# This file is a part of Julia. License is MIT: http://julialang.org/license ## integer arithmetic ## # The tuples and types that do not include 128 bit sizes are necessary to handle # certain issues on 32-bit machines, and also to simplify promotion rules, as # they are also used elsewhere where Int128/UInt128 support is separated out, # such as in hashing2.jl const BitSigned64_types = (Int8, Int16, Int32, Int64) const BitUnsigned64_types = (UInt8, UInt16, UInt32, UInt64) const BitInteger64_types = (BitSigned64_types..., BitUnsigned64_types...) const BitSigned_types = (BitSigned64_types..., Int128) const BitUnsigned_types = (BitUnsigned64_types..., UInt128) const BitInteger_types = (BitSigned_types..., BitUnsigned_types...) const BitSigned64 = Union{BitSigned64_types...} const BitUnsigned64 = Union{BitUnsigned64_types...} const BitInteger64 = Union{BitInteger64_types...} const BitSigned = Union{BitSigned_types...} const BitUnsigned = Union{BitUnsigned_types...} const BitInteger = Union{BitInteger_types...} const BitSigned64T = Union{Type{Int8}, Type{Int16}, Type{Int32}, Type{Int64}} const BitUnsigned64T = Union{Type{UInt8}, Type{UInt16}, Type{UInt32}, Type{UInt64}} ## integer comparisons ## <{T<:BitSigned}(x::T, y::T) = slt_int(x, y) -(x::BitInteger) = neg_int(x) -{T<:BitInteger}(x::T, y::T) = sub_int(x, y) +{T<:BitInteger}(x::T, y::T) = add_int(x, y) *{T<:BitInteger}(x::T, y::T) = mul_int(x, y) inv(x::Integer) = float(one(x)) / float(x) /{T<:Integer}(x::T, y::T) = float(x) / float(y) # skip promotion for system integer types /(x::BitInteger, y::BitInteger) = float(x) / float(y) """ isodd(x::Integer) -> Bool Returns `true` if `x` is odd (that is, not divisible by 2), and `false` otherwise. ```jldoctest julia> isodd(9) true julia> isodd(10) false ``` """ isodd(n::Integer) = rem(n, 2) != 0 """ iseven(x::Integer) -> Bool Returns `true` is `x` is even (that is, divisible by 2), and `false` otherwise. ```jldoctest julia> iseven(9) false julia> iseven(10) true ``` """ iseven(n::Integer) = !isodd(n) signbit(x::Integer) = x < 0 signbit(x::Unsigned) = false flipsign{T<:BitSigned}(x::T, y::T) = flipsign_int(x, y) flipsign(x::Signed, y::Signed) = convert(typeof(x), flipsign(promote_noncircular(x, y)...)) flipsign(x::Signed, y::Float16) = flipsign(x, bitcast(Int16, y)) flipsign(x::Signed, y::Float32) = flipsign(x, bitcast(Int32, y)) flipsign(x::Signed, y::Float64) = flipsign(x, bitcast(Int64, y)) flipsign(x::Signed, y::Real) = flipsign(x, -oftype(x, signbit(y))) copysign(x::Signed, y::Signed) = flipsign(x, x ⊻ y) copysign(x::Signed, y::Float16) = copysign(x, bitcast(Int16, y)) copysign(x::Signed, y::Float32) = copysign(x, bitcast(Int32, y)) copysign(x::Signed, y::Float64) = copysign(x, bitcast(Int64, y)) copysign(x::Signed, y::Real) = copysign(x, -oftype(x, signbit(y))) """ abs(x) The absolute value of `x`. When `abs` is applied to signed integers, overflow may occur, resulting in the return of a negative value. This overflow occurs only when `abs` is applied to the minimum representable value of a signed integer. That is, when `x == typemin(typeof(x))`, `abs(x) == x < 0`, not `-x` as might be expected. ```jldoctest julia> abs(-3) 3 julia> abs(1 + im) 1.4142135623730951 julia> abs(typemin(Int64)) -9223372036854775808 ``` """ function abs end abs(x::Unsigned) = x abs(x::Signed) = flipsign(x,x) ~(n::Integer) = -n-1 