Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download
Permalink

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:89ca2df853ff21bddd004843aca7528bda562f3e
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
#' Reorder a matrix
#'
#' This function reorders a matrix by rows of columns
#'
#' @param matrix1 a matrix (rows=genes x columns=samples) of gene expression data
#'   (e.g., scRNA-seq)
#' @param by.rows By rows (TRUE; default) or by columns
#'
#' @return a reordered matrix
#'
#' @export
reorder_matrix <- function(matrix1,
                           by.rows = TRUE) {
  if (by.rows == TRUE) {
    conf.order <- order(apply(matrix1, 1, which.max))
    matrix1.reordered <- matrix1[conf.order, ]
  } else {
    conf.order <- order(apply(matrix1, 2, which.max))
    matrix1.reordered <- matrix1[, conf.order]
  }
  matrix1.reordered
}


#' Compare two cluster sets matched to CCA
#'
#' This function takes cluster calls defined in two different data sets and then
#' determines to what extent these cluster calls match up with cluster calls from CCA.
#'
#' @param cl a matrix (rows=genes x columns=samples) of gene expression data
#'   (e.g., scRNA-seq)
#' @param by.rows By rows (TRUE; default) or by columns
#'
#' @return a reordered matrix
#'
#' @export
compareClusterCalls <- function(cl,
                                ref.cl,
                                cl.anno,
                                plot.title = NA, plot.silent = TRUE,
                                heat.colors = colorRampPalette(c("grey99", "orange", "red"))(100),
                                row.cl.num = min(length(unique(cl)), length(unique(ref.cl)))) {
  library(grid)
  library(pheatmap)
  conf1 <- table(cl, ref.cl)
  conf1 <- sweep(conf1, 1, rowSums(conf1), "/")
  conf2 <- reorder_matrix(conf1)

  # Cluster co-occurence
  cl.prop.cocl <- apply(conf1, 2, function(x) {
    grid1 <- expand.grid(x, x)
    min.prop <- apply(grid1, 1, min)
  })
  cl.prop.cocl.total <- apply(cl.prop.cocl, 1, sum)
  cl.prop.cocl.m <- matrix(cl.prop.cocl.total, nrow(conf1), nrow(conf1),
    dimnames = list(rownames(conf1), rownames(conf1))
  )

  ph1 <- pheatmap(conf2,
    cutree_rows = row.cl.num, clustering_method = "ward.D2",
    annotation_row = cl.anno, color = heat.colors, fontsize = 6,
    main = plot.title, silent = plot.silent
  )
  list(conf = conf2, cocl = cl.prop.cocl.m, ph = ph1)
}


#' Get some summary statistics
#'
#' This does the summary. For each group return a vector with N, mean, and sd.
#' This is called by qcPlot.
#'
#' @param data Annotation data frame
#' @param measurevar what variables to measure
#' @param groupvars what to group by
#' @param na.rm how to treat NA
#' @param conf.interval confidence interval (default = .95)
#' @param .drop drop something?
#' @param roundall should everything be rounded
#'
#' @return a data frame of statistics
#'
#' @export
summarySE <- function(data = NULL,
                      measurevar,
                      groupvars = NULL,
                      na.rm = FALSE,
                      conf.interval = .95,
                      .drop = TRUE,
                      roundall = F) {
  require(dplyr)
  #
  names(data)[names(data) == measurevar] <- "measurevar"

  datac <- data %>%
    select(one_of(groupvars, "measurevar")) %>%
    filter(ifelse(na.rm == T, !is.na(measurevar), T)) %>%
    mutate(measurevar = as.numeric(measurevar)) %>%
    group_by_(c(groupvars)) %>%
    summarise(
      N = n(),
      median = median(measurevar),
      mean = mean(measurevar),
      max = max(measurevar),
      sd = ifelse(N == 1, 0, sd(measurevar)),
      q25 = as.numeric(quantile(measurevar, 0.25)),
      q75 = as.numeric(quantile(measurevar, 0.75))
    ) %>%
    mutate(se = sd / sqrt(N))
  # %>% mutate(ci =  se * qt(conf.interval/2 + 0.5, N-1))

  if (roundall) {
    roundcols <- c("median", "mean", "max", "sd", "q25", "q75", "se", "ci")
    datac[roundcols] <- round(datac[roundcols], 3)
  }
  # datac <- datac %>% mutate(xpos = 1:n())

  datac
}


#' Make QC plots
#'
#' Makes QC plots
#'
#' @param anno Annotation data frame for patch-seq
#' @param dendcluster_anno what to cluster by
#' @param groupvars what to group by
#' @param scaleLimits scaleLimits
#' @param scaleBreaks scaleBreaks
#' @param scaleLabels scaleLabels
#' @param ylab ylab
#' @param fileName fileName
#'
#' @return the plot is returned
#'
#' @export
qcPlot <- function(anno,
                   dendcluster_anno,
                   name,
                   scaleLimits = c(-5000, 12000),
                   scaleBreaks = seq(0, 12000, 2000),
                   scaleLabels = seq(0, 12, 2),
                   ylab = "value",
                   fileName = gsub("\\.", "_", gsub("_label", "", name)),
                   outputFolder) {

  # dendcluster_id is the annotation for cluster ordering based on the current, bootstrapped dendrogram
  stats <- summarySE(data = anno, measurevar = name, groupvars = "dendcluster_id")

  genes_plot <- ggplot() +
    # geom_quasirandom from the ggbeeswarm package
    # makes violin-shaped jittered point plots
    geom_quasirandom(
      data = anno,
      aes(
        x = dendcluster_id,
        y = eval(parse(text = name))
      ),
      color = "skyblue",
      # Need to set position_jitter height = 0 to prevent
      # jitter on the y-axis, which changes data representation
      position = position_jitter(width = .3, height = 0), size = 0.1
    ) +
    # Errorbars built using stats values
    geom_errorbar(
      data = stats,
      aes(x = dendcluster_id, ymin = q25, ymax = q75),
      size = 0.2
    ) +
    # Median points from stats
    geom_point(
      data = stats,
      aes(x = dendcluster_id, y = median),
      color = "red",
      size = 0.5
    ) +
    # Cluster labels as text objects
    geom_text(
      data = dendcluster_anno,
      aes(
        x = dendcluster_id, y = 0, label = dendcluster_label,
        color = dendcluster_color
      ),
      angle = 90,
      hjust = 2,
      vjust = 0.3,
      size = 2 * 5 / 6
    ) +
    scale_color_identity() +
    # Expand the y scale so that the labels are visible
    scale_y_continuous(ylab,
      limits = scaleLimits,
      breaks = scaleBreaks,
      labels = scaleLabels
    ) +
    # Remove X-axis title
    scale_x_continuous("") +
    theme_bw() +
    # Theme tuning
    theme(
      axis.text.x = element_blank(),
      axis.ticks = element_blank(),
      panel.border = element_blank(),
      panel.grid.major.x = element_blank(),
      panel.grid.minor.x = element_blank()
    )

  ggsave(paste0(outputFolder, fileName, "_QC.pdf"), genes_plot, width = 8, height = 4, useDingbats = F)
  genes_plot
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API