
CAT

Computer Aided Turbulence

User’s Guide

Version 0.0

Hartmut Borth1 Edilbert Kirk
Valerio Lucarini

1hartmut.borth@uni-hamburg.de

2

Contents

I Model Physics 5

1 Evolution equations of incompressible 2D fluids 7
1.1 Classical non-rotating case . 7
1.2 Quasi-two-dimensional rotating case . 8
1.3 Non-adiabatic terms . 9

1.3.1 Laplacian based Viscosity and friction 9
1.3.2 Forcing . 9

1.4 Geometry and boundary conditions . 10
1.4.1 Doubly periodic boundary condition . 10
1.4.2 Channel boundary condition . 10
1.4.3 Box boundary condition . 10

II Numerical Implementation 11

2 Model history 13

3 The pseudo-spectral method 15
3.1 The discrete Fourier transform . 15
3.2 Fast Fourier Transform . 18
3.3 The grid representation in CAT . 20
3.4 Evolution equations in Fourier space . 23
3.5 Jacobian . 24
3.6 Dissipation . 25
3.7 Forcing . 26
3.8 Time-stepping schemes . 26

4 Predefined simulations, test cases and performance 29
4.1 Initial Value Problems in Physical Space . 29

4.1.1 Top Hat Jet: Option sim = "jet01" . 29
4.1.2 Gaussian Jet: Option sim = "jet02" . 29
4.1.3 Fourier Jet: Option sim = "jet03" . 29
4.1.4 Circular Top Hat Jet: Option sim = "jet04" 29
4.1.5 Circular Gaussian Jet: Option sim = "jet05" 29
4.1.6 Circular Fourier Jet: Option sim = "jet06" 29
4.1.7 Elliptical Vortex Patches: Option sim = "vor01" 29
4.1.8 Elliptical Gaussian Vortices: Option sim = "vor02" 29

4.2 Initial Value Problems in Spectral Space . 29
4.2.1 discs in Fourier Space: Option sim = "dec01" 30
4.2.2 Rings in Fourier Space: Option sim = "dec01" 30

4.3 Forced decaying flows . 30

3

4 CONTENTS

III Using CAT 31

5 Implementing CAT 33

6 Running CAT 35

7 Analysing CAT output 37

8 Modifying CAT 39

IV Appendix 41

A Namelists and parameters 43

B Moduls and basic model variables 45

C Structure of code and flow scheme 47

Part I

Model Physics

5

Chapter 1

Evolution equations of incompressible
2D fluids

1.1 Classical non-rotating case

The dimensional evolution equations of incompressible homogeneous 2D-fluids on the plane
(see e.g. Batchelor [1967] or Canuto et al. [1988]) in vorticity velocity form

ζt + u · ∇ζ = F +D, (1.1)

with u = (u, v) the vector of velocity fields in x and y-direction, F a forcing and D a dissipation
term. From homogeneity and incompressibility of the fluid we get

∇·ρu = ρ∇ · u = 0, (1.2)

with ρ the fluid density. Using this property we can introduce a volume (mass) stream function
measuring the volume (mass) flux across an arbitrary line from the point (x0, y0) to a point
(x, y) via the path integral

ψ(x, y)− ψ(x0, y0) = −
∫ (x,y)

(x0,y0)

[(
u
v

)
·
(
−dy
dx

)]
. (1.3)

The minus sign in front of the integral just changes the direction of positive massflux across
the line and is chosen to make the classical stream function of 2D fluids compatible to the
stream function (see e.g. Danilov and Gurarie [2000]) typically used for 2D rotating fluids in
geosciences. In terms of the stream function ψ the integrated mass fluxM across a line joining
the points (x0, y0) and (x, y) is given by

M(x0, y0|x, y) = −ρH0 [ψ(x, y)− ψ(x0, y0)] , (1.4)

with H0 the depth of the fluid. At the same time the stream function ψ is connected to the
velocity field (u, v) and the (relative) vorticity ζ = vx − uy via

(u, v) = (−ψy, ψx) and ζ = ∆ψ. (1.5)

Using the stream function ψ, the evolution equation (1.1 can be also written in the form

ζt + J(ψ, ζ) = F +D. (1.6)

Since the velocity field is divergence free (equation 1.2) we can further derive the equivalent
equation in flux form

ζt +∇ · (uζ) = F +D. (1.7)

7

8 CHAPTER 1. EVOLUTION EQUATIONS OF INCOMPRESSIBLE 2D FLUIDS

Starting from the flux form one can after repeated application of the continuity equation (1.2)
finally derive an equation where the Jacobian only depends on the velocity two fields (u, v)

ζt + ∂x∂y
(
v2 − u2

)
+
(
∂2x − ∂2y

)
uv = F +D. (1.8)

This form allows in the pseudo-spectral method (see 3.4) to reduce the number of Fourier
transforms per time-step from 3, i.e. (u, v, ζ) to 2, i.e. (u, v).

