheck != nullptr) {
                stack::set_field(L, detail::base_class_check_key(), um.baseclasscheck, t.stack_index());
            }
            if (um.baseclasscast != nullptr) {
                stack::set_field(L, detail::base_class_cast_key(), um.baseclasscast, t.stack_index());
            }

            stack::set_field(L, detail::base_class_index_propogation_key(), make_closure(um.indexbase, nullptr, make_light(um), make_light(umc)), t.stack_index());
            stack::set_field(L, detail::base_class_new_index_propogation_key(), make_closure(um.newindexbase, nullptr, make_light(um), make_light(umc)), t.stack_index());

            if (mustindex) {
                // Basic index pushing: specialize
                // index and newindex to give variables and stuff
                stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, nullptr, make_light(um), make_light(umc)), t.stack_index());
                stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, nullptr, make_light(um), make_light(umc)), t.stack_index());
            }
            else {
                // If there's only functions, we can use the fast index version
                stack::set_field(L, meta_function::index, t, t.stack_index());
            }
            // metatable on the metatable
            // for call constructor purposes and such
            lua_createtable(L, 0, 3);
            stack_reference metabehind(L, -1);
            stack::set_field(L, meta_function::type, type_table, metabehind.stack_index());
            if (um.callconstructfunc != nullptr) {
                stack::set_field(L, meta_function::call_function, make_closure(um.callconstructfunc, nullptr, make_light(um), make_light(umc)), metabehind.stack_index());
            }
            if (um.secondarymeta) {
                stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, nullptr, make_light(um), make_light(umc)), metabehind.stack_index());
                stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, nullptr, make_light(um), make_light(umc)), metabehind.stack_index());
            }
            // type information needs to be present on the behind-tables too

            stack::set_field(L, metatable_key, metabehind, t.stack_index());
            metabehind.pop();
            // We want to just leave the table
            // in the registry only, otherwise we return it
            t.pop();
        }

        // Now for the shim-table that actually gets assigned to the name
        luaL_newmetatable(L, &usertype_traits<T>::user_metatable()[0]);
        stack_reference t(L, -1);
        stack::set_field(L, meta_function::type, type_table, t.stack_index());
        int upvalues = 0;
        upvalues += stack::push(L, nullptr);
        upvalues += stack::push(L, make_light(um));
        luaL_setfuncs(L, value_table.data(), upvalues);
        {
            lua_createtable(L, 0, 3);
            stack_reference metabehind(L, -1);
            // type information needs to be present on the behind-tables too
            stack::set_field(L, meta_function::type, type_table, metabehind.stack_index());
            if (um.callconstructfunc != nullptr) {
                stack::set_field(L, meta_function::call_function, make_closure(um.callconstructfunc, nullptr, make_light(um), make_light(umc)), metabehind.stack_index());
            }

            stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, nullptr, make_light(um), make_light(umc), nullptr, usertype_detail::toplevel_magic), metabehind.stack_index());
            stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, nullptr, make_light(um), make_light(umc), nullptr, usertype_detail::toplevel_magic), metabehind.stack_index());
            stack::set_field(L, metatable_key, metabehind, t.stack_index());
            metabehind.pop();
        }

        lua_remove(L, type_table.stack_index());

        return 1;
    }
};

} // namespace stack

} // namespace sol

// end of sol/usertype_metatable.hpp

// beginning of sol/simple_usertype_metatable.hpp

namespace sol {

namespace usertype_detail {
inline int call_indexing_object(lua_State* L, object& f)
{
    int before = lua_gettop(L);
    f.push();
    for (int i = 1; i <= before; ++i) {
        lua_pushvalue(L, i);
    }
    lua_call(L, before, LUA_MULTRET);
    int after = lua_gettop(L);
    return after - before;
}

template <typename T, bool is_index, bool toplevel = false, bool has_indexing = false>
inline int simple_core_indexing_call(lua_State* L)
{
    simple_map& sm = toplevel
        ? stack::get<user<simple_map>>(L, upvalue_index(simple_metatable_index))
        : stack::pop<user<simple_map>>(L);
    variable_map& variables = sm.variables;
    function_map& functions = sm.functions;
    static const int keyidx = -2 + static_cast<int>(is_index);
    if (toplevel) {
        if (stack::get<type>(L, keyidx) != type::string) {
            if (has_indexing) {
                object& indexingfunc = is_index
                    ? sm.index
                    : sm.newindex;
                return call_indexing_object(L, indexingfunc);
            }
            else {
                return is_index
                    ? indexing_fail<T, is_index>(L)
                    : metatable_newindex<T, true>(L);
            }
        }
    }
    string_view accessor = stack::get<string_view>(L, keyidx);
    std::string accessorkey = accessor.data();
    auto vit = variables.find(accessorkey);
    if (vit != variables.cend()) {
        auto& varwrap = *(vit->second);
        if (is_index) {
            return varwrap.index(L);
        }
        return varwrap.new_index(L);
    }
    auto fit = functions.find(accessorkey);
    if (fit != functions.cend()) {
        object& func = fit->second;
        if (is_index) {
            return stack::push(L, func);
        }
        else {
            if (has_indexing && !is_toplevel(L)) {
                object& indexingfunc = is_index
                    ? sm.index
                    : sm.newindex;
                return call_indexing_object(L, indexingfunc);
            }
            else {
                return is_index
                    ? indexing_fail<T, is_index>(L)
                    : metatable_newindex<T, true>(L);
            }
        }
    }
    /* Check table storage first for a method that works
			luaL_getmetatable(L, sm.metakey);
			if (type_of(L, -1) != type::lua_nil) {
				stack::get_field<false, true>(L, accessor.c_str(), lua_gettop(L));
				if (type_of(L, -1) != type::lua_nil) {
					// Woo, we found it?
					lua_remove(L, -2);
					return 1;
				}
				lua_pop(L, 1);
			}
			lua_pop(L, 1);
			*/

    int ret = 0;
    bool found = false;
    // Otherwise, we need to do propagating calls through the bases
    if (is_index) {
        sm.indexbaseclasspropogation(L, found, ret, accessor);
    }
    else {
        sm.newindexbaseclasspropogation(L, found, ret, accessor);
    }
    if (found) {
        return ret;
    }
    if (toplevel) {
        if (has_indexing && !is_toplevel(L)) {
            object& indexingfunc = is_index
                ? sm.index
                : sm.newindex;
            return call_indexing_object(L, indexingfunc);
        }
        else {
            return is_index
                ? indexing_fail<T, is_index>(L)
                : metatable_newindex<T, true>(L);
        }
    }
    return -1;
}

template <typename T, bool has_indexing = false>
inline int simple_real_index_call(lua_State* L)
{
    return simple_core_indexing_call<T, true, true, has_indexing>(L);
}

template <typename T, bool has_indexing = false>
inline int simple_real_new_index_call(lua_State* L)
{
    return simple_core_indexing_call<T, false, true, has_indexing>(L);
}

template <typename T, bool has_indexing = false>
inline int simple_index_call(lua_State* L)
{
#if defined(__clang__)
    return detail::trampoline(L, &simple_real_index_call<T, has_indexing>);
#else
    return detail::typed_static_trampoline<decltype(&simple_real_index_call<T, has_indexing>), (&simple_real_index_call<T, has_indexing>)>(L);
#endif
}

template <typename T, bool has_indexing = false>
inline int simple_new_index_call(lua_State* L)
{
#if defined(__clang__)
    return detail::trampoline(L, &simple_real_new_index_call<T, has_indexing>);
#else
    return detail::typed_static_trampoline<decltype(&simple_real_new_index_call<T, has_indexing>), (&simple_real_new_index_call<T, has_indexing>)>(L);
#endif
}
} // namespace usertype_detail

struct simple_tag {
} const simple{};

template <typename T>
struct simple_usertype_metatable : usertype_detail::registrar {
public:
    usertype_detail::function_map registrations;
    usertype_detail::variable_map varmap;
    object callconstructfunc;
    object indexfunc;
    object newindexfunc;
    lua_CFunction indexbase;
    lua_CFunction newindexbase;
    usertype_detail::base_walk indexbaseclasspropogation;
    usertype_detail::base_walk newindexbaseclasspropogation;
    void* baseclasscheck;
    void* baseclasscast;
    bool mustindex;
    bool secondarymeta;
    std::array<bool, 32> properties;

    template <typename N>
    void insert(N&& n, object&& o)
    {
        std::string key = usertype_detail::make_string(std::forward<N>(n));
        int is_indexer = static_cast<int>(usertype_detail::is_indexer(n));
        if (is_indexer == 1) {
            indexfunc = o;
            mustindex = true;
        }
        else if (is_indexer == 2) {
            newindexfunc = o;
            mustindex = true;
        }
        auto hint = registrations.find(key);
        if (hint == registrations.cend()) {
            registrations.emplace_hint(hint, std::move(key), std::move(o));
            return;
        }
        hint->second = std::move(o);
    }

    template <typename N, typename F, typename... Args>
    void insert_prepare(std::true_type, lua_State* L, N&&, F&& f, Args&&... args)
    {
        object o = make_object<F>(L, std::forward<F>(f), function_detail::call_indicator(), std::forward<Args>(args)...);
        callconstructfunc = std::move(o);
    }

    template <typename N, typename F, typename... Args>
    void insert_prepare(std::false_type, lua_State* L, N&& n, F&& f, Args&&... args)
    {
        object o = make_object<F>(L, std::forward<F>(f), std::forward<Args>(args)...);
        insert(std::forward<N>(n), std::move(o));
    }

    template <typename N, typename F>
    void add_member_function(std::true_type, lua_State* L, N&& n, F&& f)
    {
        insert_prepare(std::is_same<meta::unqualified_t<N>, call_construction>(), L, std::forward<N>(n), std::forward<F>(f), function_detail::class_indicator<T>());
    }

    template <typename N, typename F>
    void add_member_function(std::false_type, lua_State* L, N&& n, F&& f)
    {
        insert_prepare(std::is_same<meta::unqualified_t<N>, call_construction>(), L, std::forward<N>(n), std::forward<F>(f));
    }

    template <typename N, typename F, meta::enable<meta::is_callable<meta::unwrap_unqualified_t<F>>> = meta::enabler>
    void add_function(lua_State* L, N&& n, F&& f)
    {
        object o = make_object(L, as_function_reference(std::forward<F>(f)));
        if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
            callconstructfunc = std::move(o);
            return;
        }
        insert(std::forward<N>(n), std::move(o));
    }

    template <typename N, typename F, meta::disable<meta::is_callable<meta::unwrap_unqualified_t<F>>> = meta::enabler>
    void add_function(lua_State* L, N&& n, F&& f)
    {
        add_member_function(std::is_member_pointer<meta::unwrap_unqualified_t<F>>(), L, std::forward<N>(n), std::forward<F>(f));
    }

    template <typename N, typename F, meta::disable<is_variable_binding<meta::unqualified_t<F>>> = meta::enabler>
    void add(lua_State* L, N&& n, F&& f)
    {
        add_function(L, std::forward<N>(n), std::forward<F>(f));
    }

    template <typename N, typename F, meta::enable<is_variable_binding<meta::unqualified_t<F>>> = meta::enabler>
    void add(lua_State*, N&& n, F&& f)
    {
        mustindex = true;
        secondarymeta = true;
        std::string key = usertype_detail::make_string(std::forward<N>(n));
        auto o = std::make_unique<usertype_detail::callable_binding<T, std::decay_t<F>>>(std::forward<F>(f));
        auto hint = varmap.find(key);
        if (hint == varmap.cend()) {
            varmap.emplace_hint(hint, std::move(key), std::move(o));
            return;
        }
        hint->second = std::move(o);
    }

