Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:872dc65d524db83fe64842a247918571f4f71ad9

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
#include "shape/bezier.h"
#include "common/common.h"
#include "unsupported/Eigen/Polynomials"

void Bezier2d::InitializeCustomizedData() {
    CheckError(param_num() == 8, "Inconsistent number of parameters.");
    // s(t) = control_points * A * [1, t, t^2, t^3].
    // s'(t) = control_points * A * [0, 1, 2 * t, 3 * t * t].
    //       = control_points * A * B * [1, t, t^2]
    // s(t) = (1 - t)^3 p0 + 3 (1 - t)^2 t p1 + 3 (1 - t) t^2 p2 + t^3 p3.
    //      = (1 - 3t + 3t^2 - t^3) p0 +
    //      = (3t - 6t^2 + 3t^3) p1 +
    //      = (3t^2 - 3t^3) p2 +
    //      = t^3 p3.
    control_points_ = Eigen::Map<const Eigen::Matrix<real, 2, 4>>(params().data(), 2, 4);
    A_ << 1, -3, 3, -1,
        0, 3, -6, 3,
        0, 0, 3, -3,
        0, 0, 0, 1;
    B_ << 0, 0, 0,
        1, 0, 0,
        0, 2, 0,
        0, 0, 3;
    cA_ = control_points_ * A_;
    cAB_ = control_points_ * A_ * B_;
    // When solving for the minimal distance from a point to the bezier curve, we solve:
    // s'(t)^T * (s(t) - point) = 0.
    // [1, t, t^2] * B^T * A^T * control_points^T * control_points * A * [1, t, t^2, t^3] -
    // [1, t, t^2] * B^T * A^T * control_points^T * point = 0.
    // [1, t, t^2, t^3, t^4, t^5] * c_ - [1, t, t^2] * (cAB_^T * point) = 0.
    c_.setZero();
    const Eigen::Matrix<real, 3, 4> C = cAB_.transpose() * cA_;
    // [1, t, t^2] * C * [1, t, t^2, t^3] - [1, t, t^2] * (cAB_^T * point) = 0.
    c_(0) = C(0, 0);
    c_(1) = C(0, 1) + C(1, 0);
    c_(2) = C(0, 2) + C(1, 1) + C(2, 0);
    c_(3) = C(0, 3) + C(1, 2) + C(2, 1);
    c_(4) = C(1, 3) + C(2, 2);
    c_(5) = C(2, 3);

    // Gradients.
    c_gradients_.setZero();
    for (int j = 0; j < 4; ++j)
        for (int i = 0; i < 2; ++i) {
            const int idx = j * 2 + i;
            cA_gradients_[idx].setZero();
            cA_gradients_[idx].row(i) = A_.row(j);
            cAB_gradients_[idx].setZero();
            cAB_gradients_[idx].row(i) = (A_ * B_).row(j);
            const Eigen::Matrix<real, 3, 4> C_gradients = cAB_gradients_[idx].transpose() * cA_
                + cAB_.transpose() * cA_gradients_[idx];
            c_gradients_(0, idx) = C_gradients(0, 0);
            c_gradients_(1, idx) = C_gradients(0, 1) + C_gradients(1, 0);
            c_gradients_(2, idx) = C_gradients(0, 2) + C_gradients(1, 1) + C_gradients(2, 0);
            c_gradients_(3, idx) = C_gradients(0, 3) + C_gradients(1, 2) + C_gradients(2, 1);
            c_gradients_(4, idx) = C_gradients(1, 3) + C_gradients(2, 2);
            c_gradients_(5, idx) = C_gradients(2, 3);
        }
}

const real Bezier2d::ComputeSignedDistanceAndGradients(const std::array<real, 2>& point,
    std::vector<real>& grad) const {
    const Vector2r p(point[0], point[1]);
    Vector6r coeff = c_;
    coeff.head(3) -= p.transpose() * cAB_;

