# Copyright 2017 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import numpy as np import tensorflow as tf import gpflow from gpflow import misc from gpflow.test_util import GPflowTestCase, session_tf class TestPublicMethods(GPflowTestCase): @staticmethod def run_case(name, equal, not_equal, fn): graph = tf.Graph() session = tf.get_default_session() equal(fn(name)) equal(fn(name, index='0')) equal(fn(name, graph=session.graph)) not_equal(fn(name, index='1')) not_equal(fn(name, graph=graph)) not_equal(fn(name, graph=graph, index='0')) not_equal(fn(name, graph=graph, index='1')) def test_tensor_by_name(self): with self.test_context(): name = 'tensor' variable = tf.get_variable(name, shape=()) self.assertTrue(gpflow.misc.is_initializable_tensor(variable)) def equal(found): self.assertFalse(gpflow.misc.is_initializable_tensor(found)) self.assertTrue(found.name == variable.name) def not_equal(found): self.assertEqual(found, None) fn = gpflow.misc.get_tensor_by_name graph = tf.Graph() session = tf.get_default_session() fake_name = "foo" equal(fn(name)) equal(fn(name, index='0')) equal(fn(name, graph=session.graph)) not_equal(fn(name, index='1')) not_equal(fn(name, graph=graph)) not_equal(fn(name, graph=graph, index='0')) not_equal(fn(name, graph=graph, index='1')) not_equal(fn(fake_name)) not_equal(fn(fake_name, graph=graph)) def test_variable_by_name(self): with self.test_context(): name = 'variable' variable = tf.get_variable(name, shape=()) self.assertTrue(gpflow.misc.is_initializable_tensor(variable)) def equal(found): self.assertTrue(gpflow.misc.is_initializable_tensor(found)) self.assertEqual(found, variable) def not_equal(found): self.assertEqual(found, None) fn = gpflow.misc.get_variable_by_name graph = tf.Graph() session = tf.get_default_session() fake_name = "foo" equal(fn(name)) equal(fn(name, graph=session.graph)) not_equal(fn(name, graph=graph)) not_equal(fn(fake_name)) not_equal(fn(fake_name, graph=graph)) def test_valid_param(self): with self.test_context(): name = 'tensor' tensor = tf.get_variable(name, shape=()) self.assertTrue(gpflow.misc.is_valid_param_value(tensor)) self.assertTrue(gpflow.misc.is_valid_param_value(1.0)) self.assertTrue(gpflow.misc.is_valid_param_value(1)) self.assertTrue(gpflow.misc.is_valid_param_value([1.0])) self.assertTrue(gpflow.misc.is_valid_param_value([1.0, 1, 1])) self.assertTrue(gpflow.misc.is_valid_param_value([1, 1.0, 1])) self.assertTrue(gpflow.misc.is_valid_param_value([[1.0], [1]])) self.assertTrue(gpflow.misc.is_valid_param_value(np.array(1))) self.assertTrue(gpflow.misc.is_valid_param_value(np.array(1.0))) self.assertTrue(gpflow.misc.is_valid_param_value(np.array([[1.0], [1]]))) self.assertTrue(gpflow.misc.is_valid_param_value([[1.0], np.array(1.0)])) self.assertTrue(gpflow.misc.is_valid_param_value([np.array(1.0), [1.0]])) self.assertFalse(gpflow.misc.is_valid_param_value([])) self.assertFalse(gpflow.misc.is_valid_param_value(["", 1.0])) self.assertFalse(gpflow.misc.is_valid_param_value([1.0, ""])) self.assertFalse(gpflow.misc.is_valid_param_value(["a", 1.0])) self.assertFalse(gpflow.misc.is_valid_param_value([1.0, "a"])) self.assertFalse(gpflow.misc.is_valid_param_value([1.0, [1.0]])) self.assertFalse(gpflow.misc.is_valid_param_value([[1.0], 1.0])) self.assertFalse(gpflow.misc.is_valid_param_value("")) self.assertFalse(gpflow.misc.is_valid_param_value("1.0")) self.assertFalse(gpflow.misc.is_valid_param_value("[1.0]")) self.assertFalse(gpflow.misc.is_valid_param_value("0.1")) self.assertFalse(gpflow.misc.is_valid_param_value(None)) self.assertFalse(gpflow.misc.is_valid_param_value(object())) self.assertFalse(gpflow.misc.is_valid_param_value(self)) def test_remove_trainable(self): with self.test_context(): graph = tf.Graph() var1 = tf.get_variable('var1', shape=()) var2 = tf.get_variable('var2', shape=(), trainable=False) with self.assertRaises(ValueError): gpflow.misc.remove_from_trainables(var1, graph=graph) gpflow.misc.remove_from_trainables(var1) with self.assertRaises(ValueError): gpflow.misc.remove_from_trainables(var1) with self.assertRaises(ValueError): gpflow.misc.remove_from_trainables(var2) def test_leading_transpose(session_tf): dims = [1, 2, 3, 4] a = tf.zeros(dims) b = misc.leading_transpose(a, [..., -1, -2]) c = misc.leading_transpose(a, [-1, ..., -2]) d = misc.leading_transpose(a, [-1, -2, ...]) e = misc.leading_transpose(a, [3, 2, ...]) f = misc.leading_transpose(a, [3, -2, ...]) assert len(a.shape) == len(b.shape) == len(c.shape) == len(d.shape) assert len(a.shape) == len(e.shape) == len(f.shape) assert b.shape[-2:] == [4, 3] assert c.shape[0] == 4 and c.shape[-1] == 3 assert d.shape[:2] == [4, 3] assert d.shape == e.shape == f.shape @pytest.mark.xfail(raises=ValueError) def test_leading_transpose_fail(session_tf): dims = [1, 2, 3, 4] a = tf.zeros(dims) misc.leading_transpose(a, [-1, -2])