unsigned(x::Signed) = reinterpret(typeof(convert(Unsigned, zero(x))), x) unsigned(x::Bool) = convert(Unsigned, x) unsigned(x) = convert(Unsigned, x) signed(x::Unsigned) = reinterpret(typeof(convert(Signed, zero(x))), x) signed(x) = convert(Signed, x) div(x::Signed, y::Unsigned) = flipsign(signed(div(unsigned(abs(x)), y)), x) div(x::Unsigned, y::Signed) = unsigned(flipsign(signed(div(x, unsigned(abs(y)))), y)) rem(x::Signed, y::Unsigned) = flipsign(signed(rem(unsigned(abs(x)), y)), x) rem(x::Unsigned, y::Signed) = rem(x, unsigned(abs(y))) fld(x::Signed, y::Unsigned) = div(x, y) - (signbit(x) & (rem(x, y) != 0)) fld(x::Unsigned, y::Signed) = div(x, y) - (signbit(y) & (rem(x, y) != 0)) """ mod(x, y) rem(x, y, RoundDown) The reduction of `x` modulo `y`, or equivalently, the remainder of `x` after floored division by `y`, i.e. ```julia x - y*fld(x,y) ``` if computed without intermediate rounding. The result will have the same sign as `y`, and magnitude less than `abs(y)` (with some exceptions, see note below). !!! note When used with floating point values, the exact result may not be representable by the type, and so rounding error may occur. In particular, if the exact result is very close to `y`, then it may be rounded to `y`. ```jldoctest julia> mod(8, 3) 2 julia> mod(9, 3) 0 julia> mod(8.9, 3) 2.9000000000000004 julia> mod(eps(), 3) 2.220446049250313e-16 julia> mod(-eps(), 3) 3.0 ``` """ function mod{T<:Integer}(x::T, y::T) y == -1 && return T(0) # avoid potential overflow in fld return x - fld(x, y) * y end mod(x::Signed, y::Unsigned) = rem(y + unsigned(rem(x, y)), y) mod(x::Unsigned, y::Signed) = rem(y + signed(rem(x, y)), y) mod{T<:Unsigned}(x::T, y::T) = rem(x, y) cld(x::Signed, y::Unsigned) = div(x, y) + (!signbit(x) & (rem(x, y) != 0)) cld(x::Unsigned, y::Signed) = div(x, y) + (!signbit(y) & (rem(x, y) != 0)) # Don't promote integers for div/rem/mod since there is no danger of overflow, # while there is a substantial performance penalty to 64-bit promotion. div{T<:BitSigned64}(x::T, y::T) = checked_sdiv_int(x, y) rem{T<:BitSigned64}(x::T, y::T) = checked_srem_int(x, y) div{T<:BitUnsigned64}(x::T, y::T) = checked_udiv_int(x, y) rem{T<:BitUnsigned64}(x::T, y::T) = checked_urem_int(x, y) # fld(x,y) == div(x,y) - ((x>=0) != (y>=0) && rem(x,y) != 0 ? 1 : 0) fld{T<:Unsigned}(x::T, y::T) = div(x,y) function fld{T<:Integer}(x::T, y::T) d = div(x, y) return d - (signbit(x ⊻ y) & (d * y != x)) end # cld(x,y) = div(x,y) + ((x>0) == (y>0) && rem(x,y) != 0 ? 1 : 0) function cld{T<:Unsigned}(x::T, y::T) d = div(x, y) return d + (d * y != x) end function cld{T<:Integer}(x::T, y::T) d = div(x, y) return d + (((x > 0) == (y > 0)) & (d * y != x)) end ## integer bitwise operations ## (~)(x::BitInteger) = not_int(x) (&){T<:BitInteger}(x::T, y::T) = and_int(x, y) (|){T<:BitInteger}(x::T, y::T) = or_int(x, y) xor{T<:BitInteger}(x::T, y::T) = xor_int(x, y) bswap(x::Union{Int8, UInt8}) = x bswap(x::Union{Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128}) = bswap_int(x) """ count_ones(x::Integer) -> Integer Number of ones in the binary representation of `x`. ```jldoctest julia> count_ones(7) 3 ``` """ count_ones(x::BitInteger) = Int(ctpop_int(x)) """ leading_zeros(x::Integer) -> Integer Number of zeros leading the binary representation of `x`. ```jldoctest julia> leading_zeros(Int32(1)) 31 ``` """ leading_zeros(x::BitInteger) = Int(ctlz_int(x)) """ trailing_zeros(x::Integer) -> Integer Number of zeros trailing the binary representation of `x`. ```jldoctest julia> trailing_zeros(2) 1 ``` """ trailing_zeros(x::BitInteger) = Int(cttz_int(x)) """ count_zeros(x::Integer) -> Integer Number of zeros in the binary representation of `x`. ```jldoctest julia> count_zeros(Int32(2 ^ 16 - 1)) 16 ``` """ count_zeros( x::Integer) = count_ones(~x) """ leading_ones(x::Integer) -> Integer Number of ones leading the binary representation of `x`. ```jldoctest julia> leading_ones(UInt32(2 ^ 32 - 2)) 31 ``` """ leading_ones( x::Integer) = leading_zeros(~x) """ trailing_ones(x::Integer) -> Integer Number of ones trailing the binary representation of `x`. ```jldoctest julia> trailing_ones(3) 2 ``` """ trailing_ones(x::Integer) = trailing_zeros(~x) ## integer comparisons ## <{T<:BitUnsigned}(x::T, y::T) = ult_int(x, y) <={T<:BitSigned}(x::T, y::T) = sle_int(x, y) <={T<:BitUnsigned}(x::T, y::T) = ule_int(x, y) ==(x::Signed, y::Unsigned) = (x >= 0) & (unsigned(x) == y) ==(x::Unsigned, y::Signed ) = (y >= 0) & (x == unsigned(y)) <( x::Signed, y::Unsigned) = (x < 0) | (unsigned(x) < y) <( x::Unsigned, y::Signed ) = (y >= 0) & (x < unsigned(y)) <=(x::Signed, y::Unsigned) = (x < 0) | (unsigned(x) <= y) <=(x::Unsigned, y::Signed ) = (y >= 0) & (x <= unsigned(y)) ## integer shifts ## # unsigned shift counts always shift in the same direction >>(x::BitSigned, y::BitUnsigned) = ashr_int(x, y) >>(x::BitUnsigned, y::BitUnsigned) = lshr_int(x, y) <<(x::BitInteger, y::BitUnsigned) = shl_int(x, y) >>>(x::BitInteger, y::BitUnsigned) = lshr_int(x, y) # signed shift counts can shift in either direction # note: this early during bootstrap, `>=` is not yet available # note: we only define Int shift counts here; the generic case is handled later >>(x::BitInteger, y::Int) = select_value(0 <= y, x >> unsigned(y), x << unsigned(-y)) <<(x::BitInteger, y::Int) = select_value(0 <= y, x << unsigned(y), x >> unsigned(-y)) >>>(x::BitInteger, y::Int) = select_value(0 <= y, x >>> unsigned(y), x << unsigned(-y)) ## integer conversions ## for to in BitInteger_types, from in (BitInteger_types..., Bool) if !(to === from) if to.size < from.size if issubtype(to, Signed) if issubtype(from, Unsigned) @eval convert(::Type{$to}, x::($from)) = checked_trunc_sint($to, check_top_bit(x)) else @eval convert(::Type{$to}, x::($from)) = checked_trunc_sint($to, x) end else @eval convert(::Type{$to}, x::($from)) = checked_trunc_uint($to, x) end @eval rem(x::($from), ::Type{$to}) = trunc_int($to, x) elseif from.size < to.size || from === Bool if issubtype(from, Signed) if issubtype(to, Unsigned) @eval convert(::Type{$to}, x::($from)) = sext_int($to, check_top_bit(x)) else @eval convert(::Type{$to}, x::($from)) = sext_int($to, x) end @eval rem(x::($from), ::Type{$to}) = sext_int($to, x) else @eval convert(::Type{$to}, x::($from)) = zext_int($to, x) @eval rem(x::($from), ::Type{$to}) = convert($to, x) end else if !