\name{modpower} \alias{modpower} \alias{modorder} \title{ Power Function modulo m } \description{ Calculates powers and orders modulo \code{m}. } \usage{ modpower(n, k, m) modorder(n, m) } \arguments{ \item{n, k, m}{Natural numbers, \code{m >= 1}.} } \details{ \code{modpower} calculates \code{n} to the power of \code{k} modulo \code{m}. \code{modorder} calculates the order of \code{n} in the multiplicative group module \code{m}. \code{n} and \code{m} must be coprime. Uses brute force, trick to use binary expansion and square is not more efficient in an R implementation. } \value{ Natural number. } \note{ This function is \emph{not} vectorized. } \seealso{ \code{\link{primroot}} } \examples{ modpower(2, 100, 7) #=> 2 modpower(3, 100, 7) #=> 4 modorder(7, 17) #=> 16, i.e. 7 is a primitive root mod 17 #Gauss' table of primitive roots modulo prime numbers < 100 proots <- c(2, 2, 3, 2, 2, 6, 5, 10, 10, 10, 2, 2, 10, 17, 5, 5, 6, 28, 10, 10, 26, 10, 10, 5, 12, 62, 5, 29, 11, 50, 30, 10) P <- primes(100) for (i in seq(along=P)) { cat(P[i], "\t", modorder(proots[i], P[i]), proots[i], "\t", "\n") } } \keyword{ math }