    template <typename N, typename... Fxs>
    void add(lua_State* L, N&& n, constructor_wrapper<Fxs...> c)
    {
        object o(L, in_place_type<detail::tagged<T, constructor_wrapper<Fxs...>>>, std::move(c));
        if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
            callconstructfunc = std::move(o);
            return;
        }
        insert(std::forward<N>(n), std::move(o));
    }

    template <typename N, typename... Lists>
    void add(lua_State* L, N&& n, constructor_list<Lists...> c)
    {
        object o(L, in_place_type<detail::tagged<T, constructor_list<Lists...>>>, std::move(c));
        if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
            callconstructfunc = std::move(o);
            return;
        }
        insert(std::forward<N>(n), std::move(o));
    }

    template <typename N>
    void add(lua_State* L, N&& n, destructor_wrapper<void> c)
    {
        object o(L, in_place_type<detail::tagged<T, destructor_wrapper<void>>>, std::move(c));
        if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
            callconstructfunc = std::move(o);
            return;
        }
        insert(std::forward<N>(n), std::move(o));
    }

    template <typename N, typename Fx>
    void add(lua_State* L, N&& n, destructor_wrapper<Fx> c)
    {
        object o(L, in_place_type<detail::tagged<T, destructor_wrapper<Fx>>>, std::move(c));
        if (std::is_same<meta::unqualified_t<N>, call_construction>::value) {
            callconstructfunc = std::move(o);
            return;
        }
        insert(std::forward<N>(n), std::move(o));
    }

    template <typename... Bases>
    void add(lua_State*, base_classes_tag, bases<Bases...>)
    {
        static_assert(sizeof(usertype_detail::base_walk) <= sizeof(void*), "size of function pointer is greater than sizeof(void*); cannot work on this platform. Please file a bug report.");
        static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases");
        if (sizeof...(Bases) < 1) {
            return;
        }
        mustindex = true;
        (void)detail::swallow{ 0, ((detail::has_derived<Bases>::value = true), 0)... };

        static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file a bug report.");
        static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file a bug report.");
        baseclasscheck = (void*)&detail::inheritance<T, Bases...>::type_check;
        baseclasscast = (void*)&detail::inheritance<T, Bases...>::type_cast;
        indexbaseclasspropogation = usertype_detail::walk_all_bases<true, Bases...>;
        newindexbaseclasspropogation = usertype_detail::walk_all_bases<false, Bases...>;
    }

private:
    template <std::size_t... I, typename Tuple>
    simple_usertype_metatable(detail::verified_tag, std::index_sequence<I...>, lua_State* L, Tuple&& args)
        : callconstructfunc(lua_nil)
        , indexfunc(lua_nil)
        , newindexfunc(lua_nil)
        , indexbase(&usertype_detail::simple_core_indexing_call<T, true>)
        , newindexbase(&usertype_detail::simple_core_indexing_call<T, false>)
        , indexbaseclasspropogation(usertype_detail::walk_all_bases<true>)
        , newindexbaseclasspropogation(&usertype_detail::walk_all_bases<false>)
        , baseclasscheck(nullptr)
        , baseclasscast(nullptr)
        , mustindex(false)
        , secondarymeta(false)
        , properties()
    {
        properties.fill(false);

        (void)detail::swallow{ 0,
            (add(L, detail::forward_get<I * 2>(args), detail::forward_get<I * 2 + 1>(args)), 0)... };
    }

    template <typename... Args>
    simple_usertype_metatable(lua_State* L, detail::verified_tag v, Args&&... args)
        : simple_usertype_metatable(v, std::make_index_sequence<sizeof...(Args) / 2>(), L, std::forward_as_tuple(std::forward<Args>(args)...))
    {
    }

    template <typename... Args>
    simple_usertype_metatable(lua_State* L, detail::add_destructor_tag, Args&&... args)
        : simple_usertype_metatable(L, detail::verified, std::forward<Args>(args)..., "__gc", default_destructor)
    {
    }

    template <typename... Args>
    simple_usertype_metatable(lua_State* L, detail::check_destructor_tag, Args&&... args)
        : simple_usertype_metatable(L, meta::condition<meta::all<std::is_destructible<T>, meta::neg<detail::has_destructor<Args...>>>, detail::add_destructor_tag, detail::verified_tag>(), std::forward<Args>(args)...)
    {
    }

public:
    simple_usertype_metatable(lua_State* L)
        : simple_usertype_metatable(L, meta::condition<meta::all<std::is_default_constructible<T>>, decltype(default_constructor), detail::check_destructor_tag>())
    {
    }

    template <typename Arg, typename... Args, meta::disable_any<meta::any_same<meta::unqualified_t<Arg>, detail::verified_tag, detail::add_destructor_tag, detail::check_destructor_tag>, meta::is_specialization_of<constructors, meta::unqualified_t<Arg>>, meta::is_specialization_of<constructor_wrapper, meta::unqualified_t<Arg>>> = meta::enabler>
    simple_usertype_metatable(lua_State* L, Arg&& arg, Args&&... args)
        : simple_usertype_metatable(L, meta::condition<meta::all<std::is_default_constructible<T>, meta::neg<detail::has_constructor<Args...>>>, decltype(default_constructor), detail::check_destructor_tag>(), std::forward<Arg>(arg), std::forward<Args>(args)...)
    {
    }

    template <typename... Args, typename... CArgs>
    simple_usertype_metatable(lua_State* L, constructors<CArgs...> constructorlist, Args&&... args)
        : simple_usertype_metatable(L, detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist)
    {
    }

    template <typename... Args, typename... Fxs>
    simple_usertype_metatable(lua_State* L, constructor_wrapper<Fxs...> constructorlist, Args&&... args)
        : simple_usertype_metatable(L, detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist)
    {
    }

    simple_usertype_metatable(const simple_usertype_metatable&) = default;
    simple_usertype_metatable(simple_usertype_metatable&&) = default;
    simple_usertype_metatable& operator=(const simple_usertype_metatable&) = default;
    simple_usertype_metatable& operator=(simple_usertype_metatable&&) = default;

    virtual int push_um(lua_State* L) override
    {
        return stack::push(L, std::move(*this));
    }
};

namespace stack {
template <typename T>
struct pusher<simple_usertype_metatable<T>> {
    typedef simple_usertype_metatable<T> umt_t;

    static usertype_detail::simple_map& make_cleanup(lua_State* L, umt_t& umx)
    {
        static int uniqueness = 0;
        std::string uniquegcmetakey = usertype_traits<T>::user_gc_metatable();
        // std::to_string doesn't exist in android still, with NDK, so this bullshit
        // is necessary
        // thanks, Android :v
        int appended = snprintf(nullptr, 0, "%d", uniqueness);
        std::size_t insertionpoint = uniquegcmetakey.length() - 1;
        uniquegcmetakey.append(appended, '\0');
        char* uniquetarget = &uniquegcmetakey[insertionpoint];
        snprintf(uniquetarget, uniquegcmetakey.length(), "%d", uniqueness);
        ++uniqueness;

        const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
        stack::push<user<usertype_detail::simple_map>>(L, metatable_key, uniquegcmetakey, &usertype_traits<T>::metatable()[0],
            umx.indexbaseclasspropogation, umx.newindexbaseclasspropogation,
            std::move(umx.indexfunc), std::move(umx.newindexfunc),
            std::move(umx.varmap), std::move(umx.registrations));
        stack_reference stackvarmap(L, -1);
        stack::set_field<true>(L, gcmetakey, stackvarmap);
        stackvarmap.pop();

        stack::get_field<true>(L, gcmetakey);
        usertype_detail::simple_map& varmap = stack::pop<user<usertype_detail::simple_map>>(L);
        return varmap;
    }

    static int push(lua_State* L, umt_t&& umx)
    {
        bool hasindex = umx.indexfunc.valid();
        bool hasnewindex = umx.newindexfunc.valid();
        auto& varmap = make_cleanup(L, umx);
        auto& properties = umx.properties;
        auto sic = hasindex ? &usertype_detail::simple_index_call<T, true> : &usertype_detail::simple_index_call<T, false>;
        auto snic = hasnewindex ? &usertype_detail::simple_new_index_call<T, true> : &usertype_detail::simple_new_index_call<T, false>;

        lua_createtable(L, 0, 2);
        stack_reference type_table(L, -1);

        stack::set_field(L, "name", detail::demangle<T>(), type_table.stack_index());
        stack::set_field(L, "is", &usertype_detail::is_check<T>, type_table.stack_index());

        auto safety_check = [&](const std::string& first) {
            for (std::size_t j = 0; j < properties.size(); ++j) {
                meta_function mf = static_cast<meta_function>(j);
                const std::string& mfname = to_string(mf);
                bool& prop = properties[j];
                if (mfname != first)
                    continue;
                switch (mf) {
                case meta_function::construct:
                    if (prop) {
#ifndef SOL_NO_EXCEPTIONS
                        throw error(
#else
                        assert(false &&
#endif
                            "sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems");
                    }
                    break;
                case meta_function::garbage_collect:
                    if (prop) {
#ifndef SOL_NO_EXCEPTIONS
                        throw error(
#else
                        assert(false &&
#endif
                            "sol: 2 separate garbage_collect functions were set on this type. Please specify only 1 sol::meta_function::gc type AND wrap the function in a sol::destruct call, as shown by the documentation and examples");
                    }
                    return;
                default:
                    break;
                }
                prop = true;
                break;
            }
        };

        for (auto& kvp : varmap.functions) {
            auto& first = std::get<0>(kvp);
            safety_check(first);
        }

        auto register_kvp = [&](std::size_t meta_index, stack_reference& t, const std::string& first, object& second) {
            meta_function mf = meta_function::construct;
            for (std::size_t j = 0; j < properties.size(); ++j) {
                mf = static_cast<meta_function>(j);
                const std::string& mfname = to_string(mf);
                bool& prop = properties[j];
                if (mfname != first)
                    continue;
                switch (mf) {
                case meta_function::index:
                    umx.indexfunc = second;
                    break;
                case meta_function::new_index:
                    umx.newindexfunc = second;
                    break;
                default:
                    break;
                }
                prop = true;
                break;
            }
            switch (meta_index) {
            case 0:
                if (mf == meta_function::garbage_collect) {
                    return;
                }
                break;
            case 1:
                if (mf == meta_function::garbage_collect) {
                    stack::set_field(L, first, detail::unique_destruct<T>, t.stack_index());
                    return;
                }
                break;
            case 2:
            default:
                break;
            }
            stack::set_field(L, first, second, t.stack_index());
        };
        for (std::size_t i = 0; i < 3; ++i) {
            const char* metakey = nullptr;
            switch (i) {
            case 0:
                metakey = &usertype_traits<T*>::metatable()[0];
                break;
            case 1:
                metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0];
                break;
            case 2:
            default:
                metakey = &usertype_traits<T>::metatable()[0];
                break;
            }
            luaL_newmetatable(L, metakey);
            stack_reference t(L, -1);
            stack::set_field(L, meta_function::type, type_table, t.stack_index());

            for (auto& kvp : varmap.functions) {
                auto& first = std::get<0>(kvp);
                auto& second = std::get<1>(kvp);
                register_kvp(i, t, first, second);
            }
            luaL_Reg opregs[34]{};
            int opregsindex = 0;
            auto prop_fx = [&](meta_function mf) { return !properties[static_cast<int>(mf)]; };
            usertype_detail::insert_default_registrations<T>(opregs, opregsindex, prop_fx);
            t.push();
            luaL_setfuncs(L, opregs, 0);
            t.pop();

            if (umx.baseclasscheck != nullptr) {
                stack::set_field(L, detail::base_class_check_key(), umx.baseclasscheck, t.stack_index());
            }
            if (umx.baseclasscast != nullptr) {
                stack::set_field(L, detail::base_class_cast_key(), umx.baseclasscast, t.stack_index());
            }