1.2 Quasi-two-dimensional rotating case

Starting from the shallow water equation on the β-plane one can derive (see e.g. Danilov and
Gurarie [2000]) an equation describing a rotating barotropic quasi-two-dimensional fluid which
is a generalization of the 2D-equation (1.1). For small Rossby numbers Ro = U/Lf , with
U a typical horizontal fluid velocity at the length scale L considered and f the local coriolis
paramter we get the potential vorticity (PV) q in quasi-geostrophic (QG) approximation

q =
(
∇2 − α2

)
ψ + f, (1.9)

where we have the modification parameter α = 1/L2
R with the Rossby-Obukhov radius of

deformation LR =
√
gH0/f and the stream function ψ = gh/f . Here g is the gravitational

acceleration and h(x, y) the deviation of the mean fluid depth H0 of the original shallow water
layer. As in the 2-dimensional case the stream function ψ (remind the different definition) is
related to the velocity fields (u, v) as defined in equation (1.5). In an unforced non-dissipative
fluid the QG PV is materially conserved

qt + J(ψ, q) = 0. (1.10)

Using the linear approximation of the coriolis parameter f = f0 + βy and introducing again
forcing and dissipation we can write the evolution equation in the form

qt + J(ψ, q) + βψx = F +D, (1.11)

with the vorticity q given by

q =
(
∇2 − α2

)
ψ = ζ − α2ψ. (1.12)

Further one can introduce a variable mean fluid depth H(x, y), which in the simple case of a
linear slope in y-direction leads to a topographic β-effect (see e.g. Heijst [1994]).

In the form (1.11) and (1.12) one can simulate incompressible 2D fluids and rotating quasi-
2D fluids with the same set of equations using different parameters. In this more general frame
the simplest case of a non-rotating 2D incompressible fluid is characterized by a vanishing
ambient vorticity gradient, i.e. β = 0, and the limit of an infinite Rossby radius LR −→ ∞ or
a vanishing modification parameter α −→ 0.

One only have to keep in mind that the stream functions different in the two cases. In the
non-rotating case ψ is defined by equation (1.4). In the rotating case we get

h(x, y) =
f

g
ψ(x, y), (1.13)

so that ψ is proportional to pressure deviations, which is not the case in the non-rotating 2D
case where the relation is more complex, see e.g. Johnston and Liu [2004].

1.3. NON-ADIABATIC TERMS 9

Using the property of the Jacobian J(f, f) = 0 for all fields f(x, y) on the fluid domain
equation (1.11) is equivalent to

qt + J(ψ, ζ) + βψx = F +D, (1.14)

where the vorticity q is still defined by equation (1.12). From this from it directly follows
that that the form of the 2D Jacobian in equations (1.7) and (1.8) can be also applied in the
quasi-two-dimensional rotating case.

1.3 Non-adiabatic terms

1.3.1 Laplacian based Viscosity and friction

Internal viscosity and external friction of the fluid are described by the dissipation term D on
the left hand side of the equation (1.11). A classical way - the default reference in our model - to
describe this term is to use a linear operator wich is a superposition of powers of the Laplacian.
The default dissipation in the fluid simulator is defined by

D q = − [σ (−1)pσ ∆pσ + λ (−1)pλ ∆pλ] q. (1.15)

Introducing dissipation time and length-scales we can write the dissipation operator also in the
form

D q = −
[

(−1)pσ

tσ

(
Lσ
2π

)2pσ

∆pσ +
(−1)pλ

tλ

(
Lλ
2π

)2pλ

∆pλ

]
q. (1.16)