    // Now solve [1, t, t^2, t^3, t^4, t^5] * coeff = 0.
    Eigen::PolynomialSolver<real, 5> dist_solver;
    dist_solver.compute(coeff);
    std::vector<real> ts_full;
    dist_solver.realRoots(ts_full);

    // Add two end points - this concludes the candidate set.
    std::vector<real> ts{ 0, 1 };
    for (const real& t : ts_full)
        if (0 <= t && t <= 1)
            ts.push_back(t);

    // Pick the minimal distance among them.
    real min_dist = std::numeric_limits<real>::infinity();
    real min_t = 0;
    Vector2r min_proj(0, 0);
    for (const real t : ts) {
        Vector2r proj = GetBezierPoint(t);
        const real dist = (proj - p).norm();
        if (dist < min_dist) {
            min_dist = dist;
            min_proj = proj;
            min_t = t;
        }
    }

    // Determine the sign.
    const Vector2r min_tangent = GetBezierDerivative(min_t);
    if (min_tangent.norm() == 0) {
        std::cout << "The Bezier curve is singular. Control points are probably duplicated." << std::endl;
        std::cout << control_points_ << std::endl;
        CheckError(false, "Singular Bezier curve.");
    }
    const Vector2r q = min_proj - p;
    // Consider the sign of q x min_tangent: positive = interior.
    const real z = q.x() * min_tangent.y() - q.y() * min_tangent.x();
    const real sign = z >= 0 ? 1.0 : -1.0;

    // Compute the gradient.
    // control_point -> coeff -> min_t -> min_proj -> min_dist.
    // According to the envelope theorem, we can safely assume min_t does not change during the gradient computation.
    // min_proj = GetBezierPoint(t) = cA_ * ts.
    const real min_t2 = min_t * min_t;
    const real min_t3 = min_t * min_t2;
    const Vector4r min_ts(1, min_t, min_t2, min_t3);
    Eigen::Matrix<real, 2, 8> min_proj_gradients; min_proj_gradients.setZero();
    for (int i = 0; i < 8; ++i) {
        min_proj_gradients.col(i) = cA_gradients_[i] * min_ts;
    }
    // min_proj -> min_dist: min_dist = |min_proj - p|.
    const real eps = Epsilon();
    Vector2r q_unit = Vector2r::Zero();
    if (min_dist > eps) q_unit = q / min_dist;
    const Vector8r grad_vec(q_unit.transpose() * min_proj_gradients);
    grad.resize(8);
    for (int i = 0; i < 8; ++i) grad[i] = sign * grad_vec(i);
    return sign * min_dist;
}

const Vector2r Bezier2d::GetBezierPoint(const real t) const {
    const Vector4r ts(1, t, t * t, t * t * t);
    return cA_ * ts;
}

const Vector2r Bezier2d::GetBezierDerivative(const real t) const {
    const Vector3r ts(1, t, t * t);
    return cAB_ * ts;
}

const real Bezier3d::ComputeSignedDistanceAndGradients(const std::array<real, 3>& point,
    std::vector<real>& grad) const {
    // (point + dir_ * t)[2] = 0.
    // This is an approximation.
    const real t = -point[2] / dir_(2);
    std::array<real, 2> sketch_point{ point[0] + t * dir_(0), point[1] + t * dir_(1) };
    return sketch_->ComputeSignedDistanceAndGradients(sketch_point, grad);
}

void Bezier3d::InitializeCustomizedData() {
    CheckError(param_num() == 11, "Inconsistent number of parameters.");
    CheckError(params()[10] != 0, "Invalid extrusion direction.");

    sketch_ = std::make_shared<Bezier2d>();
    std::array<int, 2> sketch_cell_nums;
    for (int i = 0; i < 2; ++i) sketch_cell_nums[i] = cell_num(i);
    const std::vector<real> sketch_params(params().data(), params().data() + 8);
    sketch_->Initialize(sketch_cell_nums, sketch_params, false);
    for (int i = 0; i < 3; ++i) dir_(i) = params()[8 + i];
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API