            // Base class propagation features
            stack::set_field(L, detail::base_class_index_propogation_key(), umx.indexbase, t.stack_index());
            stack::set_field(L, detail::base_class_new_index_propogation_key(), umx.newindexbase, t.stack_index());

            if (umx.mustindex) {
                // use indexing function
                stack::set_field(L, meta_function::index,
                    make_closure(sic,
                                     nullptr,
                                     make_light(varmap)),
                    t.stack_index());
                stack::set_field(L, meta_function::new_index,
                    make_closure(snic,
                                     nullptr,
                                     make_light(varmap)),
                    t.stack_index());
            }
            else {
                // Metatable indexes itself
                stack::set_field(L, meta_function::index, t, t.stack_index());
            }
            // metatable on the metatable
            // for call constructor purposes and such
            lua_createtable(L, 0, 2 * static_cast<int>(umx.secondarymeta) + static_cast<int>(umx.callconstructfunc.valid()));
            stack_reference metabehind(L, -1);
            stack::set_field(L, meta_function::type, type_table, metabehind.stack_index());
            if (umx.callconstructfunc.valid()) {
                stack::set_field(L, meta_function::call_function, umx.callconstructfunc, metabehind.stack_index());
            }
            if (umx.secondarymeta) {
                stack::set_field(L, meta_function::index,
                    make_closure(sic,
                                     nullptr,
                                     make_light(varmap)),
                    metabehind.stack_index());
                stack::set_field(L, meta_function::new_index,
                    make_closure(snic,
                                     nullptr,
                                     make_light(varmap)),
                    metabehind.stack_index());
            }
            stack::set_field(L, metatable_key, metabehind, t.stack_index());
            metabehind.pop();

            t.pop();
        }

        // Now for the shim-table that actually gets pushed
        luaL_newmetatable(L, &usertype_traits<T>::user_metatable()[0]);
        stack_reference t(L, -1);
        stack::set_field(L, meta_function::type, type_table, t.stack_index());

        for (auto& kvp : varmap.functions) {
            auto& first = std::get<0>(kvp);
            auto& second = std::get<1>(kvp);
            register_kvp(2, t, first, second);
        }
        {
            lua_createtable(L, 0, 2 + static_cast<int>(umx.callconstructfunc.valid()));
            stack_reference metabehind(L, -1);
            stack::set_field(L, meta_function::type, type_table, metabehind.stack_index());
            if (umx.callconstructfunc.valid()) {
                stack::set_field(L, meta_function::call_function, umx.callconstructfunc, metabehind.stack_index());
            }
            // use indexing function
            stack::set_field(L, meta_function::index,
                make_closure(sic,
                                 nullptr,
                                 make_light(varmap),
                                 nullptr,
                                 nullptr,
                                 usertype_detail::toplevel_magic),
                metabehind.stack_index());
            stack::set_field(L, meta_function::new_index,
                make_closure(snic,
                                 nullptr,
                                 make_light(varmap),
                                 nullptr,
                                 nullptr,
                                 usertype_detail::toplevel_magic),
                metabehind.stack_index());
            stack::set_field(L, metatable_key, metabehind, t.stack_index());
            metabehind.pop();
        }

        lua_remove(L, type_table.stack_index());

        // Don't pop the table when we're done;
        // return it
        return 1;
    }
};
} // namespace stack
} // namespace sol

// end of sol/simple_usertype_metatable.hpp

namespace sol {

template <typename T>
class usertype {
private:
    std::unique_ptr<usertype_detail::registrar, detail::deleter> metatableregister;

    template <typename... Args>
    usertype(detail::verified_tag, Args&&... args)
        : metatableregister(detail::make_unique_deleter<usertype_metatable<T, std::make_index_sequence<sizeof...(Args) / 2>, Args...>, detail::deleter>(std::forward<Args>(args)...))
    {
        static_assert(detail::has_destructor<Args...>::value, "this type does not have an explicit destructor declared; please pass a custom destructor function wrapped in sol::destruct, especially if the type does not have an accessible (private) destructor");
    }

    template <typename... Args>
    usertype(detail::add_destructor_tag, Args&&... args)
        : usertype(detail::verified, std::forward<Args>(args)..., "__gc", default_destructor)
    {
    }

    template <typename... Args>
    usertype(detail::check_destructor_tag, Args&&... args)
        : usertype(meta::condition<meta::all<std::is_destructible<T>, meta::neg<detail::has_destructor<Args...>>>, detail::add_destructor_tag, detail::verified_tag>(), std::forward<Args>(args)...)
    {
    }

public:
    template <typename... Args>
    usertype(Args&&... args)
        : usertype(meta::condition<meta::all<std::is_default_constructible<T>, meta::neg<detail::has_constructor<Args...>>>, decltype(default_constructor), detail::check_destructor_tag>(), std::forward<Args>(args)...)
    {
    }

    template <typename... Args, typename... CArgs>
    usertype(constructors<CArgs...> constructorlist, Args&&... args)
        : usertype(detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist)
    {
    }

    template <typename... Args, typename... Fxs>
    usertype(constructor_wrapper<Fxs...> constructorlist, Args&&... args)
        : usertype(detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist)
    {
    }

    template <typename... Args>
    usertype(simple_tag, lua_State* L, Args&&... args)
        : metatableregister(detail::make_unique_deleter<simple_usertype_metatable<T>, detail::deleter>(L, std::forward<Args>(args)...))
    {
    }

    usertype_detail::registrar* registrar_data()
    {
        return metatableregister.get();
    }

    int push(lua_State* L)
    {
        int r = metatableregister->push_um(L);
        metatableregister = nullptr;
        return r;
    }
};

template <typename T>
class simple_usertype : public usertype<T> {
private:
    typedef usertype<T> base_t;
    lua_State* state;

public:
    template <typename... Args>
    simple_usertype(lua_State* L, Args&&... args)
        : base_t(simple, L, std::forward<Args>(args)...)
        , state(L)
    {
    }

    template <typename N, typename F>
    void set(N&& n, F&& f)
    {
        auto meta = static_cast<simple_usertype_metatable<T>*>(base_t::registrar_data());
        meta->add(state, std::forward<N>(n), std::forward<F>(f));
    }
};

namespace stack {
template <typename T>
struct pusher<usertype<T>> {
    static int push(lua_State* L, usertype<T>& user)
    {
        return user.push(L);
    }
};
} // namespace stack
} // namespace sol

// end of sol/usertype.hpp

// beginning of sol/table_iterator.hpp

namespace sol {

template <typename reference_type>
class basic_table_iterator : public std::iterator<std::input_iterator_tag, std::pair<object, object>> {
private:
    typedef std::iterator<std::input_iterator_tag, std::pair<object, object>> base_t;

public:
    typedef object key_type;
    typedef object mapped_type;
    typedef base_t::value_type value_type;
    typedef base_t::iterator_category iterator_category;
    typedef base_t::difference_type difference_type;
    typedef base_t::pointer pointer;
    typedef base_t::reference reference;
    typedef const value_type& const_reference;

private:
    std::pair<object, object> kvp;
    reference_type ref;
    int tableidx = 0;
    int keyidx = 0;
    std::ptrdiff_t idx = 0;

public:
    basic_table_iterator()
        : keyidx(-1)
        , idx(-1)
    {
    }

    basic_table_iterator(reference_type x)
        : ref(std::move(x))
    {
        ref.push();
        tableidx = lua_gettop(ref.lua_state());
        stack::push(ref.lua_state(), lua_nil);
        this->operator++();
        if (idx == -1) {
            return;
        }
        --idx;
    }

    basic_table_iterator& operator++()
    {
        if (idx == -1)
            return *this;

        if (lua_next(ref.lua_state(), tableidx) == 0) {
            idx = -1;
            keyidx = -1;
            return *this;
        }
        ++idx;
        kvp.first = object(ref.lua_state(), -2);
        kvp.second = object(ref.lua_state(), -1);
        lua_pop(ref.lua_state(), 1);
        // leave key on the stack
        keyidx = lua_gettop(ref.lua_state());
        return *this;
    }

    basic_table_iterator operator++(int)
    {
        auto saved = *this;
        this->operator++();
        return saved;
    }

    reference operator*()
    {
        return kvp;
    }

    const_reference operator*() const
    {
        return kvp;
    }

    bool operator==(const basic_table_iterator& right) const
    {
        return idx == right.idx;
    }

    bool operator!=(const basic_table_iterator& right) const
    {
        return idx != right.idx;
    }

    ~basic_table_iterator()
    {
        if (keyidx != -1) {
            stack::remove(ref.lua_state(), keyidx, 1);
        }
        if (ref.valid()) {
            stack::remove(ref.lua_state(), tableidx, 1);
        }
    }
};

} // namespace sol

// end of sol/table_iterator.hpp

namespace sol {
namespace detail {
template <std::size_t n>
struct clean {
    lua_State* L;
    clean(lua_State* luastate)
        : L(luastate)
    {
    }
    ~clean()
    {
        lua_pop(L, static_cast<int>(n));
    }
};
struct ref_clean {
    lua_State* L;
    int& n;
    ref_clean(lua_State* luastate, int& n)
        : L(luastate)
        , n(n)
    {
    }
    ~ref_clean()
    {
        lua_pop(L, static_cast<int>(n));
    }
};
inline int fail_on_newindex(lua_State* L)
{
    return luaL_error(L, "sol: cannot modify the elements of an enumeration table");
}
} // namespace detail

const new_table create = new_table{};

template <bool top_level, typename base_type>
class basic_table_core : public basic_object_base<base_type> {
    typedef basic_object_base<base_type> base_t;
    friend class state;
    friend class state_view;

    template <typename... Args>
    using is_global = meta::all<meta::boolean<top_level>, meta::is_c_str<Args>...>;

    template <typename Fx>
    void for_each(std::true_type, Fx&& fx) const
    {
        auto pp = stack::push_pop(*this);
        stack::push(base_t::lua_state(), lua_nil);
        while (lua_next(base_t::lua_state(), -2)) {
            object key(base_t::lua_state(), -2);
            object value(base_t::lua_state(), -1);
            std::pair<object&, object&> keyvalue(key, value);
            auto pn = stack::pop_n(base_t::lua_state(), 1);
            fx(keyvalue);
        }
    }

    template <typename Fx>
    void for_each(std::false_type, Fx&& fx) const
    {
        auto pp = stack::push_pop(*this);
        stack::push(base_t::lua_state(), lua_nil);
        while (lua_next(base_t::lua_state(), -2)) {
            object key(base_t::lua_state(), -2);
            object value(base_t::lua_state(), -1);
            auto pn = stack::pop_n(base_t::lua_state(), 1);
            fx(key, value);
        }
    }

    template <bool raw, typename Ret0, typename Ret1, typename... Ret, std::size_t... I, typename Keys>
    auto tuple_get(types<Ret0, Ret1, Ret...>, std::index_sequence<0, 1, I...>, Keys&& keys) const
        -> decltype(stack::pop<std::tuple<Ret0, Ret1, Ret...>>(nullptr))
    {
        typedef decltype(stack::pop<std::tuple<Ret0, Ret1, Ret...>>(nullptr)) Tup;
        return Tup(
            traverse_get_optional<top_level, raw, Ret0>(meta::is_optional<meta::unqualified_t<Ret0>>(), detail::forward_get<0>(keys)),
            traverse_get_optional<top_level, raw, Ret1>(meta::is_optional<meta::unqualified_t<Ret1>>(), detail::forward_get<1>(keys)),
            traverse_get_optional<top_level, raw, Ret>(meta::is_optional<meta::unqualified_t<Ret>>(), detail::forward_get<I>(keys))...);
    }

    template <bool raw, typename Ret, std::size_t I, typename Keys>
    decltype(auto) tuple_get(types<Ret>, std::index_sequence<I>, Keys&& keys) const
    {
        return traverse_get_optional<top_level, raw, Ret>(meta::is_optional<meta::unqualified_t<Ret>>(), detail::forward_get<I>(keys));
    }