Here Lσ and Lλ are the small and large-scale cut-off length scales. The corresponding small
and large-scale ”damping” time scales are given by tσ and tλ. The powers pσ of small-scale
viscosity are in the range of pσ ∈ [1, 2, 3, . . .] and the powers pλ of large-scale friction are in
the range pλ ∈ [0,−1,−2,−3, . . .]. For pσ = 1 and pλ = 0 we speak of viscosity and linear
drag (friction), for pσ > 1 and pλ < 0 of hyperviscosity and hypofriction (see also Danilov and
Gurarie [2001]). From equation (1.15) it follows that the coefficients σ and λ can be written by

σ =
(
Lσ
2π

)2pσ 1

tσ
=
(

1

kσ

)2pσ 1

tσ
and λ =

(
Lλ
2π

)2pλ 1

tλ
=
(

1

kλ

)2pλ 1

tλ
. (1.17)

We have chosen the additional factor of 2π since finally the fluid domain is rescaled to multiples
of 2π. Using this scaling the coefficients σ and λ are characterized respectively by the damping
the time scales tσ and tλ as well as the cut-off wave numbers kσ and kλ.

Above dissipation operator is a special case of dissipation operators which are polynomials
with positive and negative powers of the Laplacian

Dq =
nmax∑
n=1

Dnq, with Dnq = −
[
σn−1 (−1)n−1 ∆n−1 + λn (−1)−n ∆−n

]
q. (1.18)

In Fourier space (see subsection 3.4) the dissipation operators of this class reduce to the multi-
plication with polynomials in positive and negative powers of the wave numbers. More general
dissipation operators can be constructed directly in Fourier space (see subsection 3.6).

1.3.2 Forcing

The forcing term F in equations (1.1) and (1.11) describes forcings due to either external
processes as a wind-stress or a moving plate or non-resolved internal processes as, e.g. baroclinic
instability or diabatic heating. Both types of forcings can be described in physical or spectral

10 CHAPTER 1. EVOLUTION EQUATIONS OF INCOMPRESSIBLE 2D FLUIDS

space. For a constant external forcing, e.g. a wind stress or drag of a moving plate (τu, τ v)
given in [N/m2] and acting in x and y direction at the surface of the fluid the forcing term is
given by

F (x, y) =
1

ρH0

(
τ vx − τuy

)
, (1.19)

where in the rotating quasi-2D case the height deviations h of the fluid are neglected. The
forcing can also be defined in spectral space, see subsection 3.7 below.

1.4 Geometry and boundary conditions

1.4.1 Doubly periodic boundary condition

The evolution equations have to be completed by boundary conditions. The default geometry
of the fluid domain is a square with an edge of length Lx = Ly = L and the default boundary
conditions are doubly periodic, i.e. (f(x, y) = f(x + L, y + L) for all functions f on the fluid
domain.

1.4.2 Channel boundary condition

In x-direction (zonal direction) we have periodic boudary conditions, i.e. f(x, y) = f(x+L, y).
In y-direction (meridional direction) at y = 0 and y = L we introduce walls with no-slip
boundary conditions, i.e. the meridional velocity at the walls is zero v(x, 0) = v(x, L) = 0.

1.4.3 Box boundary condition

In x-direction (zonal direction) we introduce walls with no-slip boundary conditions, i.e. the
zonal velocity at the walls is zero u(0, y) = u(L, y) = 0. In y-direction (meridional direction)
at y = 0 and y = L we introduce walls with no-slip boundary conditions, i.e. the meridional
velocity at the walls is zero v(x, 0) = v(x, L) = 0.

Part II

Numerical Implementation

11

Chapter 2

Model history

The roots of CAT go back to the 2D-turbulence model developed by Annalisa Bracco, see e.g.
Bracco and McWilliams [2010]. The original model was redesigned in order to CAT integrate
into the Planet Simulator model platform (PlaSim) ?. The CAT code was rewritten from
scratch ? and complemented by a new stand-alone fft-library. Through the integration into
the PlaSim platform the user of CAT has at his disposal a graphical user interface and a full
model development environment. It is also possible to run CAT as a stand-alone application.

13

14 CHAPTER 2. MODEL HISTORY

Chapter 3

The pseudo-spectral method

The idea behind the pseudo-spectral method is first to transform the evolution equations to
Fourier (spectral) space, i.e. in our example to use the eigenfunctions of the Laplacian as basis of
the space of all solutions and to project the full equations onto this basis, see e.g. Canuto et al.
[1988]. Second to calculate products of functions (non-linear terms) in the physical space and
transform them back to Fourier space to reduce the number of multiplications necessary, which
otherwise makes the spectral method computationally prohibitively expensive for problems with
a large numbers of Fourier modes. This idea goes back to Kreiss and Oliger [1972]. More details
on the pseudospectral method can be found, e.g. in Orszag [1972] and Fornberg [1987].