(issubtype(from, Signed) === issubtype(to, Signed)) # raise InexactError if x's top bit is set @eval convert(::Type{$to}, x::($from)) = bitcast($to, check_top_bit(x)) else @eval convert(::Type{$to}, x::($from)) = bitcast($to, x) end @eval rem(x::($from), ::Type{$to}) = bitcast($to, x) end end end # @doc isn't available when running in Core at this point. # Tuple syntax for documention two function signatures at the same time # doesn't work either at this point. isdefined(Main, :Base) && for fname in (:mod, :rem) @eval @doc """ rem(x::Integer, T::Type{<:Integer}) mod(x::Integer, T::Type{<:Integer}) %(x::Integer, T::Type{<:Integer}) Find `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable in `T`, and `y` is an integer in `[typemin(T),typemax(T)]`. ```jldoctest julia> 129 % Int8 -127 ``` """ -> $fname(x::Integer, T::Type{<:Integer}) end rem{T<:Integer}(x::T, ::Type{T}) = x rem(x::Integer, ::Type{Bool}) = ((x & 1) != 0) mod{T<:Integer}(x::Integer, ::Type{T}) = rem(x, T) unsafe_trunc{T<:Integer}(::Type{T}, x::Integer) = rem(x, T) for (Ts, Tu) in ((Int8, UInt8), (Int16, UInt16), (Int32, UInt32), (Int64, UInt64), (Int128, UInt128)) @eval convert(::Type{Signed}, x::$Tu) = convert($Ts, x) @eval convert(::Type{Unsigned}, x::$Ts) = convert($Tu, x) end convert(::Type{Signed}, x::Union{Float32, Float64, Bool}) = convert(Int, x) convert(::Type{Unsigned}, x::Union{Float32, Float64, Bool}) = convert(UInt, x) convert(::Type{Integer}, x::Integer) = x convert(::Type{Integer}, x::Real) = convert(Signed, x) round(x::Integer) = x trunc(x::Integer) = x floor(x::Integer) = x ceil(x::Integer) = x round{T<:Integer}(::Type{T}, x::Integer) = convert(T, x) trunc{T<:Integer}(::Type{T}, x::Integer) = convert(T, x) floor{T<:Integer}(::Type{T}, x::Integer) = convert(T, x) ceil{T<:Integer}(::Type{T}, x::Integer) = convert(T, x) ## integer construction ## macro int128_str(s) return parse(Int128, s) end macro uint128_str(s) return parse(UInt128, s) end macro big_str(s) n = tryparse(BigInt, s) !isnull(n) && return get(n) n = tryparse(BigFloat, s) !isnull(n) && return get(n) message = "invalid number format $s for BigInt or BigFloat" return :(throw(ArgumentError($message))) end ## integer promotions ## promote_rule(::Type{Int8}, ::Type{Int16}) = Int16 promote_rule(::Type{UInt8}, ::Type{UInt16}) = UInt16 promote_rule(::Type{Int32}, ::Type{<:Union{Int8,Int16}}) = Int32 promote_rule(::Type{UInt32}, ::Type{<:Union{UInt8,UInt16}}) = UInt32 promote_rule(::Type{Int64}, ::Type{<:Union{Int8,Int16,Int32}}) = Int64 promote_rule(::Type{UInt64}, ::Type{<:Union{UInt8,UInt16,UInt32}}) = UInt64 promote_rule(::Type{Int128}, ::Type{<:BitSigned64}) = Int128 promote_rule(::Type{UInt128}, ::Type{<:BitUnsigned64}) = UInt128 for T in BitSigned_types @eval promote_rule(::Type{<:Union{UInt8,UInt16}}, ::Type{$T}) = $(sizeof(T) < sizeof(Int) ? Int : T) end @eval promote_rule(::Type{UInt32}, ::Type{<:Union{Int8,Int16,Int32}}) = $(Core.sizeof(Int) == 8 ? Int : UInt) promote_rule(::Type{UInt32}, ::Type{Int64}) = Int64 promote_rule(::Type{UInt64}, ::Type{<:BitSigned64}) = UInt64 promote_rule(::Type{<:Union{UInt32, UInt64}}, ::Type{Int128}) = Int128 promote_rule(::Type{UInt128}, ::Type{<:BitSigned}) = UInt128 _default_type(::Type{Unsigned}) = UInt _default_type(::Union{Type{Integer},Type{Signed}}) = Int ## traits ## typemin(::Type{Int8 }) = Int8(-128) typemax(::Type{Int8 }) = Int8(127) typemin(::Type{UInt8 }) = UInt8(0) typemax(::Type{UInt8 }) = UInt8(255) typemin(::Type{Int16 }) = Int16(-32768) typemax(::Type{Int16 }) = Int16(32767) typemin(::Type{UInt16}) = UInt16(0) typemax(::Type{UInt16}) = UInt16(65535) typemin(::Type{Int32 }) = Int32(-2147483648) typemax(::Type{Int32 }) = Int32(2147483647) typemin(::Type{UInt32}) = UInt32(0) typemax(::Type{UInt32}) = UInt32(4294967295) typemin(::Type{Int64 }) = -9223372036854775808 