    template <bool raw, typename Pairs, std::size_t... I>
    void tuple_set(std::index_sequence<I...>, Pairs&& pairs)
    {
        auto pp = stack::push_pop < top_level && (is_global<decltype(detail::forward_get<I * 2>(pairs))...>::value) > (*this);
        void(detail::swallow{ (stack::set_field<top_level, raw>(base_t::lua_state(),
                                   detail::forward_get<I * 2>(pairs),
                                   detail::forward_get<I * 2 + 1>(pairs),
                                   lua_gettop(base_t::lua_state())),
            0)... });
    }

    template <bool global, bool raw, typename T, typename Key>
    decltype(auto) traverse_get_deep(Key&& key) const
    {
        stack::get_field<global, raw>(base_t::lua_state(), std::forward<Key>(key));
        return stack::get<T>(base_t::lua_state());
    }

    template <bool global, bool raw, typename T, typename Key, typename... Keys>
    decltype(auto) traverse_get_deep(Key&& key, Keys&&... keys) const
    {
        stack::get_field<global, raw>(base_t::lua_state(), std::forward<Key>(key));
        return traverse_get_deep<false, raw, T>(std::forward<Keys>(keys)...);
    }

    template <bool global, bool raw, typename T, std::size_t I, typename Key>
    decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key) const
    {
        typedef decltype(stack::get<T>(base_t::lua_state())) R;
        auto p = stack::probe_get_field<global, raw>(base_t::lua_state(), std::forward<Key>(key), lua_gettop(base_t::lua_state()));
        popcount += p.levels;
        if (!p.success)
            return R(nullopt);
        return stack::get<T>(base_t::lua_state());
    }

    template <bool global, bool raw, typename T, std::size_t I, typename Key, typename... Keys>
    decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key, Keys&&... keys) const
    {
        auto p = I > 0 ? stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), -1) : stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), lua_gettop(base_t::lua_state()));
        popcount += p.levels;
        if (!p.success)
            return T(nullopt);
        return traverse_get_deep_optional<false, raw, T, I + 1>(popcount, std::forward<Keys>(keys)...);
    }

    template <bool global, bool raw, typename T, typename... Keys>
    decltype(auto) traverse_get_optional(std::false_type, Keys&&... keys) const
    {
        detail::clean<sizeof...(Keys)> c(base_t::lua_state());
        return traverse_get_deep<global, raw, T>(std::forward<Keys>(keys)...);
    }

    template <bool global, bool raw, typename T, typename... Keys>
    decltype(auto) traverse_get_optional(std::true_type, Keys&&... keys) const
    {
        int popcount = 0;
        detail::ref_clean c(base_t::lua_state(), popcount);
        return traverse_get_deep_optional<global, raw, T, 0>(popcount, std::forward<Keys>(keys)...);
    }

    template <bool global, bool raw, typename Key, typename Value>
    void traverse_set_deep(Key&& key, Value&& value) const
    {
        stack::set_field<global, raw>(base_t::lua_state(), std::forward<Key>(key), std::forward<Value>(value));
    }

    template <bool global, bool raw, typename Key, typename... Keys>
    void traverse_set_deep(Key&& key, Keys&&... keys) const
    {
        stack::get_field<global, raw>(base_t::lua_state(), std::forward<Key>(key));
        traverse_set_deep<false, raw>(std::forward<Keys>(keys)...);
    }

    basic_table_core(lua_State* L, detail::global_tag t) noexcept
        : base_t(L, t)
    {
    }

protected:
    basic_table_core(detail::no_safety_tag, lua_State* L, int index)
        : base_t(L, index)
    {
    }
    basic_table_core(detail::no_safety_tag, lua_State* L, ref_index index)
        : base_t(L, index)
    {
    }
    template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<base_type, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_table_core(detail::no_safety_tag, T&& r) noexcept
        : base_t(std::forward<T>(r))
    {
    }
    template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_table_core(detail::no_safety_tag, lua_State* L, T&& r) noexcept
        : base_t(L, std::forward<T>(r))
    {
    }

public:
    typedef basic_table_iterator<base_type> iterator;
    typedef iterator const_iterator;

    using base_t::lua_state;

    basic_table_core() noexcept = default;
    basic_table_core(const basic_table_core&) = default;
    basic_table_core(basic_table_core&&) = default;
    basic_table_core& operator=(const basic_table_core&) = default;
    basic_table_core& operator=(basic_table_core&&) = default;
    basic_table_core(const stack_reference& r)
        : basic_table_core(r.lua_state(), r.stack_index())
    {
    }
    basic_table_core(stack_reference&& r)
        : basic_table_core(r.lua_state(), r.stack_index())
    {
    }
    template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_table_core(lua_State* L, T&& r)
        : base_t(L, std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_table_core>(lua_state(), -1, handler);
#endif // Safety
    }
    basic_table_core(lua_State* L, new_table nt)
        : base_t(L, (lua_createtable(L, nt.sequence_hint, nt.map_hint), -1))
    {
        if (!is_stack_based<meta::unqualified_t<base_type>>::value) {
            lua_pop(L, 1);
        }
    }
    basic_table_core(lua_State* L, int index = -1)
        : basic_table_core(detail::no_safety, L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<basic_table_core>(L, index, handler);
#endif // Safety
    }
    basic_table_core(lua_State* L, ref_index index)
        : basic_table_core(detail::no_safety, L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_table_core>(lua_state(), -1, handler);
#endif // Safety
    }
    template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<base_type, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_table_core(T&& r) noexcept
        : basic_table_core(detail::no_safety, std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        if (!is_table<meta::unqualified_t<T>>::value) {
            auto pp = stack::push_pop(*this);
            constructor_handler handler{};
            stack::check<basic_table_core>(base_t::lua_state(), -1, handler);
        }
#endif // Safety
    }

    iterator begin() const
    {
        return iterator(*this);
    }

    iterator end() const
    {
        return iterator();
    }

    const_iterator cbegin() const
    {
        return begin();
    }

    const_iterator cend() const
    {
        return end();
    }

    template <typename... Ret, typename... Keys>
    decltype(auto) get(Keys&&... keys) const
    {
        static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
        auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
        return tuple_get<false>(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), std::forward_as_tuple(std::forward<Keys>(keys)...));
    }

    template <typename T, typename Key>
    decltype(auto) get_or(Key&& key, T&& otherwise) const
    {
        typedef decltype(get<T>("")) U;
        optional<U> option = get<optional<U>>(std::forward<Key>(key));
        if (option) {
            return static_cast<U>(option.value());
        }
        return static_cast<U>(std::forward<T>(otherwise));
    }

    template <typename T, typename Key, typename D>
    decltype(auto) get_or(Key&& key, D&& otherwise) const
    {
        optional<T> option = get<optional<T>>(std::forward<Key>(key));
        if (option) {
            return static_cast<T>(option.value());
        }
        return static_cast<T>(std::forward<D>(otherwise));
    }

    template <typename T, typename... Keys>
    decltype(auto) traverse_get(Keys&&... keys) const
    {
        auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
        return traverse_get_optional<top_level, false, T>(meta::is_optional<meta::unqualified_t<T>>(), std::forward<Keys>(keys)...);
    }

    template <typename... Keys>
    basic_table_core& traverse_set(Keys&&... keys)
    {
        auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
        auto pn = stack::pop_n(base_t::lua_state(), static_cast<int>(sizeof...(Keys)-2));
        traverse_set_deep<top_level, false>(std::forward<Keys>(keys)...);
        return *this;
    }

    template <typename... Args>
    basic_table_core& set(Args&&... args)
    {
        tuple_set<false>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
        return *this;
    }

    template <typename... Ret, typename... Keys>
    decltype(auto) raw_get(Keys&&... keys) const
    {
        static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match");
        auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
        return tuple_get<true>(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), std::forward_as_tuple(std::forward<Keys>(keys)...));
    }

    template <typename T, typename Key>
    decltype(auto) raw_get_or(Key&& key, T&& otherwise) const
    {
        typedef decltype(raw_get<T>("")) U;
        optional<U> option = raw_get<optional<U>>(std::forward<Key>(key));
        if (option) {
            return static_cast<U>(option.value());
        }
        return static_cast<U>(std::forward<T>(otherwise));
    }

    template <typename T, typename Key, typename D>
    decltype(auto) raw_get_or(Key&& key, D&& otherwise) const
    {
        optional<T> option = raw_get<optional<T>>(std::forward<Key>(key));
        if (option) {
            return static_cast<T>(option.value());
        }
        return static_cast<T>(std::forward<D>(otherwise));
    }

    template <typename T, typename... Keys>
    decltype(auto) traverse_raw_get(Keys&&... keys) const
    {
        auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
        return traverse_get_optional<top_level, true, T>(meta::is_optional<meta::unqualified_t<T>>(), std::forward<Keys>(keys)...);
    }

    template <typename... Keys>
    basic_table_core& traverse_raw_set(Keys&&... keys)
    {
        auto pp = stack::push_pop<is_global<Keys...>::value>(*this);
        auto pn = stack::pop_n(base_t::lua_state(), static_cast<int>(sizeof...(Keys)-2));
        traverse_set_deep<top_level, true>(std::forward<Keys>(keys)...);
        return *this;
    }

    template <typename... Args>
    basic_table_core& raw_set(Args&&... args)
    {
        tuple_set<true>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...));
        return *this;
    }

    template <typename T>
    basic_table_core& set_usertype(usertype<T>& user)
    {
        return set_usertype(usertype_traits<T>::name(), user);
    }

    template <typename Key, typename T>
    basic_table_core& set_usertype(Key&& key, usertype<T>& user)
    {
        return set(std::forward<Key>(key), user);
    }

    template <typename Class, typename... Args>
    basic_table_core& new_usertype(const std::string& name, Args&&... args)
    {
        usertype<Class> utype(std::forward<Args>(args)...);
        set_usertype(name, utype);
        return *this;
    }

    template <typename Class, typename CTor0, typename... CTor, typename... Args>
    basic_table_core& new_usertype(const std::string& name, Args&&... args)
    {
        constructors<types<CTor0, CTor...>> ctor{};
        return new_usertype<Class>(name, ctor, std::forward<Args>(args)...);
    }

    template <typename Class, typename... CArgs, typename... Args>
    basic_table_core& new_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args)
    {
        usertype<Class> utype(ctor, std::forward<Args>(args)...);
        set_usertype(name, utype);
        return *this;
    }

    template <typename Class, typename... Args>
    basic_table_core& new_simple_usertype(const std::string& name, Args&&... args)
    {
        simple_usertype<Class> utype(base_t::lua_state(), std::forward<Args>(args)...);
        set_usertype(name, utype);
        return *this;
    }

    template <typename Class, typename CTor0, typename... CTor, typename... Args>
    basic_table_core& new_simple_usertype(const std::string& name, Args&&... args)
    {
        constructors<types<CTor0, CTor...>> ctor{};
        return new_simple_usertype<Class>(name, ctor, std::forward<Args>(args)...);
    }

    template <typename Class, typename... CArgs, typename... Args>
    basic_table_core& new_simple_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args)
    {
        simple_usertype<Class> utype(base_t::lua_state(), ctor, std::forward<Args>(args)...);
        set_usertype(name, utype);
        return *this;
    }

    template <typename Class, typename... Args>
    simple_usertype<Class> create_simple_usertype(Args&&... args)
    {
        simple_usertype<Class> utype(base_t::lua_state(), std::forward<Args>(args)...);
        return utype;
    }

    template <typename Class, typename CTor0, typename... CTor, typename... Args>
    simple_usertype<Class> create_simple_usertype(Args&&... args)
    {
        constructors<types<CTor0, CTor...>> ctor{};
        return create_simple_usertype<Class>(ctor, std::forward<Args>(args)...);
    }

