Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:84c16bce1ef2c2821247b4d3597e150729bd7139

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
#!/usr/bin/env python3

"""
@ Lina Teichmann

    INPUTS: 
    call from command line with following inputs: 
        -bids_dir

    OUTPUTS:
    Plots the ERFs of the repeat trials.

    NOTES:
    If it doesn't exist, the script makes a figures folder in the BIDS derivatives folder
  
"""

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
import mne, os
import pandas as pd 
import seaborn as sns


#*****************************#
### PARAMETERS ###
#*****************************#
n_participants              = 4
n_sessions                  = 12
n_images                    = 200
channel_picks               = ['O','T','P']
title_names                 = ['Occipital','Temporal','Parietal']
colors                      = ['mediumseagreen','steelblue','goldenrod','indianred','grey']
plt.rcParams['font.size']   = '16'
plt.rcParams['font.family'] = 'Helvetica'

#*****************************#
### HELPER FUNCTIONS ###
#*****************************#
def load_epochs(preproc_dir,all_epochs = []):
    for p in range(1,n_participants+1):
        epochs = mne.read_epochs(f'{preproc_dir}/preprocessed_P{str(p)}-epo.fif', preload=False)
        all_epochs.append(epochs)
    return all_epochs

# helper function 
def plot_erfs(epochs,n_sessions,name,color,ax,ax2,lab):
    ctf_layout = mne.find_layout(epochs.info)
    picks_epochs = [epochs.ch_names[i] for i in np.where([s[2]==name for s in epochs.ch_names])[0]]
    picks = np.where([i[2]==name for i in ctf_layout.names])[0]

    # get evoked data
    for s in range(n_sessions):    
        evoked = epochs[(epochs.metadata['trial_type']=='test') & (epochs.metadata['session_nr']==s+1)].average()
        evoked.pick_channels(ch_names=picks_epochs)
        ax.plot(epochs.times*1000,np.mean(evoked.data.T,axis=1),color=color,lw=0.5,alpha=0.4)
    evoked = epochs[(epochs.metadata['trial_type']=='test')].average()
    evoked.pick_channels(ch_names=picks_epochs)

    # plot ERFs for selected sensor group
    ax.plot(epochs.times*1000,np.mean(evoked.data.T,axis=1),color=color,lw=1,label=lab)
    ax.set_xlim([epochs.times[0]*1000,epochs.times[len(epochs.times)-1]*1000])
    ax.set_ylim([-0.6,0.6])
    ax.spines['right'].set_visible(False)
    ax.spines['top'].set_visible(False)

    #  plot sensor locations
    ax2.plot(ctf_layout.pos[:,0],ctf_layout.pos[:,1],color='gainsboro',marker='.',linestyle='',markersize=5)
    ax2.plot(ctf_layout.pos[picks,0],ctf_layout.pos[picks,1],color='grey',marker='.',linestyle='',markersize=5)
    ax2.set_aspect('equal')
    plt.axis('off')

#  Make the ERF plot
def make_figure(all_epochs,fig_dir):
    fig = plt.figure(num=1,tight_layout=True,figsize = (11,6))
    gs = GridSpec(3, 5, figure=fig)
    for i,ch in enumerate(channel_picks):
        for p in range(n_participants):
            ax = fig.add_subplot(gs[i, p])
            if i == 0:
                ax.set_title('M' + str(p+1))
            if i == 2:
                ax.set_xlabel('time (ms)')
            else: 
                plt.setp(ax.get_xticklabels(), visible=False)
            if p == 0:
                ax.set_ylabel('fT')
            else: 
                plt.setp(ax.get_yticklabels(), visible=False)

            ax2=fig.add_subplot(gs[i, -1])
        
            plot_erfs(all_epochs[p],12,ch,colors[p],ax,ax2,'Sub' + str(p+1))
        ax2.set_title(title_names[i])
    plt.savefig(f'{fig_dir}/data_quality-ERFs.pdf',dpi=1000)


#*****************************#
### COMMAND LINE INPUTS ###
#*****************************#
if __name__=='__main__':
    import argparse
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "-bids_dir",
        required=True,
        help='path to bids root',
    )

    args = parser.parse_args()
    bids_dir                    = args.bids_dir
    preproc_dir                 = f'{bids_dir}/derivatives/preprocessed/'
    sourcedata_dir              = f'{bids_dir}/sourcedata/'
    fig_dir                      = f'{bids_dir}/derivatives/figures/'
    if not os.path.exists(fig_dir):
        os.makedirs(fig_dir)

    ####### Run ########
    all_epochs = load_epochs(preproc_dir)
    make_figure(all_epochs,fig_dir)

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API