3.1 The discrete Fourier transform

Starting point for the set of basis functions are the Fourier modes F (kx, ky | x, y) which are
the eigenmodes of the Laplacian on the fluid domain considered (short notation F (k | x) with
k = (kx, ky) and x = (x, y)). We start with a doubly periodic fluid domain (default in CAT).
In this case the eigenmodes of the Laplacian are given by

F (k | x) = exp [i (kxx+ kyy)] = exp [ikxx] exp [ikyy] , (3.1)

and satisfy the eigenvalue equation

∆ F (k | x) = −
(
k2x + k2y

)
F (k | x), (3.2)

with kx = n 2π/X and ky = m 2π/Y for n,m ∈ [0,±1,±2, . . .]. As can be seen form
equation (3.1) the eigenmodes of the Laplacian on the two-dimensional fluid domain F (k | x) =
F (kx | x) F (ky | y) can be separated into a product of the eigenmodes of the 1-dimensional
Laplacian. For more general domains as circular discs, annuli or the surface of spheres as well
as for more general boundary conditions, i.e. for fluid domains with walls one has to choose
other systems of basis functions, see e.g. Canuto et al. [1988].

Taking Lx = X/2π and Ly = Y/2π in x and y-direction as horizontal length scales and
introducing the non-dimensional variables x̄ = x/Lx, ȳ = y/Ly, k̄x = kxLx and k̄y = kyLy the
non-dimensional eigenvalue equation[

∂2

∂x̄2
+

∂2

r2∂ȳ2

]
F (k̄ | x̄) = −

(
k̄2x +

k̄2y
r2

)
F (k̄ | x̄), (3.3)

with the aspect ratio of the fluid domain r = Ly/Ly = Y/X, the wave number vector k̄ =
(k̄x, k̄y), where k̄x = k̄y = 0,±1,±2, . . . and the coordinate vector x̄ = (x̄, ȳ), where x̄, ȳ ∈
[0 2π]. Such an approach leads to a rescaled Laplacian and is appropriate in particular for
physical problems with a strong horizontal anisotropy.

15

16 CHAPTER 3. THE PSEUDO-SPECTRAL METHOD

Introducing a single horizontal length scale as for example L = Lx = X/2π instead we get
the non-dimensional variables x̄ = x/L, ȳ = y/L, k̄x = kxL = n and k̄y/r = kyL/r = m/r. The
non-dimensional eigenvalue equation now reads[

∂2

∂x̄2
+

∂2

∂ȳ2

]
F (k̄ | x̄) = −

(
k̄2x +

k̄2y
r2

)
F (k̄ | x̄), (3.4)

with the aspect ratio of the fluid domain r defined above, the wave number vector k̄ = (k̄x, k̄y/r),
where k̄x = k̄y = 0,±1,±2, . . . and the coordinate vector x̄ = (x̄, ȳ), where x̄ ∈ [0 2π] and
ȳ ∈ [0 r2π]. In CAT we use a single horizontal length scale keeping in mind that this choice is
not optimal for problems with a strong horizontal anisotropy. In the special case of a square
domain (default case in CAT) we have r = 1. From now on we use, if not otherwise stated, the
non-dimensional form and omit overbars.

Using the Fourier modes F (k | x) we can expand all fields g(x, y, t) on the fluid domain into
a Fourier series

g(x, y, t) =
∞∑

kx=−∞

∞∑
ky=−∞

ĝ(kx, ky, t) exp

[
i

(
kxx+

ky
r
y

)]
, (3.5)

where ĝ(kx, ky, t) are the Fourier coefficients of g(x, y, t) which live on the space of wave numbers
(kx, ky). Since g(x, y, t) are real fields, the Fourier modes ĝ(kx, ky, t) have the symmetry property
that

ĝ(−kx,−ky, t) = ĝ∗(kx, ky, t), (3.6)

where g∗ is the complex conjugate of g. The Fourier coefficients ĝ(kx, ky, t) are obtained by the
integral

ĝ(kx, ky, t) =
1

r

1

4π2

∫ 2π

0

∫ r2π

0
exp

[
−i
(
kxx+

ky
r
y

)]
g(x, y, t) dxdy. (3.7)

This continous finite Fourier integral is derived from the dimensional integral

ĝ(kx, ky, t) =
1

XY

∫ X

0

∫ Y

0
exp [−i (kxx+ kyy)] g(x, y, t) dxdy, (3.8)

where x,y,kx and ky are the dimensional variables.
To use the Fourier transform in numerical schemes to solve the evolution equation of fluids

we have to approximate the continous finite Fourier integral (3.7) and the infinite Fourier series
(3.5).