    template <typename Class, typename... CArgs, typename... Args>
    simple_usertype<Class> create_simple_usertype(constructors<CArgs...> ctor, Args&&... args)
    {
        simple_usertype<Class> utype(base_t::lua_state(), ctor, std::forward<Args>(args)...);
        return utype;
    }

    template <bool read_only = true, typename... Args>
    table new_enum(const string_view& name, Args&&... args)
    {
        table target = create_with(std::forward<Args>(args)...);
        if (read_only) {
            table x = create_with(
                meta_function::new_index, detail::fail_on_newindex,
                meta_function::index, target);
            table shim = create_named(name, metatable_key, x);
            return shim;
        }
        else {
            set(name, target);
            return target;
        }
    }

    template <typename T, bool read_only = true>
    table new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items)
    {
        table target = create(items.size(), 0);
        for (const auto& kvp : items) {
            target.set(kvp.first, kvp.second);
        }
        if (read_only) {
            table x = create_with(
                meta_function::new_index, detail::fail_on_newindex,
                meta_function::index, target);
            table shim = create_named(name, metatable_key, x);
            return shim;
        }
        else {
            set(name, target);
            return target;
        }
    }

    template <typename Fx>
    void for_each(Fx&& fx) const
    {
        typedef meta::is_invokable<Fx(std::pair<object, object>)> is_paired;
        for_each(is_paired(), std::forward<Fx>(fx));
    }

    size_t size() const
    {
        auto pp = stack::push_pop(*this);
        lua_len(base_t::lua_state(), -1);
        return stack::pop<size_t>(base_t::lua_state());
    }

    bool empty() const
    {
        return cbegin() == cend();
    }

    template <typename T>
    proxy<basic_table_core&, T> operator[](T&& key) &
    {
        return proxy<basic_table_core&, T>(*this, std::forward<T>(key));
    }

    template <typename T>
    proxy<const basic_table_core&, T> operator[](T&& key) const&
    {
        return proxy<const basic_table_core&, T>(*this, std::forward<T>(key));
    }

    template <typename T>
    proxy<basic_table_core, T> operator[](T&& key) &&
    {
        return proxy<basic_table_core, T>(*this, std::forward<T>(key));
    }

    template <typename Sig, typename Key, typename... Args>
    basic_table_core& set_function(Key&& key, Args&&... args)
    {
        set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...);
        return *this;
    }

    template <typename Key, typename... Args>
    basic_table_core& set_function(Key&& key, Args&&... args)
    {
        set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...);
        return *this;
    }

    template <typename... Args>
    basic_table_core& add(Args&&... args)
    {
        auto pp = stack::push_pop(*this);
        (void)detail::swallow{ 0,
            (stack::set_ref(base_t::lua_state(), std::forward<Args>(args)), 0)... };
        return *this;
    }

private:
    template <typename R, typename... Args, typename Fx, typename Key, typename = std::result_of_t<Fx(Args...)>>
    void set_fx(types<R(Args...)>, Key&& key, Fx&& fx)
    {
        set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx));
    }

    template <typename Fx, typename Key, meta::enable<meta::is_specialization_of<overload_set, meta::unqualified_t<Fx>>> = meta::enabler>
    void set_fx(types<>, Key&& key, Fx&& fx)
    {
        set(std::forward<Key>(key), std::forward<Fx>(fx));
    }

    template <typename Fx, typename Key, typename... Args, meta::disable<meta::is_specialization_of<overload_set, meta::unqualified_t<Fx>>> = meta::enabler>
    void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args)
    {
        set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...));
    }

    template <typename... Sig, typename... Args, typename Key>
    void set_resolved_function(Key&& key, Args&&... args)
    {
        set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...));
    }

public:
    static inline table create(lua_State* L, int narr = 0, int nrec = 0)
    {
        lua_createtable(L, narr, nrec);
        table result(L);
        lua_pop(L, 1);
        return result;
    }

    template <typename Key, typename Value, typename... Args>
    static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args)
    {
        lua_createtable(L, narr, nrec);
        table result(L);
        result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
        lua_pop(L, 1);
        return result;
    }

    template <typename... Args>
    static inline table create_with(lua_State* L, Args&&... args)
    {
        static_assert(sizeof...(Args) % 2 == 0, "You must have an even number of arguments for a key, value ... list.");
        static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value);
        return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...);
    }

    table create(int narr = 0, int nrec = 0)
    {
        return create(base_t::lua_state(), narr, nrec);
    }

    template <typename Key, typename Value, typename... Args>
    table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args)
    {
        return create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
    }

    template <typename Name>
    table create(Name&& name, int narr = 0, int nrec = 0)
    {
        table x = create(base_t::lua_state(), narr, nrec);
        this->set(std::forward<Name>(name), x);
        return x;
    }

    template <typename Name, typename Key, typename Value, typename... Args>
    table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args)
    {
        table x = create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
        this->set(std::forward<Name>(name), x);
        return x;
    }

    template <typename... Args>
    table create_with(Args&&... args)
    {
        return create_with(base_t::lua_state(), std::forward<Args>(args)...);
    }

    template <typename Name, typename... Args>
    table create_named(Name&& name, Args&&... args)
    {
        static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value);
        return create(std::forward<Name>(name), narr, (sizeof...(Args) / 2) - narr, std::forward<Args>(args)...);
    }
};
} // namespace sol

// end of sol/table_core.hpp

namespace sol {
typedef table_core<false> table;

namespace stack {
template <>
struct getter<metatable_t> {
    static table get(lua_State* L, int index = -1)
    {
        if (lua_getmetatable(L, index) == 0) {
            return table(L, ref_index(LUA_REFNIL));
        }
        return table(L, -1);
    }
};
} // namespace stack
} // namespace sol

// end of sol/table.hpp

// beginning of sol/environment.hpp

namespace sol {

template <typename base_type>
struct basic_environment : basic_table<base_type> {
private:
    typedef basic_table<base_type> base_t;

public:
    using base_t::lua_state;

    basic_environment() noexcept = default;
    basic_environment(const basic_environment&) = default;
    basic_environment(basic_environment&&) = default;
    basic_environment& operator=(const basic_environment&) = default;
    basic_environment& operator=(basic_environment&&) = default;
    basic_environment(const stack_reference& r)
        : basic_environment(r.lua_state(), r.stack_index())
    {
    }
    basic_environment(stack_reference&& r)
        : basic_environment(r.lua_state(), r.stack_index())
    {
    }

    basic_environment(lua_State* L, new_table nt)
        : base_t(L, std::move(nt))
    {
    }
    template <bool b>
    basic_environment(lua_State* L, new_table t, const basic_reference<b>& fallback)
        : basic_environment(L, std::move(t))
    {
        stack_table mt(L, new_table(0, 1));
        mt.set(meta_function::index, fallback);
        this->set(metatable_key, mt);
        mt.pop();
    }

    basic_environment(env_t, const stack_reference& extraction_target)
        : base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1))
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<env_t>(this->lua_state(), -1, handler);
#endif // Safety
        lua_pop(this->lua_state(), 2);
    }
    template <bool b>
    basic_environment(env_t, const basic_reference<b>& extraction_target)
        : base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1))
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<env_t>(this->lua_state(), -1, handler);
#endif // Safety
        lua_pop(this->lua_state(), 2);
    }
    basic_environment(lua_State* L, int index = -1)
        : base_t(detail::no_safety, L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<basic_environment>(L, index, handler);
#endif // Safety
    }
    basic_environment(lua_State* L, ref_index index)
        : base_t(detail::no_safety, L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_environment>(L, -1, handler);
#endif // Safety
    }
    template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_environment>>, meta::neg<std::is_same<base_type, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_environment(T&& r) noexcept
        : base_t(detail::no_safety, std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        if (!is_environment<meta::unqualified_t<T>>::value) {
            auto pp = stack::push_pop(*this);
            constructor_handler handler{};
            stack::check<basic_environment>(lua_state(), -1, handler);
        }
#endif // Safety
    }
    template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_environment(lua_State* L, T&& r) noexcept
        : base_t(detail::no_safety, L, std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        if (!is_environment<meta::unqualified_t<T>>::value) {
            auto pp = stack::push_pop(*this);
            constructor_handler handler{};
            stack::check<basic_environment>(lua_state(), -1, handler);
        }
#endif // Safety
    }

    template <typename T>
    void set_on(const T& target) const
    {
        lua_State* L = target.lua_state();
        auto pp = stack::push_pop(target);
#if SOL_LUA_VERSION < 502
        // Use lua_setfenv
        this->push();
        lua_setfenv(L, -2);
#else
        // Use upvalues as explained in Lua 5.2 and beyond's manual
        this->push();
        const char* name = lua_setupvalue(L, -2, 1);
        if (name == nullptr) {
            this->pop();
        }
#endif
    }
};

template <typename T, typename E>
void set_environment(const basic_environment<E>& env, const T& target)
{
    env.set_on(target);
}

template <typename E = reference, typename T>
basic_environment<E> get_environment(const T& target)
{
    lua_State* L = target.lua_state();
    auto pp = stack::pop_n(L, stack::push_environment_of(target));
    return basic_environment<E>(L, -1);
}

struct this_environment {
    optional<environment> env;

    this_environment()
        : env(nullopt)
    {
    }
    this_environment(environment e)
        : env(std::move(e))
    {
    }
    this_environment(const this_environment&) = default;
    this_environment(this_environment&&) = default;
    this_environment& operator=(const this_environment&) = default;
    this_environment& operator=(this_environment&&) = default;

    explicit operator bool() const
    {
        return static_cast<bool>(env);
    }

    operator optional<environment>&()
    {
        return env;
    }

    operator const optional<environment>&() const
    {
        return env;
    }

    operator environment&()
    {
        return env.value();
    }

    operator const environment&() const
    {
        return env.value();
    }
};

namespace stack {
template <>
struct getter<env_t> {
    static environment get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        return get_environment(stack_reference(L, raw_index(index)));
    }
};

template <>
struct getter<this_environment> {
    static this_environment get(lua_State* L, int, record& tracking)
    {
        tracking.use(0);
        lua_Debug info;
        // Level 0 means current function (this C function, which may or may not be useful for us?)
        // Level 1 means next call frame up the stack. (Can be nothing if function called directly from C++ with lua_p/call)
        int pre_stack_size = lua_gettop(L);
        if (lua_getstack(L, 1, &info) != 1) {
            if (lua_getstack(L, 0, &info) != 1) {
                lua_settop(L, pre_stack_size);
                return this_environment();
            }
        }
        if (lua_getinfo(L, "f", &info) == 0) {
            lua_settop(L, pre_stack_size);
            return this_environment();
        }

        stack_reference f(L, -1);
        environment env(env_key, f);
        if (!env.valid()) {
            lua_settop(L, pre_stack_size);
            return this_environment();
        }
        return this_environment(std::move(env));
    }
};
} // namespace stack
} // namespace sol

