.runThisTest <- Sys.getenv("RunAllbayestestRTests") == "yes" if (.runThisTest) { if (require("rstanarm") && require("bayestestR") && require("httr") && require("insight")) { test_that("rstanarm", { skip_on_cran() set.seed(333) model <- insight::download_model("stanreg_lm_1") expect_equal(rope_range(model)[1], -0.602, tol = 0.1) model <- insight::download_model("stanreg_meanfield_lm_1") expect_equal(rope_range(model)[1], -0.602, tol = 0.1) model <- insight::download_model("stanreg_fullrank_lm_1") expect_equal(rope_range(model)[1], -0.602, tol = 0.1) model <- insight::download_model("stanreg_lmerMod_1") expect_equal(rope_range(model)[1], -0.097, tol = 0.1) model <- insight::download_model("stanreg_glm_1") expect_equal(rope_range(model)[1], -0.18, tol = 0.1) model <- insight::download_model("stanreg_merMod_1") expect_equal(rope_range(model)[1], -0.18, tol = 0.1) model <- insight::download_model("stanreg_gamm4_1") expect_equal(rope_range(model)[1], -0.043, tol = 0.1) model <- insight::download_model("stanreg_gam_1") params <- describe_posterior(model, centrality = "all", test = "all", dispersion = TRUE) expect_equal(c(nrow(params), ncol(params)), c(4, 22)) expect_is(hdi(model), "data.frame") expect_is(ci(model), "data.frame") expect_is(rope(model), "data.frame") # expect_true("equivalence_test" %in% class(equivalence_test(model))) expect_is(map_estimate(model), "data.frame") expect_is(p_map(model), "data.frame") expect_is(mhdior(model), "data.frame") expect_is(p_direction(model), "data.frame") # expect_error(equivalence_test(model, range = c(.1, .3, .5))) # print(equivalence_test(model, ci = c(.1, .3, .5))) }) test_that("rstanarm", { skip_on_cran() set.seed(333) model <- insight::download_model("stanreg_glm_3") out <- describe_posterior(model, effects = "all", components = "all", centrality = "mean") s <- summary(model) expect_identical(colnames(out), c( "Parameter", "Mean", "CI", "CI_low", "CI_high", "pd", "ROPE_CI", "ROPE_low", "ROPE_high", "ROPE_Percentage", "Rhat", "ESS" )) expect_equal(s[1:4, 1, drop = TRUE], out$Mean, check.attributes = FALSE, tolerance = 1e-3) expect_equal(s[1:4, 8, drop = TRUE], out$Rhat, check.attributes = FALSE, tolerance = 1e-1) }) test_that("rstanarm", { skip_on_cran() set.seed(333) model <- insight::download_model("stanreg_merMod_3") out <- describe_posterior(model, effects = "all", components = "all", centrality = "mean") s <- summary(model) expect_identical(colnames(out), c( "Parameter", "Effects", "Mean", "CI", "CI_low", "CI_high", "pd", "ROPE_CI", "ROPE_low", "ROPE_high", "ROPE_Percentage", "Rhat", "ESS" )) expect_equal(s[1:8, 1, drop = TRUE], out$Mean, check.attributes = FALSE, tolerance = 1e-3) expect_equal(s[1:8, 8, drop = TRUE], out$Rhat, check.attributes = FALSE, tolerance = 1e-1) }) test_that("rstanarm", { skip_on_cran() set.seed(333) model <- insight::download_model("stanmvreg_1") out <- describe_posterior(model, effects = "fixed", components = "all", centrality = "mean", test = NULL) s <- summary(model) expect_identical(colnames(out), c( "Parameter", "Response", "Mean", "CI", "CI_low", "CI_high", "Rhat", "ESS" )) expect_equal(s[c(1:2, 5:7), 1, drop = TRUE], out$Mean, check.attributes = FALSE, tolerance = 1e-3) expect_equal(s[c(1:2, 5:7), 10, drop = TRUE], out$Rhat, check.attributes = FALSE, tolerance = 1e-1) }) test_that("rstanarm", { skip_on_cran() set.seed(333) model <- insight::download_model("stanmvreg_1") out <- describe_posterior(model, effects = "fixed", components = "all", centrality = "mean", test = NULL, priors = TRUE) expect_identical(colnames(out), c( "Parameter", "Response", "Mean", "CI", "CI_low", "CI_high", "Rhat", "ESS", "Prior_Distribution", "Prior_Location", "Prior_Scale" )) expect_equal(nrow(out), 5) }) } }