We start by discretizing the physical space into N grid points in x-direction and M grid
points in y-direction. On the discretized grid of the physical space the continuous finite Fourier
integral (3.7) reduces to the double sum

ĝ(kx, ky, t) =
1

NM

N−1∑
n=0

M−1∑
m=0

exp

[
−i
(
kxxn +

ky
r
ym

)]
g(xn, ym, t), (3.9)

where we use the approximations dx = ∆x = 2π/N , dy = ∆y = r2π/M , xn = n ∆x and
ym = m ∆y with n ∈ [0, 1, . . . , N − 1] and m ∈ [0, 1, . . . M − 1]. The aspect ratio of the grid
cell is given by ∆x/∆y = M/N 1/r. For r = M/N the grid cells are squares (default in CAT
M = N and r = 1).

Next we truncate the infinite Fourier series (3.5) at wave numbers such that all modes with
a higher spatial frequency (wave mumber) than the grid in physical space are omitted otherwise
we would have an oversampling. The result is the finite sum

g(xn, ym, t) =

N
2∑

kx=−N2 +1

M
2∑

ky=−M2 +1

exp

[
i

(
kxxn +

ky
r
ym

)]
ĝ(kx, ky, t). (3.10)

3.1. THE DISCRETE FOURIER TRANSFORM 17

On the discretized grid in the physical space the modes with wave numbers (kx, ky) = (−N/2,−M/2)
and (kx, ky) = (N/2,M/2) are identical. We omitted the mode (kx, ky) = (−N/2,−M/2).

Using the definitions of xn = 2π n/N and ym = r2π m/M we can write equation (3.9) in
discretized form as

ĝ(kx, ky, t) =
1

NM

N−1∑
n=0

M−1∑
m=0

exp

[
−i2π

(
kxn

N
+
kym

M

)]
g(xn, ym, t) (3.11)

and equation (3.10) as

g(xn, ym, t) =

N
2∑

kx=−N2 +1

M
2∑

ky=−M2 +1

exp

[
i2π

(
kxn

N
+
kym

M

)]
ĝ(kx, ky, t). (3.12)

By a shift of the wave numbers kx and ky corresponding to a rotation in the complex plane the
double sum (3.12) can be written equivalently in the form

g(xn, ym, t) =
N−1∑
kx=0

M−1∑
ky=0

exp

[
i2π

(
kxn

N
+
kym

M

)]
ĝ(kx, ky, t). (3.13)

Relation (3.11) defines the discrete 2-D forward Fourier transform FNM and relation (3.13)
the discrete 2-D inverse Fourier transform F−1MN respectively. One can decompose the 2-D
transformations FNM and F−1MN into two consecutive 1-D Fourier transformations FN , FM and
F−1M , F−1N .

The forward Fourier transform can be decomposed as follows

ĝ(kx, ky, t) =
1

N

N−1∑
n=0

exp

(
−i2πkxn

N

)[
1

M

M−1∑
m=0

exp

(
−i2πkym

M

)
g(xn, ym, t)

]
(3.14)

or using operators ĝ = FNM g = FNFMg, where the operators FN and FM have the matrix
representation

FN =
1

N

(
exp

[
−i2πkxn

N

])
kx,n∈[0,N−1]

and FM =
1

M

(
exp

[
−i2πkym

M

])
ky ,m∈[0,M−1]

(3.15)

For the inverse Fourier transform we get the decomposition

g(xn, ym, t) =
M−1∑
ky=0

exp

(
i2π

kym

M

)N−1∑
kx=0

exp

(
i2π

kxn

N

)
ĝ(kx, ky, t)

 , (3.16)

which using operators can be written as g = F−1MN = F−1M F−1N ĝ, where the operators F−1N and
F−1M have the matrix representation

F−1N =

(
exp

[
i2π

kxn

N

])
n,kx∈[0,N−1]

and F−1M =

(
exp

[
i2π

kym

M

])
m,ky∈[0,M−1]

. (3.17)

Using as basic unit the exponent ω = exp [−i2π/N] we can represent the one-dimensional
discrete forward Fourier transform FN for a vector of length N as

FN =
1

N

1 1 1 . . . 1
1 ω ω2 . . . ωN−1

. . . .