// end of sol/environment.hpp

// beginning of sol/load_result.hpp

namespace sol {
struct load_result : public proxy_base<load_result> {
private:
    lua_State* L;
    int index;
    int returncount;
    int popcount;
    load_status err;

    template <typename T>
    decltype(auto) tagged_get(types<optional<T>>) const
    {
        if (!valid()) {
            return optional<T>(nullopt);
        }
        return stack::get<optional<T>>(L, index);
    }

    template <typename T>
    decltype(auto) tagged_get(types<T>) const
    {
#ifdef SOL_CHECK_ARGUMENTS
        if (!valid()) {
            type_panic_c_str(L, index, type_of(L, index), type::none, "");
        }
#endif // Check Argument Safety
        return stack::get<T>(L, index);
    }

    optional<error> tagged_get(types<optional<error>>) const
    {
        if (valid()) {
            return nullopt;
        }
        return error(detail::direct_error, stack::get<std::string>(L, index));
    }

    error tagged_get(types<error>) const
    {
#ifdef SOL_CHECK_ARGUMENTS
        if (valid()) {
            type_panic_c_str(L, index, type_of(L, index), type::none);
        }
#endif // Check Argument Safety
        return error(detail::direct_error, stack::get<std::string>(L, index));
    }

public:
    load_result() = default;
    load_result(lua_State* Ls, int stackindex = -1, int retnum = 0, int popnum = 0, load_status lerr = load_status::ok) noexcept
        : L(Ls),
          index(stackindex),
          returncount(retnum),
          popcount(popnum),
          err(lerr)
    {
    }
    load_result(const load_result&) = default;
    load_result& operator=(const load_result&) = default;
    load_result(load_result&& o) noexcept
        : L(o.L),
          index(o.index),
          returncount(o.returncount),
          popcount(o.popcount),
          err(o.err)
    {
        // Must be manual, otherwise destructor will screw us
        // return count being 0 is enough to keep things clean
        // but we will be thorough
        o.L = nullptr;
        o.index = 0;
        o.returncount = 0;
        o.popcount = 0;
        o.err = load_status::syntax;
    }
    load_result& operator=(load_result&& o) noexcept
    {
        L = o.L;
        index = o.index;
        returncount = o.returncount;
        popcount = o.popcount;
        err = o.err;
        // Must be manual, otherwise destructor will screw us
        // return count being 0 is enough to keep things clean
        // but we will be thorough
        o.L = nullptr;
        o.index = 0;
        o.returncount = 0;
        o.popcount = 0;
        o.err = load_status::syntax;
        return *this;
    }

    load_status status() const noexcept
    {
        return err;
    }

    bool valid() const noexcept
    {
        return status() == load_status::ok;
    }

    template <typename T>
    T get() const
    {
        return tagged_get(types<meta::unqualified_t<T>>());
    }

    template <typename... Ret, typename... Args>
    decltype(auto) call(Args&&... args)
    {
        return get<protected_function>().template call<Ret...>(std::forward<Args>(args)...);
    }

    template <typename... Args>
    decltype(auto) operator()(Args&&... args)
    {
        return call<>(std::forward<Args>(args)...);
    }

    lua_State* lua_state() const noexcept
    {
        return L;
    };
    int stack_index() const noexcept
    {
        return index;
    };

    ~load_result()
    {
        stack::remove(L, index, popcount);
    }
};
} // namespace sol

// end of sol/load_result.hpp

namespace sol {
enum class lib : char {
    // print, assert, and other base functions
    base,
    // require and other package functions
    package,
    // coroutine functions and utilities
    coroutine,
    // string library
    string,
    // functionality from the OS
    os,
    // all things math
    math,
    // the table manipulator and observer functions
    table,
    // the debug library
    debug,
    // the bit library: different based on which you're using
    bit32,
    // input/output library
    io,
    // LuaJIT only
    ffi,
    // LuaJIT only
    jit,
    // library for handling utf8: new to Lua
    utf8,
    // do not use
    count
};

inline std::size_t total_memory_used(lua_State* L)
{
    std::size_t kb = lua_gc(L, LUA_GCCOUNT, 0);
    kb *= 1024;
    kb += lua_gc(L, LUA_GCCOUNTB, 0);
    return kb;
}

inline protected_function_result script_pass_on_error(lua_State*, protected_function_result result)
{
    return result;
}

inline protected_function_result script_default_on_error(lua_State* L, protected_function_result pfr)
{
    type t = type_of(L, pfr.stack_index());
    std::string err = "sol: ";
    err += to_string(pfr.status());
    err += " error:";
    if (t == type::string) {
        err += " ";
        string_view serr = stack::get<string_view>(L, pfr.stack_index());
        err.append(serr.data(), serr.size());
    }
#ifdef SOL_NO_EXCEPTIONS
    // replacing information of stack error into pfr
    if (t != type::none) {
        lua_pop(L, 1);
    }
    stack::push(L, err);
#else
    // just throw our error
    throw error(detail::direct_error, err);
#endif
    return pfr;
}

class state_view {
private:
    lua_State* L;
    table reg;
    global_table global;

    optional<object> is_loaded_package(const std::string& key)
    {
        auto loaded = reg.traverse_get<optional<object>>("_LOADED", key);
        bool is53mod = loaded && !(loaded->is<bool>() && !loaded->as<bool>());
        if (is53mod)
            return loaded;
#if SOL_LUA_VERSION <= 501
        auto loaded51 = global.traverse_get<optional<object>>("package", "loaded", key);
        bool is51mod = loaded51 && !(loaded51->is<bool>() && !loaded51->as<bool>());
        if (is51mod)
            return loaded51;
#endif
        return nullopt;
    }

    template <typename T>
    void ensure_package(const std::string& key, T&& sr)
    {
#if SOL_LUA_VERSION <= 501
        auto pkg = global["package"];
        if (!pkg.valid()) {
            pkg = create_table_with("loaded", create_table_with(key, sr));
        }
        else {
            auto ld = pkg["loaded"];
            if (!ld.valid()) {
                ld = create_table_with(key, sr);
            }
            else {
                ld[key] = sr;
            }
        }
#endif
        auto loaded = reg["_LOADED"];
        if (!loaded.valid()) {
            loaded = create_table_with(key, sr);
        }
        else {
            loaded[key] = sr;
        }
    }

    template <typename Fx>
    object require_core(const std::string& key, Fx&& action, bool create_global = true)
    {
        optional<object> loaded = is_loaded_package(key);
        if (loaded && loaded->valid())
            return std::move(*loaded);
        action();
        stack_reference sr(L, -1);
        if (create_global)
            set(key, sr);
        ensure_package(key, sr);
        return stack::pop<object>(L);
    }

public:
    typedef global_table::iterator iterator;
    typedef global_table::const_iterator const_iterator;

    state_view(lua_State* Ls)
        : L(Ls)
        , reg(Ls, LUA_REGISTRYINDEX)
        , global(Ls, detail::global_)
    {
    }

    state_view(this_state Ls)
        : state_view(Ls.L)
    {
    }

    lua_State* lua_state() const
    {
        return L;
    }

    template <typename... Args>
    void open_libraries(Args&&... args)
    {
        static_assert(meta::all_same<lib, Args...>::value, "all types must be libraries");
        if (sizeof...(args) == 0) {
            luaL_openlibs(L);
            return;
        }

        lib libraries[1 + sizeof...(args)] = { lib::count, std::forward<Args>(args)... };

        for (auto&& library : libraries) {
            switch (library) {
#if SOL_LUA_VERSION <= 501 && defined(SOL_LUAJIT)
            case lib::coroutine:
#endif // luajit opens coroutine base stuff
            case lib::base:
                luaL_requiref(L, "base", luaopen_base, 1);
                lua_pop(L, 1);
                break;
            case lib::package:
                luaL_requiref(L, "package", luaopen_package, 1);
                lua_pop(L, 1);
                break;
#if !defined(SOL_LUAJIT)
            case lib::coroutine:
#if SOL_LUA_VERSION > 501
                luaL_requiref(L, "coroutine", luaopen_coroutine, 1);
                lua_pop(L, 1);
#endif // Lua 5.2+ only
                break;
#endif // Not LuaJIT - comes builtin
            case lib::string:
                luaL_requiref(L, "string", luaopen_string, 1);
                lua_pop(L, 1);
                break;
            case lib::table:
                luaL_requiref(L, "table", luaopen_table, 1);
                lua_pop(L, 1);
                break;
            case lib::math:
                luaL_requiref(L, "math", luaopen_math, 1);
                lua_pop(L, 1);
                break;
            case lib::bit32:
#ifdef SOL_LUAJIT
                luaL_requiref(L, "bit32", luaopen_bit, 1);
                lua_pop(L, 1);
#elif (SOL_LUA_VERSION == 502) || defined(LUA_COMPAT_BITLIB) || defined(LUA_COMPAT_5_2)
                luaL_requiref(L, "bit32", luaopen_bit32, 1);
                lua_pop(L, 1);
#else
#endif // Lua 5.2 only (deprecated in 5.3 (503)) (Can be turned on with Compat flags)
                break;
            case lib::io:
                luaL_requiref(L, "io", luaopen_io, 1);
                lua_pop(L, 1);
                break;
            case lib::os:
                luaL_requiref(L, "os", luaopen_os, 1);
                lua_pop(L, 1);
                break;
            case lib::debug:
                luaL_requiref(L, "debug", luaopen_debug, 1);
                lua_pop(L, 1);
                break;
            case lib::utf8:
#if SOL_LUA_VERSION > 502 && !defined(SOL_LUAJIT)
                luaL_requiref(L, "utf8", luaopen_utf8, 1);
                lua_pop(L, 1);
#endif // Lua 5.3+ only
                break;
            case lib::ffi:
#ifdef SOL_LUAJIT
                luaL_requiref(L, "ffi", luaopen_ffi, 1);
                lua_pop(L, 1);
#endif // LuaJIT only
                break;
            case lib::jit:
#ifdef SOL_LUAJIT
                luaL_requiref(L, "jit", luaopen_jit, 0);
                lua_pop(L, 1);
#endif // LuaJIT Only
                break;
            case lib::count:
            default:
                break;
            }
        }
    }

    object require(const std::string& key, lua_CFunction open_function, bool create_global = true)
    {
        luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0);
        return stack::pop<object>(L);
    }

    object require_script(const std::string& key, const string_view& code, bool create_global = true, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        auto action = [this, &code, &chunkname, &mode]() {
            stack::script(L, code, chunkname, mode);
        };
        return require_core(key, action, create_global);
    }

    object require_file(const std::string& key, const std::string& filename, bool create_global = true, load_mode mode = load_mode::any)
    {
        auto action = [this, &filename, &mode]() {
            stack::script_file(L, filename, mode);
        };
        return require_core(key, action, create_global);
    }

    template <typename E>
    protected_function_result do_string(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        detail::typical_chunk_name_t basechunkname = {};
        const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
        load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
        if (x != load_status::ok) {
            return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
        }
        stack_aligned_protected_function pf(L, -1);
        set_environment(env, pf);
        return pf();
    }

    template <typename E>
    protected_function_result do_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any)
    {
        load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
        if (x != load_status::ok) {
            return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
        }
        stack_aligned_protected_function pf(L, -1);
        set_environment(env, pf);
        return pf();
    }

    protected_function_result do_string(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        detail::typical_chunk_name_t basechunkname = {};
        const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
        load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
        if (x != load_status::ok) {
            return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
        }
        stack_aligned_protected_function pf(L, -1);
        return pf();
    }

    protected_function_result do_file(const std::string& filename, load_mode mode = load_mode::any)
    {
        load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
        if (x != load_status::ok) {
            return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x));
        }
        stack_aligned_protected_function pf(L, -1);
        return pf();
    }

    template <typename Fx, meta::disable<meta::is_specialization_of<basic_environment, meta::unqualified_t<Fx>>> = meta::enabler>
    protected_function_result safe_script(const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        protected_function_result pfr = do_string(code, chunkname, mode);
        if (!pfr.valid()) {
            return on_error(L, std::move(pfr));
        }
        return pfr;
    }

    template <typename Fx, typename E>
    protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        protected_function_result pfr = do_string(code, env, chunkname, mode);
        if (!pfr.valid()) {
            return on_error(L, std::move(pfr));
        }
        return pfr;
    }

    template <typename E>
    protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        return safe_script(code, env, script_default_on_error, chunkname, mode);
    }

    protected_function_result safe_script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        return safe_script(code, script_default_on_error, chunkname, mode);
    }

    template <typename Fx, meta::disable<meta::is_specialization_of<basic_environment, meta::unqualified_t<Fx>>> = meta::enabler>
    protected_function_result safe_script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any)
    {
        protected_function_result pfr = do_file(filename, mode);
        if (!pfr.valid()) {
            return on_error(L, std::move(pfr));
        }
        return pfr;
    }

    template <typename Fx, typename E>
    protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any)
    {
        protected_function_result pfr = do_file(filename, env, mode);
        if (!pfr.valid()) {
            return on_error(L, std::move(pfr));
        }
        return pfr;
    }