typemax(::Type{Int64 }) = 9223372036854775807 typemin(::Type{UInt64}) = UInt64(0) typemax(::Type{UInt64}) = 0xffffffffffffffff @eval typemin(::Type{UInt128}) = $(convert(UInt128, 0)) @eval typemax(::Type{UInt128}) = $(bitcast(UInt128, convert(Int128, -1))) @eval typemin(::Type{Int128} ) = $(convert(Int128, 1) << 127) @eval typemax(::Type{Int128} ) = $(bitcast(Int128, typemax(UInt128) >> 1)) widen(::Type{<:Union{Int8, Int16}}) = Int32 widen(::Type{Int32}) = Int64 widen(::Type{Int64}) = Int128 widen(::Type{<:Union{UInt8, UInt16}}) = UInt32 widen(::Type{UInt32}) = UInt64 widen(::Type{UInt64}) = UInt128 # a few special cases, # Int64*UInt64 => Int128 # |x|<=2^(k-1), |y|<=2^k-1 => |x*y|<=2^(2k-1)-1 widemul(x::Signed,y::Unsigned) = widen(x) * signed(widen(y)) widemul(x::Unsigned,y::Signed) = signed(widen(x)) * widen(y) # multplication by Bool doesn't require widening widemul(x::Bool,y::Bool) = x * y widemul(x::Bool,y::Number) = x * y widemul(x::Number,y::Bool) = x * y ## wide multiplication, Int128 multiply and divide ## if Core.sizeof(Int) == 4 function widemul(u::Int64, v::Int64) local u0::UInt64, v0::UInt64, w0::UInt64 local u1::Int64, v1::Int64, w1::UInt64, w2::Int64, t::UInt64 u0 = u & 0xffffffff; u1 = u >> 32 v0 = v & 0xffffffff; v1 = v >> 32 w0 = u0 * v0 t = reinterpret(UInt64, u1) * v0 + (w0 >>> 32) w2 = reinterpret(Int64, t) >> 32 w1 = u0 * reinterpret(UInt64, v1) + (t & 0xffffffff) hi = u1 * v1 + w2 + (reinterpret(Int64, w1) >> 32) lo = w0 & 0xffffffff + (w1 << 32) return Int128(hi) << 64 + Int128(lo) end function widemul(u::UInt64, v::UInt64) local u0::UInt64, v0::UInt64, w0::UInt64 local u1::UInt64, v1::UInt64, w1::UInt64, w2::UInt64, t::UInt64 u0 = u & 0xffffffff; u1 = u >>> 32 v0 = v & 0xffffffff; v1 = v >>> 32 w0 = u0 * v0 t = u1 * v0 + (w0 >>> 32) w2 = t >>> 32 w1 = u0 * v1 + (t & 0xffffffff) hi = u1 * v1 + w2 + (w1 >>> 32) lo = w0 & 0xffffffff + (w1 << 32) return UInt128(hi) << 64 + UInt128(lo) end function *(u::Int128, v::Int128) u0 = u % UInt64; u1 = Int64(u >> 64) v0 = v % UInt64; v1 = Int64(v >> 64) lolo = widemul(u0, v0) lohi = widemul(reinterpret(Int64, u0), v1) hilo = widemul(u1, reinterpret(Int64, v0)) t = reinterpret(UInt128, hilo) + (lolo >>> 64) w1 = reinterpret(UInt128, lohi) + (t & 0xffffffffffffffff) return Int128(lolo & 0xffffffffffffffff) + reinterpret(Int128, w1) << 64 end function *(u::UInt128, v::UInt128) u0 = u % UInt64; u1 = UInt64(u>>>64) v0 = v % UInt64; v1 = UInt64(v>>>64) lolo = widemul(u0, v0) lohi = widemul(u0, v1) hilo = widemul(u1, v0) t = hilo + (lolo >>> 64) w1 = lohi + (t & 0xffffffffffffffff) return (lolo & 0xffffffffffffffff) + UInt128(w1) << 64 end function div(x::Int128, y::Int128) (x == typemin(Int128)) & (y == -1) && throw(DivideError()) return Int128(div(BigInt(x), BigInt(y))) end function div(x::UInt128, y::UInt128) return UInt128(div(BigInt(x), BigInt(y))) end function rem(x::Int128, y::Int128) return Int128(rem(BigInt(x), BigInt(y))) end function rem(x::UInt128, y::UInt128) return UInt128(rem(BigInt(x), BigInt(y))) end function mod(x::Int128, y::Int128) return Int128(mod(BigInt(x), BigInt(y))) end else *{T<:Union{Int128,UInt128}}(x::T, y::T) = mul_int(x, y) div(x::Int128, y::Int128) = checked_sdiv_int(x, y) div(x::UInt128, y::UInt128) = checked_udiv_int(x, y) rem(x::Int128, y::Int128) = checked_srem_int(x, y) rem(x::UInt128, y::UInt128) = checked_urem_int(x, y) end