. . . .

. . . .

1 ωN−1 ω2(N−1) . . . ω(N−1)2

. (3.18)

18 CHAPTER 3. THE PSEUDO-SPECTRAL METHOD

The representation of the Fourier matrices for small N are the building blocks of the fast Fourier
transform introduced in section (3.2). For N = 2, N = 3 and N = 4 we get

F2 =
1

2

(
1 1
1 −1

)
, F3 =

1

3

 1 1 1
1 ω ω̄
1 ω̄ ω

 and F4 =
1

4

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 , (3.19)

with ω = − exp(iπ/3) = −(cos(π/3) + i sin(π/3)). For N = 8 the representation reads

F8 =
1

8

1 1 1 1 1 1 1 1
1 ω −i −iω −1 −ω i iω
1 −i −1 i 1 −i −1 i
1 −iω i ω −1 iω −i −ω
1 −1 1 −1 1 −1 1 −1
1 −ω −i iω −1 ω i −iω
1 i −1 −i 1 i −1 −i
1 iω i −ω −1 −iω −i ω

, (3.20)

with ω = exp(−iπ/4) =
√

0.5 (1 − i) =
√

2 (1 − i)/2. The inverse Fourier transform F−1N is
given by

F−1N =

1 1 1 . . . 1
1 ω ω2 . . . ωN−1

. . . .

. . . .

. . . .

1 ωN−1 ω2(N−1) . . . ω(N−1)2

, (3.21)

with ω = exp [i2π/N]. The matrix representation (3.21) of the inverse FFT is related to the
matrix representation (3.18) of the forward FFT by omission of the multiplication factor 1/N
and the the replacement of ω by its complex conjugate ω̄. Using this rule it is straightforward
to derive the matrix representations of the elementary inverse FFT operators F−12 , F−13 , F−14

and F−18 .

Making full use of the information hidden in the structure of the Fourier matrices (forward
and inverse) one can reduce the number of multiplications needed to carry out the Fourier
transform from order O(N2) to order O(N logN), which makes a big difference for large N , see
section 3.2.

3.2 Fast Fourier Transform

Keeping the matrix representation the decompostion of the discrete Fourier operator in order
to reduce the number of multiplication can down in the case of a factor 2 decomposition in the
following way. Rearranging the rows of a Fourier matrix FN by collecting even and odd rows
(assuming even N) we can express FN in terms of FN/2 and get

FN ~gN =

(
IN/2 DN/2

IN/2 −DN/2

)(
FN/2 0

0 FN/2

)(
~g1N/2
~g2N/2

)
, (3.22)

where ~g1N/2 and ~g2N/2 are the odd and even components of the vector ~gN . Moreover FN/2 is
the Fourier transform of size N/2, IN/2 = diagN/2(1, 1, . . . , 1) the identity matrix of size N/2

3.2. FAST FOURIER TRANSFORM 19

and DN/2 the diagonal matrix DN/2 = diagN/2(1, ωN , . . . , ω
N/2−1
N), with ωN = exp(−i2π/N).

Transforming expression (3.22) further we can write

FN ~gN =

(
IN/2 IN/2
IN/2 −IN/2

)(
IN/2 0

0 DN/2

)(
FN/2 0

0 FN/2

)
P2,N ~gN (3.23)

where P2,N is a permutation matrix reordering the vector components into 2 blocks (even and
odd). Since the Fourier operators FN are symmetric we can write the factor 2 decomposition
also in the form

FN ~gN =
[
F2 ⊗ IN/2

]
D2

[
I2 ⊗FN/2

]
P2,N ~gN , (3.24)

where the direct matrix products
[
F2 ⊗ IN/2

]
and

[
I2 ⊗FN/2

]
are defined as the following block

matrices[
F2 ⊗ IN/2

]
=

(
IN/2 IN/2
IN/2 −IN/2

)
and

[
I2 ⊗FN/2

]
=

(
FN/2 0

0 FN/2

)
. (3.25)