    template <typename E>
    protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any)
    {
        return safe_script_file(filename, env, script_default_on_error, mode);
    }

    protected_function_result safe_script_file(const std::string& filename, load_mode mode = load_mode::any)
    {
        return safe_script_file(filename, script_default_on_error, mode);
    }

    template <typename E>
    unsafe_function_result unsafe_script(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        detail::typical_chunk_name_t basechunkname = {};
        const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
        int index = lua_gettop(L);
        if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())) {
            lua_error(L);
        }
        set_environment(env, stack_reference(L, raw_index(index + 1)));
        if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
            lua_error(L);
        }
        int postindex = lua_gettop(L);
        int returns = postindex - index;
        return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
    }

    unsafe_function_result unsafe_script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        int index = lua_gettop(L);
        stack::script(L, code, chunkname, mode);
        int postindex = lua_gettop(L);
        int returns = postindex - index;
        return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
    }

    template <typename E>
    unsafe_function_result unsafe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any)
    {
        int index = lua_gettop(L);
        if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())) {
            lua_error(L);
        }
        set_environment(env, stack_reference(L, raw_index(index + 1)));
        if (lua_pcall(L, 0, LUA_MULTRET, 0)) {
            lua_error(L);
        }
        int postindex = lua_gettop(L);
        int returns = postindex - index;
        return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
    }

    unsafe_function_result unsafe_script_file(const std::string& filename, load_mode mode = load_mode::any)
    {
        int index = lua_gettop(L);
        stack::script_file(L, filename, mode);
        int postindex = lua_gettop(L);
        int returns = postindex - index;
        return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns);
    }

    template <typename Fx, meta::disable<meta::is_specialization_of<basic_environment, meta::unqualified_t<Fx>>> = meta::enabler>
    protected_function_result script(const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        return safe_script(code, std::forward<Fx>(on_error), chunkname, mode);
    }

    template <typename Fx, meta::disable<meta::is_specialization_of<basic_environment, meta::unqualified_t<Fx>>> = meta::enabler>
    protected_function_result script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any)
    {
        return safe_script_file(filename, std::forward<Fx>(on_error), mode);
    }

    template <typename Fx, typename E>
    protected_function_result script(const string_view& code, const basic_environment<E>& env, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        return safe_script(code, env, std::forward<Fx>(on_error), chunkname, mode);
    }

    template <typename Fx, typename E>
    protected_function_result script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any)
    {
        return safe_script_file(filename, env, std::forward<Fx>(on_error), mode);
    }

    protected_function_result script(const string_view& code, const environment& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        return safe_script(code, env, script_default_on_error, chunkname, mode);
    }

    protected_function_result script_file(const std::string& filename, const environment& env, load_mode mode = load_mode::any)
    {
        return safe_script_file(filename, env, script_default_on_error, mode);
    }

#ifdef SOL_SAFE_FUNCTION
    protected_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        return safe_script(code, chunkname, mode);
    }

    protected_function_result script_file(const std::string& filename, load_mode mode = load_mode::any)
    {
        return safe_script_file(filename, mode);
    }
#else
    unsafe_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        return unsafe_script(code, chunkname, mode);
    }

    unsafe_function_result script_file(const std::string& filename, load_mode mode = load_mode::any)
    {
        return unsafe_script_file(filename, mode);
    }
#endif
    load_result load(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        detail::typical_chunk_name_t basechunkname = {};
        const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
        load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()));
        return load_result(L, absolute_index(L, -1), 1, 1, x);
    }

    load_result load_buffer(const char* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        return load(string_view(buff, size), chunkname, mode);
    }

    load_result load_file(const std::string& filename, load_mode mode = load_mode::any)
    {
        load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()));
        return load_result(L, absolute_index(L, -1), 1, 1, x);
    }

    load_result load(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any)
    {
        detail::typical_chunk_name_t basechunkname = {};
        const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
        load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()));
        return load_result(L, absolute_index(L, -1), 1, 1, x);
    }

    iterator begin() const
    {
        return global.begin();
    }

    iterator end() const
    {
        return global.end();
    }

    const_iterator cbegin() const
    {
        return global.cbegin();
    }

    const_iterator cend() const
    {
        return global.cend();
    }

    global_table globals() const
    {
        return global;
    }

    table registry() const
    {
        return reg;
    }

    std::size_t memory_used() const
    {
        return total_memory_used(lua_state());
    }

    int stack_top() const
    {
        return stack::top(L);
    }

    void collect_garbage()
    {
        lua_gc(lua_state(), LUA_GCCOLLECT, 0);
    }

    operator lua_State*() const
    {
        return lua_state();
    }

    void set_panic(lua_CFunction panic)
    {
        lua_atpanic(L, panic);
    }

    template <typename... Args, typename... Keys>
    decltype(auto) get(Keys&&... keys) const
    {
        return global.get<Args...>(std::forward<Keys>(keys)...);
    }

    template <typename T, typename Key>
    decltype(auto) get_or(Key&& key, T&& otherwise) const
    {
        return global.get_or(std::forward<Key>(key), std::forward<T>(otherwise));
    }

    template <typename T, typename Key, typename D>
    decltype(auto) get_or(Key&& key, D&& otherwise) const
    {
        return global.get_or<T>(std::forward<Key>(key), std::forward<D>(otherwise));
    }

    template <typename... Args>
    state_view& set(Args&&... args)
    {
        global.set(std::forward<Args>(args)...);
        return *this;
    }

    template <typename T, typename... Keys>
    decltype(auto) traverse_get(Keys&&... keys) const
    {
        return global.traverse_get<T>(std::forward<Keys>(keys)...);
    }

    template <typename... Args>
    state_view& traverse_set(Args&&... args)
    {
        global.traverse_set(std::forward<Args>(args)...);
        return *this;
    }

    template <typename T>
    state_view& set_usertype(usertype<T>& user)
    {
        return set_usertype(usertype_traits<T>::name(), user);
    }

    template <typename Key, typename T>
    state_view& set_usertype(Key&& key, usertype<T>& user)
    {
        global.set_usertype(std::forward<Key>(key), user);
        return *this;
    }

    template <typename Class, typename... Args>
    state_view& new_usertype(const std::string& name, Args&&... args)
    {
        global.new_usertype<Class>(name, std::forward<Args>(args)...);
        return *this;
    }

    template <typename Class, typename CTor0, typename... CTor, typename... Args>
    state_view& new_usertype(const std::string& name, Args&&... args)
    {
        global.new_usertype<Class, CTor0, CTor...>(name, std::forward<Args>(args)...);
        return *this;
    }

    template <typename Class, typename... CArgs, typename... Args>
    state_view& new_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args)
    {
        global.new_usertype<Class>(name, ctor, std::forward<Args>(args)...);
        return *this;
    }

    template <typename Class, typename... Args>
    state_view& new_simple_usertype(const std::string& name, Args&&... args)
    {
        global.new_simple_usertype<Class>(name, std::forward<Args>(args)...);
        return *this;
    }

    template <typename Class, typename CTor0, typename... CTor, typename... Args>
    state_view& new_simple_usertype(const std::string& name, Args&&... args)
    {
        global.new_simple_usertype<Class, CTor0, CTor...>(name, std::forward<Args>(args)...);
        return *this;
    }

    template <typename Class, typename... CArgs, typename... Args>
    state_view& new_simple_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args)
    {
        global.new_simple_usertype<Class>(name, ctor, std::forward<Args>(args)...);
        return *this;
    }

    template <typename Class, typename... Args>
    simple_usertype<Class> create_simple_usertype(Args&&... args)
    {
        return global.create_simple_usertype<Class>(std::forward<Args>(args)...);
    }

    template <typename Class, typename CTor0, typename... CTor, typename... Args>
    simple_usertype<Class> create_simple_usertype(Args&&... args)
    {
        return global.create_simple_usertype<Class, CTor0, CTor...>(std::forward<Args>(args)...);
    }

    template <typename Class, typename... CArgs, typename... Args>
    simple_usertype<Class> create_simple_usertype(constructors<CArgs...> ctor, Args&&... args)
    {
        return global.create_simple_usertype<Class>(ctor, std::forward<Args>(args)...);
    }

    template <bool read_only = true, typename... Args>
    state_view& new_enum(const std::string& name, Args&&... args)
    {
        global.new_enum<read_only>(name, std::forward<Args>(args)...);
        return *this;
    }

    template <typename T, bool read_only = true>
    state_view& new_enum(const std::string& name, std::initializer_list<std::pair<string_view, T>> items)
    {
        global.new_enum<T, read_only>(name, std::move(items));
        return *this;
    }

    template <typename Fx>
    void for_each(Fx&& fx)
    {
        global.for_each(std::forward<Fx>(fx));
    }

    template <typename T>
    proxy<global_table&, T> operator[](T&& key)
    {
        return global[std::forward<T>(key)];
    }

    template <typename T>
    proxy<const global_table&, T> operator[](T&& key) const
    {
        return global[std::forward<T>(key)];
    }

    template <typename Sig, typename... Args, typename Key>
    state_view& set_function(Key&& key, Args&&... args)
    {
        global.set_function<Sig>(std::forward<Key>(key), std::forward<Args>(args)...);
        return *this;
    }

    template <typename... Args, typename Key>
    state_view& set_function(Key&& key, Args&&... args)
    {
        global.set_function(std::forward<Key>(key), std::forward<Args>(args)...);
        return *this;
    }

    template <typename Name>
    table create_table(Name&& name, int narr = 0, int nrec = 0)
    {
        return global.create(std::forward<Name>(name), narr, nrec);
    }

    template <typename Name, typename Key, typename Value, typename... Args>
    table create_table(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args)
    {
        return global.create(std::forward<Name>(name), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
    }

    template <typename Name, typename... Args>
    table create_named_table(Name&& name, Args&&... args)
    {
        table x = global.create_with(std::forward<Args>(args)...);
        global.set(std::forward<Name>(name), x);
        return x;
    }

    table create_table(int narr = 0, int nrec = 0)
    {
        return create_table(lua_state(), narr, nrec);
    }

    template <typename Key, typename Value, typename... Args>
    table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args)
    {
        return create_table(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
    }

    template <typename... Args>
    table create_table_with(Args&&... args)
    {
        return create_table_with(lua_state(), std::forward<Args>(args)...);
    }

    static inline table create_table(lua_State* L, int narr = 0, int nrec = 0)
    {
        return global_table::create(L, narr, nrec);
    }

    template <typename Key, typename Value, typename... Args>
    static inline table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args)
    {
        return global_table::create(L, narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...);
    }

    template <typename... Args>
    static inline table create_table_with(lua_State* L, Args&&... args)
    {
        return global_table::create_with(L, std::forward<Args>(args)...);
    }
};
} // namespace sol

