Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 2bcaf0f
  • /
  • src
  • /
  • c_optim.h
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:89f357fb1d39e7d422b6467c3d1a002a062e65ea
directory badge Iframe embedding
swh:1:dir:bae9250549db521cf6323ba0dfdace3c2d492ae1
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
c_optim.h
#ifndef C_OPTIM_H
#define C_OPTIM_H

#include <Rcpp.h>

namespace rstpm2 {

  typedef double optimfn(int, double *, void *);
  typedef void optimgr(int, double *, double *, void *);

  /* type of pointer to the target and gradient functions for Nlm */
  typedef void (*fcn_p)(int, double *, double *, void *);

  /* type of pointer to the hessian functions for Nlm */
  typedef void (*d2fcn_p)(int, int, double *, double *, void *);

  double min(double a, double b);
  double max(double a, double b);
  double bound(double x, double lower, double upper);

  /**
     Adapt a function object (functor) for NelderMead and BFGS
  **/
  template<class T>
    double adapt_functor(int n, double * beta, void * par) {
    T * model = (T *) par;
    Rcpp::NumericVector x(beta,beta+n);
    return model->operator()(x);
  }
  /**
     Adapt an objective function for NelderMead and BFGS
  **/
  template<class T>
    double adapt_objective(int n, double * beta, void * par) {
    T * model = (T *) par;
    Rcpp::NumericVector x(beta,beta+n);
    return model->objective(x);
  }
  /**
     Adapt a gradient function for BFGS
  **/
  template<class T>
    void adapt_gradient(int n, double * beta, double * grad, void * par) {
    T * model = (T *) par;
    Rcpp::NumericVector x(beta,beta+n);
    Rcpp::NumericVector vgrad = model->gradient(x);
    for (int i=0; i<n; ++i) grad[i] = vgrad[i];
  }

  class NelderMead {
  public:
    NelderMead(int trace = 0, int maxit = 500, 
	       double abstol = - INFINITY,
	       double reltol = 1.0e-8, 
	       double alpha = 1.0, double beta = 0.5, double gamma = 2.0, 
	       double epshess = 6.055454e-06, bool hessianp = true);
    virtual void optim(optimfn fn, Rcpp::NumericVector init, void * ex);
    template<class T>
      void optim(Rcpp::NumericVector init, T object) {
      optim(&adapt_objective<T>,init,(void *) &object);
    }
    virtual Rcpp::NumericMatrix calc_hessian(optimfn fn, void * ex);
    int n, trace, maxit, fail, fncount;
    double abstol, reltol, alpha, beta, gamma, Fmin, epshess;
    bool hessianp;
    Rcpp::NumericVector coef;
    Rcpp::NumericMatrix hessian;
  };

  class BFGS {
  public:
    BFGS(int trace = 0, int maxit = 100, 
	 double abstol = - INFINITY,
	 double reltol = 1.0e-8, int report = 10, double epshess = 1.0e-8, bool hessianp = true);
    virtual void optim(optimfn fn, optimgr gr, Rcpp::NumericVector init, void * ex);
    virtual void optim(int n, optimfn fn, optimgr gr, double * init, void * ex);
    virtual double calc_objective(optimfn fn, Rcpp::NumericVector coef, void * ex);
    virtual double calc_objective(optimfn fn, void * ex);
    virtual Rcpp::NumericMatrix calc_hessian(optimgr gr, void * ex);
    template<class T>
      void optim(Rcpp::NumericVector init, T object) {
      optim(&adapt_objective<T>,&adapt_gradient<T>,init,(void *) &object);
    }
    int n, trace, maxit, report, fncount, grcount, fail;
    double abstol, reltol, Fmin, epshess;
    bool hessianp;
    Rcpp::NumericVector coef;
    Rcpp::NumericMatrix hessian;
  };

  class Nlm {
  public:
    Nlm(double fscale = 1.0,    // nlm()
	int method = 2,         // cf. nlm: method=1
	int iexp = 1,           // nlm()
	int msg = 9,            // nlm()
	int ndigit = 12,        // nlm()
	int itnlim = 50,        // nlm()
	int iagflg = 1,         // nlm()
	int iahflg = 0,         // nlm()
	double dlt = 1.0,       // nlm
	double gradtl = 1.0e-6, // nlm()
	double stepmx = 0.0,    // set to -1.0 to get nlm()'s behaviour
	double steptl = 1.0e-6,  // nlm()
  double epshess = 6.055454e-06,
	int itrmcd = 0, 
	int itncnt = 0,
	bool hessianp = true);
    void optim(fcn_p fcn, fcn_p d1fcn, Rcpp::NumericVector init, void * state);
    void optim(fcn_p fcn, Rcpp::NumericVector init, void * state);
    double calc_objective(fcn_p fn, Rcpp::NumericVector coef, void * ex);
    double calc_objective(fcn_p fn, void * ex);
    Rcpp::NumericMatrix calc_hessian(fcn_p gr, void * ex);
    void set_print_level(int);
    double fscale;
    int method;
    int iexp;
    int msg;
    int ndigit;
    int itnlim;
    int iagflg;
    int iahflg;
    double dlt;
    double gradtl;
    double stepmx;
    double steptl;
    double epshess;
    int itrmcd;
    int itncnt;
    bool hessianp;
    Rcpp::NumericVector coef;
    Rcpp::NumericMatrix hessian;
  };


  typedef double (*Brent_fminfn)(double, void *);

  double Brent_fmin(double ax, double bx, double (*f)(double, void *),
		    void *info, double tol);

  double R_zeroin2(			/* An estimate of the root */
    double ax,				/* Left border | of the range	*/
    double bx,				/* Right border| the root is seeked*/
    double fa, double fb,		/* f(a), f(b) */
    double (*f)(double x, void *info),	/* Function under investigation	*/
    void *info,				/* Add'l info passed on to f	*/
    double *Tol,			/* Acceptable tolerance		*/
    int *Maxit);				/* Max # of iterations */

  
  /** 
      Adapt a function object (functor) to work with Brent_fmin()
  **/
  template<class T, class X>
    double Brent_fmin_functor(X x, void * par) {
    T * model = (T *) par;
    return model->operator()(x);
  }

  /** 
      Use Brent_fmin with a function object (functor)
  **/
  template<class T>
    double BrentFmin(double a, double b, T obj, double eps = 1.0e-8) {
    return Brent_fmin(a,b,&Brent_fmin_functor<T,double>,(void *) &obj,eps);
  }

  Rcpp::NumericMatrix qr_q(const Rcpp::NumericMatrix& X, double tol = 1E-12); 

  
} // anonymous rstpm2

#endif /* c_optim_h */

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API