The diagonal matrix D2 is given by diag2(IN/2, DN/2). Using this decomposition we can reduce
the order of the Fourier operator by two. Taking the Fourier operator F4 as first example we
get

F4 ~g4 =

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ~g4 (3.26)

As we see the Fourier operator is decomposed into sparse matrices of a very simple form. For
matrix entries with a 0 the multiplication and summation can be skipped. For entries with 1,
−1, i and −i multiplication can be skipped. Only signs have to be changed and if needed real
parts have to be shifted to imaginary parts and vice versa. It is also possible to reduce the
order of Fourier operators by a factor of 4. In this case the decomposition reads

FN ~gN =
[
F4 ⊗ IN/4

]
D4

[
I4 ⊗FN/4

]
P4,N ~gN , (3.27)

where

[
F4 ⊗ IN/4

]
=

IN/4 IN/4 IN/4 IN/4
IN/4 −iIN/4 −IN/4 iIN/4
IN/4 −IN/4 IN/4 −IN/4
IN/4 iIN/4 −IN/4 −iIN/4

 (3.28)

(3.29)

[
I4 ⊗FN/4

]
=

FN/4 0 0 0

0 FN/4 0 0
0 0 FN/4 0
0 0 0 FN/4

 and (3.30)

(3.31)

D4 = diag4
(
IN/4, DN/4, D

2
N/4, D

3
N/4

)
. (3.32)

The permutation matrix P4,N maps the input vector ~gN to
[
~g1N/4, ~g

2
N/4, ~g

3
N/4, ~g

4
N/4

]
, a 4-component

vector, with the k−th components ~gkN/4 = [k, k + 4, k + 8, . . . , k + (N/4− 1) 4]. TakingN = 8
as example and writing P4,8 ~g8 as a 4-component vector we get

F8 ~g8 =
1

4

I2 I2 I2 I2
I2 −iI2 −I2 iI2
I2 −I2 I2 −I2
I2 iI2 −I2 −iI2

I2 0 0 0
0 D2 0 0
0 0 D2

2 0
0 0 0 D3

2

F2 0 0 0
0 F2 0 0
0 0 F2 0
0 0 0 F2

~g12
~g22
~g32
~g42

 ,
(3.33)

20 CHAPTER 3. THE PSEUDO-SPECTRAL METHOD

with

D2 =

(
1 0
0 ω

)
, ~gk2 =

(
gk
gk+4

)
and ω =

√
2

1− i
2

. (3.34)

Finally the FFT-scheme of CAT includes a factor 8 decomposition

FN ~gN =
[
F8 ⊗ IN/8

]
D8

[
I8 ⊗FN/8

]
P8,N ~gN , (3.35)

with
D8 = diag8

(
IN/8, DN/8, D

2
N/8, D

3
N/8D

4
N/8, D

5
N/8, D

6
N/8, D

7
N/8

)
. (3.36)

Using the property that the fourier transform is a symmetric operator FTN = FN the above
factorizations can also be written equivalently in different forms. For the factor 2, 4 and 8
decompositions we get

FN ~gN = P T
2,N

[
I2 ⊗FN/2

]
D2

[
F2 ⊗ IN/2

]
~gN , (3.37)

FN ~gN = P T
4,N

[
I4 ⊗FN/4

]
D4

[
F4 ⊗ IN/4

]
~gN and (3.38)

FN ~gN = P T
8,N

[
I8 ⊗FN/8

]
D8

[
F8 ⊗ IN/8

]
~gN . (3.39)

The numerical implementation decomposes the original FFT operator FN of order N recursively
to a product of operators which only contain elmentary FFT operators FNk where the orders
Nk are small prime numbers. In CAT the orders of the elementary operators used in the
decomposition are Nk = 2, 4, 8. The inverse FFT can be decomposed in the same way as the
forward FFT

F−1N ~gN =
[
F−12 ⊗ IN/2

]
D−12

[
I2 ⊗F−1N/2

]
P2,N~gN , (3.40)

F−1N ~gN =
[
F−14 ⊗ IN/4

]
D−14

[
I4 ⊗F−1N/4

]
P4,N~gN and (3.41)

F−1N ~gN =
[
F−18 ⊗ IN/8

]
D−18

[
I8 ⊗F−1N/8

]
P8,N~gN . (3.42)