// end of sol/state_view.hpp

// beginning of sol/thread.hpp

namespace sol {
struct lua_thread_state {
    lua_State* L;

    lua_thread_state(lua_State* Ls)
        : L(Ls)
    {
    }

    lua_State* lua_state() const noexcept
    {
        return L;
    }
    operator lua_State*() const noexcept
    {
        return lua_state();
    }
    lua_State* operator->() const noexcept
    {
        return lua_state();
    }
};

namespace stack {
template <>
struct pusher<lua_thread_state> {
    int push(lua_State*, lua_thread_state lts)
    {
        lua_pushthread(lts.L);
        return 1;
    }
};

template <>
struct getter<lua_thread_state> {
    lua_thread_state get(lua_State* L, int index, record& tracking)
    {
        tracking.use(1);
        lua_thread_state lts(lua_tothread(L, index));
        return lts;
    }
};

template <>
struct check_getter<lua_thread_state> {
    template <typename Handler>
    optional<lua_thread_state> get(lua_State* L, int index, Handler&& handler, record& tracking)
    {
        lua_thread_state lts(lua_tothread(L, index));
        if (lts.lua_state() == nullptr) {
            handler(L, index, type::thread, type_of(L, index), "value is not a valid thread type");
            return nullopt;
        }
        tracking.use(1);
        return lts;
    }
};

inline void register_main_thread(lua_State* L)
{
#if SOL_LUA_VERSION < 502
    if (L == nullptr) {
        lua_pushnil(L);
        lua_setglobal(L, detail::default_main_thread_name());
        return;
    }
    lua_pushthread(L);
    lua_setglobal(L, detail::default_main_thread_name());
#else
    (void)L;
#endif
}
} // namespace stack

template <typename base_t>
class basic_thread : public base_t {
public:
    using base_t::lua_state;

    basic_thread() noexcept = default;
    basic_thread(const basic_thread&) = default;
    basic_thread(basic_thread&&) = default;
    template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_thread>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_thread(T&& r)
        : base_t(std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
    }
    basic_thread(const stack_reference& r)
        : basic_thread(r.lua_state(), r.stack_index()){};
    basic_thread(stack_reference&& r)
        : basic_thread(r.lua_state(), r.stack_index()){};
    basic_thread& operator=(const basic_thread&) = default;
    basic_thread& operator=(basic_thread&&) = default;
    template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_thread(lua_State* L, T&& r)
        : base_t(L, std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
    }
    basic_thread(lua_State* L, int index = -1)
        : base_t(L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<basic_thread>(L, index, handler);
#endif // Safety
    }
    basic_thread(lua_State* L, ref_index index)
        : base_t(L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
    }
    basic_thread(lua_State* L, lua_State* actualthread)
        : basic_thread(L, lua_thread_state{ actualthread })
    {
    }
    basic_thread(lua_State* L, this_state actualthread)
        : basic_thread(L, lua_thread_state{ actualthread.L })
    {
    }
    basic_thread(lua_State* L, lua_thread_state actualthread)
        : base_t(L, -stack::push(L, actualthread))
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<basic_thread>(lua_state(), -1, handler);
#endif // Safety
        if (!is_stack_based<base_t>::value) {
            lua_pop(lua_state(), 1);
        }
    }

    state_view state() const
    {
        return state_view(this->thread_state());
    }

    bool is_main_thread() const
    {
        int ismainthread = lua_pushthread(this->thread_state());
        lua_pop(this->thread_state(), 1);
        return ismainthread == 1;
    }

    lua_State* thread_state() const
    {
        auto pp = stack::push_pop(*this);
        lua_State* lthread = lua_tothread(lua_state(), -1);
        return lthread;
    }

    thread_status status() const
    {
        lua_State* lthread = thread_state();
        thread_status lstat = static_cast<thread_status>(lua_status(lthread));
        if (lstat != thread_status::ok && lua_gettop(lthread) == 0) {
            // No thing on the basic_thread's stack means its dead
            return thread_status::dead;
        }
        return lstat;
    }

    basic_thread create()
    {
        return create(lua_state());
    }

    static basic_thread create(lua_State* L)
    {
        lua_newthread(L);
        basic_thread result(L);
        if (!is_stack_based<base_t>::value) {
            lua_pop(L, 1);
        }
        return result;
    }
};

typedef basic_thread<reference> thread;
typedef basic_thread<stack_reference> stack_thread;
} // namespace sol

// end of sol/thread.hpp

namespace sol {

namespace detail {
inline int default_at_panic(lua_State* L)
{
#ifdef SOL_NO_EXCEPTIONS
    (void)L;
    return -1;
#else
    size_t messagesize;
    const char* message = lua_tolstring(L, -1, &messagesize);
    if (message) {
        std::string err(message, messagesize);
        lua_settop(L, 0);
        throw error(err);
    }
    lua_settop(L, 0);
    throw error(std::string("An unexpected error occurred and forced the lua state to call atpanic"));
#endif
}

inline int default_traceback_error_handler(lua_State* L)
{
    using namespace sol;
    std::string msg = "An unknown error has triggered the default error handler";
    optional<string_view> maybetopmsg = stack::check_get<string_view>(L, 1);
    if (maybetopmsg) {
        const string_view& topmsg = maybetopmsg.value();
        msg.assign(topmsg.data(), topmsg.size());
    }
    luaL_traceback(L, L, msg.c_str(), 1);
    optional<string_view> maybetraceback = stack::check_get<string_view>(L, -1);
    if (maybetraceback) {
        const string_view& traceback = maybetraceback.value();
        msg.assign(traceback.data(), traceback.size());
    }
    return stack::push(L, msg);
}
} // namespace detail

class state : private std::unique_ptr<lua_State, void (*)(lua_State*)>, public state_view {
private:
    typedef std::unique_ptr<lua_State, void (*)(lua_State*)> unique_base;

public:
    state(lua_CFunction panic = detail::default_at_panic)
        : unique_base(luaL_newstate(), lua_close)
        , state_view(unique_base::get())
    {
        set_panic(panic);
        lua_CFunction f = c_call<decltype(&detail::default_traceback_error_handler), &detail::default_traceback_error_handler>;
        protected_function::set_default_handler(object(lua_state(), in_place, f));
        stack::register_main_thread(unique_base::get());
        stack::luajit_exception_handler(unique_base::get());
    }

    state(lua_CFunction panic, lua_Alloc alfunc, void* alpointer = nullptr)
        : unique_base(lua_newstate(alfunc, alpointer), lua_close)
        , state_view(unique_base::get())
    {
        set_panic(panic);
        lua_CFunction f = c_call<decltype(&detail::default_traceback_error_handler), &detail::default_traceback_error_handler>;
        protected_function::set_default_handler(object(lua_state(), in_place, f));
        stack::register_main_thread(unique_base::get());
        stack::luajit_exception_handler(unique_base::get());
    }

    state(const state&) = delete;
    state(state&&) = default;
    state& operator=(const state&) = delete;
    state& operator=(state&& that)
    {
        state_view::operator=(std::move(that));
        unique_base::operator=(std::move(that));
        return *this;
    }

    using state_view::get;

    ~state()
    {
    }
};
} // namespace sol

// end of sol/state.hpp

// beginning of sol/coroutine.hpp

namespace sol {
template <typename base_t>
class basic_coroutine : public base_t {
private:
    call_status stats = call_status::yielded;

    void luacall(std::ptrdiff_t argcount, std::ptrdiff_t)
    {
        stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount)));
    }

    template <std::size_t... I, typename... Ret>
    auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n)
    {
        luacall(n, sizeof...(Ret));
        return stack::pop<std::tuple<Ret...>>(lua_state());
    }

    template <std::size_t I, typename Ret>
    Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n)
    {
        luacall(n, 1);
        return stack::pop<Ret>(lua_state());
    }

    template <std::size_t I>
    void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n)
    {
        luacall(n, 0);
    }

    protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n)
    {
        int stacksize = lua_gettop(lua_state());
        int firstreturn = (std::max)(1, stacksize - static_cast<int>(n));
        luacall(n, LUA_MULTRET);
        int poststacksize = lua_gettop(lua_state());
        int returncount = poststacksize - (firstreturn - 1);
        if (error()) {
            return protected_function_result(lua_state(), lua_absindex(lua_state(), -1), 1, returncount, status());
        }
        return protected_function_result(lua_state(), firstreturn, returncount, returncount, status());
    }

public:
    using base_t::lua_state;

    basic_coroutine() noexcept = default;
    basic_coroutine(const basic_coroutine&) noexcept = default;
    basic_coroutine(basic_coroutine&&) noexcept = default;
    basic_coroutine& operator=(const basic_coroutine&) noexcept = default;
    basic_coroutine& operator=(basic_coroutine&&) noexcept = default;
    template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_coroutine>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_coroutine(T&& r)
        : base_t(std::forward<T>(r))
    {
    }
    basic_coroutine(lua_nil_t r)
        : base_t(r)
    {
    }
    basic_coroutine(const stack_reference& r) noexcept
        : basic_coroutine(r.lua_state(), r.stack_index())
    {
    }
    basic_coroutine(stack_reference&& r) noexcept
        : basic_coroutine(r.lua_state(), r.stack_index())
    {
    }
    template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler>
    basic_coroutine(lua_State* L, T&& r)
        : base_t(L, std::forward<T>(r))
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_coroutine>(lua_state(), -1, handler);
#endif // Safety
    }
    basic_coroutine(lua_State* L, int index = -1)
        : base_t(L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        constructor_handler handler{};
        stack::check<basic_coroutine>(lua_state(), index, handler);
#endif // Safety
    }
    basic_coroutine(lua_State* L, ref_index index)
        : base_t(L, index)
    {
#ifdef SOL_CHECK_ARGUMENTS
        auto pp = stack::push_pop(*this);
        constructor_handler handler{};
        stack::check<basic_coroutine>(lua_state(), -1, handler);
#endif // Safety
    }

    call_status status() const noexcept
    {
        return stats;
    }

    bool error() const noexcept
    {
        call_status cs = status();
        return cs != call_status::ok && cs != call_status::yielded;
    }

    bool runnable() const noexcept
    {
        return base_t::valid()
            && (status() == call_status::yielded);
    }

    explicit operator bool() const noexcept
    {
        return runnable();
    }

    template <typename... Args>
    protected_function_result operator()(Args&&... args)
    {
        return call<>(std::forward<Args>(args)...);
    }

    template <typename... Ret, typename... Args>
    decltype(auto) operator()(types<Ret...>, Args&&... args)
    {
        return call<Ret...>(std::forward<Args>(args)...);
    }

    template <typename... Ret, typename... Args>
    decltype(auto) call(Args&&... args)
    {
        base_t::push();
        int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...);
        return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount);
    }
};
} // namespace sol

// end of sol/coroutine.hpp

// beginning of sol/variadic_results.hpp

// beginning of sol/as_returns.hpp

namespace sol {
template <typename T>
struct as_returns_t {
    T src;
};

template <typename Source>
auto as_returns(Source&& source)
{
    return as_returns_t<std::decay_t<Source>>{ std::forward<Source>(source) };
}

namespace stack {
template <typename T>
struct pusher<as_returns_t<T>> {
    int push(lua_State* L, const as_returns_t<T>& e)
    {
        auto& src = detail::unwrap(e.src);
        int p = 0;
        for (const auto& i : src) {
            p += stack::push(L, i);
        }
        return p;
    }
};
} // namespace stack
} // namespace sol

// end of sol/as_returns.hpp

namespace sol {

struct variadic_results : public std::vector<object> {
    using std::vector<object>::vector;
};

namespace stack {
template <>
struct pusher<variadic_results> {
    int push(lua_State* L, const variadic_results& e)
    {
        int p = 0;
        for (const auto& i : e) {
            p += stack::push(L, i);
        }
        return p;
    }
};
} // namespace stack

} // namespace sol

// end of sol/variadic_results.hpp

#ifdef __GNUC__
#pragma GCC diagnostic pop
#elif defined _MSC_VER
#pragma warning(push)
#endif // g++

#ifdef SOL_INSIDE_UNREAL
#ifdef SOL_INSIDE_UNREAL_REMOVED_CHECK
#if DO_CHECK
#define check(expr)                                                    \
    {                                                                  \
        if (UNLIKELY(!(expr))) {                                       \
            FDebug::LogAssertFailedMessage(#expr, __FILE__, __LINE__); \
            _DebugBreakAndPromptForRemote();                           \
            FDebug::AssertFailed(#expr, __FILE__, __LINE__);           \
            CA_ASSUME(false);                                          \
        }                                                              \
    }
#else
#define check(expr)      \
    {                    \
        CA_ASSUME(expr); \
    }
#endif
#endif
#endif // Unreal Engine 4 Bullshit

#endif // SOL_HPP
// end of sol.hpp

#endif // SOL_SINGLE_INCLUDE_HPP
back to top