Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:85acc18891bad7fb5f7ae444105130f0277bb4c9

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/distribution.R
\name{distribution}
\alias{distribution}
\alias{distribution_normal}
\alias{distribution_binomial}
\alias{distribution_cauchy}
\alias{distribution_poisson}
\alias{distribution_student}
\alias{distribution_chisquared}
\alias{distribution_uniform}
\alias{distribution_beta}
\alias{distribution_tweedie}
\alias{distribution_gamma}
\alias{distribution_custom}
\alias{distribution_mixture_normal}
\alias{rnorm_perfect}
\title{Empirical Distributions}
\usage{
distribution(type = "normal", ...)

distribution_normal(n, mean = 0, sd = 1, random = FALSE, ...)

distribution_binomial(n, size = 1, prob = 0.5, random = FALSE, ...)

distribution_cauchy(n, location = 0, scale = 1, random = FALSE, ...)

distribution_poisson(n, lambda = 1, random = FALSE, ...)

distribution_student(n, df, ncp, random = FALSE, ...)

distribution_chisquared(n, df, ncp = 0, random = FALSE, ...)

distribution_uniform(n, min = 0, max = 1, random = FALSE, ...)

distribution_beta(n, shape1, shape2, ncp = 0, random = FALSE, ...)

distribution_tweedie(n, xi = NULL, mu, phi, power = NULL, random = FALSE, ...)

distribution_gamma(n, shape, scale = 1, random = FALSE, ...)

distribution_custom(n, type = "norm", ..., random = FALSE)

distribution_mixture_normal(n, mean = c(-3, 3), sd = 1, random = FALSE, ...)

rnorm_perfect(n, mean = 0, sd = 1)
}
\arguments{
\item{type}{Can be any of the names from base R's \link[stats]{Distributions}, like \code{"cauchy"}, \code{"pois"} or \code{"beta"}.}

\item{...}{Arguments passed to or from other methods.}

\item{n}{number of observations. If \code{length(n) > 1}, the length
    is taken to be the number required.}

\item{mean}{vector of means.}

\item{sd}{vector of standard deviations.}

\item{random}{Generate near-perfect or random (simple wrappers for the base R \code{r*} functions) distributions.}

\item{size}{number of trials (zero or more).}

\item{prob}{probability of success on each trial.}

\item{location}{location and scale parameters.}

\item{scale}{location and scale parameters.}

\item{lambda}{vector of (non-negative) means.}

\item{df}{degrees of freedom (\eqn{> 0}, maybe non-integer).  \code{df
      = Inf} is allowed.}

\item{ncp}{non-centrality parameter \eqn{\delta}{delta};
    currently except for \code{rt()}, only for \code{abs(ncp) <= 37.62}.
    If omitted, use the central t distribution.}

\item{min}{lower and upper limits of the distribution.  Must be finite.}

\item{max}{lower and upper limits of the distribution.  Must be finite.}

\item{shape1}{non-negative parameters of the Beta distribution.}

\item{shape2}{non-negative parameters of the Beta distribution.}

\item{xi}{the value of \eqn{\xi}{xi} such that the variance is 
	\eqn{\mbox{var}[Y]=\phi\mu^{\xi}}{var(Y) = phi * mu^xi}}

\item{mu}{the mean}

\item{phi}{the dispersion}

\item{power}{a synonym for \eqn{\xi}{xi}}

\item{shape}{shape and scale parameters.  Must be positive,
    \code{scale} strictly.}
}
\description{
Generate a sequence of n-quantiles, i.e., a sample of size \code{n} with a near-perfect distribution.
}
\examples{
library(bayestestR)
x <- distribution(n = 10)
plot(density(x))

x <- distribution(type = "gamma", n = 100, shape = 2)
plot(density(x))
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API