mo_kufs.py
from typing import Union
import tensorflow as tf
from ..features import (InducingPoints, MixedKernelSeparateMof, MixedKernelSharedMof, SeparateIndependentMof,
SharedIndependentMof)
from ..kernels import (Mok, SeparateIndependentMok, SeparateMixedMok, SharedIndependentMok)
from .dispatch import Kuf
@Kuf.register(InducingPoints, Mok, object)
def _Kuf(feature: InducingPoints, kernel: Mok, Xnew: tf.Tensor):
return kernel(feature.Z, Xnew, full=True, full_output_cov=True) # [M, P, N, P]
@Kuf.register(SharedIndependentMof, SharedIndependentMok, object)
def _Kuf(feature: SharedIndependentMof, kernel: SharedIndependentMok, Xnew: tf.Tensor):
return Kuf(feature.feature, kernel.kernel, Xnew) # [M, N]
@Kuf.register(SeparateIndependentMof, SharedIndependentMok, object)
def _Kuf(feature: SeparateIndependentMof, kernel: SharedIndependentMok, Xnew: tf.Tensor):
return tf.stack([Kuf(f, kernel.kernel, Xnew) for f in feature.features], axis=0) # [L, M, N]
@Kuf.register(SharedIndependentMof, SeparateIndependentMok, object)
def _Kuf(feature: SharedIndependentMof, kernel: SeparateIndependentMok, Xnew: tf.Tensor):
return tf.stack([Kuf(feature.feature, k, Xnew) for k in kernel.kernels], axis=0) # [L, M, N]
@Kuf.register(SeparateIndependentMof, SeparateIndependentMok, object)
def _Kuf(feature: SeparateIndependentMof, kernel: SeparateIndependentMok, Xnew: tf.Tensor):
Kufs = [Kuf(f, k, Xnew) for f, k in zip(feature.features, kernel.kernels)]
return tf.stack(Kufs, axis=0) # [L, M, N]
@Kuf.register((SeparateIndependentMof, SharedIndependentMof), SeparateMixedMok, object)
def _Kuf(feature: Union[SeparateIndependentMof, SharedIndependentMof], kernel: SeparateMixedMok, Xnew: tf.Tensor):
kuf_impl = Kuf.dispatch(type(feature), SeparateIndependentMok, object)
K = tf.transpose(kuf_impl(feature, kernel, Xnew), [1, 0, 2]) # [M, L, N]
return K[:, :, :, None] * tf.transpose(kernel.W)[None, :, None, :] # [M, L, N, P]
@Kuf.register(MixedKernelSharedMof, SeparateMixedMok, object)
def _Kuf(feature: MixedKernelSharedMof, kernel: SeparateIndependentMok, Xnew: tf.Tensor):
return tf.stack([Kuf(feature.feature, k, Xnew) for k in kernel.kernels], axis=0) # [L, M, N]
@Kuf.register(MixedKernelSeparateMof, SeparateMixedMok, object)
def _Kuf(feature, kernel, Xnew):
return tf.stack([Kuf(f, k, Xnew) for f, k in zip(feature.features, kernel.kernels)], axis=0) # [
# L, M, N]