Moreover we can again use the symmetry of the inverse FFT F−1N = F−1 T
N to get the equivalent

decomposition

F−1N ~gN = P T
2,N

[
I2 ⊗F−1N/2

]
D−12

[
F−12 ⊗ IN/2

]
~gN , (3.43)

F−1N ~gN = P T
4,N

[
I4 ⊗F−1N/4

]
D−14

[
F−14 ⊗ IN/4

]
~gN and (3.44)

F−1N ~gN = P T
8,N

[
I8 ⊗F−1N/8

]
D−18

[
F−18 ⊗ IN/8

]
~gN . (3.45)

Due to the sparse matrices with the special direct product structure it is much more efficient
to implement the FFT operator decompositions given in euqations (3.22) to (3.35) or (3.37) to
(3.39) not as matrix operators but directly as permuations of memory addresses and hard-coded
arithmetic operations.

Text FFT Edilbert?

3.3 The grid representation in CAT

In physical space all fields g(x, y) are real and are represented on a regular grid. Figure 3.1
shows the grid for a horizontal resolution of ngx = ngy = 16. Grid point fields read or written
by CAT are given in this format. The corresponding fields in spectral space are complex.
Internally in CAT they are either represented as complex c(kx, ky) or as real f(kx, ky) fields.
Plate (a) in figure 3.2 shows the wave number grid for the internal complex representation

3.3. THE GRID REPRESENTATION IN CAT 21

 ngx

ngy

X

Y

1

2

1 2

3

3

g(x,y)

Figure 3.1: In physical space functions g(x, y) are represented on a regular grid with ngx grid
points in x-direction and ngy grid points in y-direction. At present in CAT only the default
ngx = ngy is implemented.

0

k
x

k
y

c(k
x
,k

y
)

-1

nky

0

-nky

1 nkx

1

-2

a)

2k
x

k
y

[R(c(k
x
,k

y
)) | I(c(k

x
,

k

y
))]

b)

0

-1

nky

1

-2

-nky

R(0)

I(0)

R(1)

I(1)
R(nkx)

I(nkx)

f(2k
x
,k

y
) =

Figure 3.2: Functions in spectral space are represented either as complex fields c (plate a) or
as real fields f containing in the first spectral coordinate kx the real and imaginary parts of c
in an alternating series (plate b).

22 CHAPTER 3. THE PSEUDO-SPECTRAL METHOD

0

k
x

k
y

c(k
x
,k

y
)

-1

nky

0

-nky

1 nkx

1

-2

a)

-nky

k
x

k
y

amp(c(k
x
,k

y
))

nky

0

0

-1

 1

1 nkx -1 -nkx

b)

pha(c(k
x
,k

y
))

Figure 3.3: Internally (plate a) complex spectral fields c are defined on the non-centered wave
number grid given by (3.46). To visualize complex spectral fields (plate b) amplitudes amp(c)
and phases pha(c) are sent to the graphical user interface (GUI) on the centered wave-number
grid given by (3.48).

c(kx, ky) of spectral fields. Due to the symmetry properties 3.6 it is sufficient to represent the
spectral fields c only on half of the wave number space, i.e. only for the wave numbers

(kx, ky) ∈ { kx ∈ [0, 1, . . . nkx] and ky ∈ [0, . . . , nky,−nky, . . . ,−1]}. (3.46)

As described above we use the 2/3-truncation, so that the bounds nkx and nky are given by

nkx = ngx/3 and nky = ngy/3, (3.47)

where the non-integer part of the division is omitted. In our example ngx = 8 from above
nkx = nky = 16. The wave-numbers in y-direction are not centered around zero. Plate (b) of
figure 3.2 shows the internal real representation f(kx, ky) of spectral fields. In y-direction the
spectral grid is the same for the complex c and the real representation f . In x-direction the
number of coordinate points is doubled for the real representation. Even coordinates starting
from 0 hold the real part R(c(kx, ky)) and the odd coordinates starting from 1 the imaginary
part I(c(kx, ky)) of the complex fields c(kx, ky). This is the format CAT reads in or writes out
spectral fields. Prescribing complex spectral fields c(kx, ky) in CAT it is important to keep in
mind that on the ky-axis (kx = 0) values are not arbitrary, otherwise unphysical complex fields
are created in grid point (physical) space. First c(0, 0) has to be real, they are the average of the
field g(x, y) in physical space. In the case of vorticity cq we get in the special case of a doubly
periodic domain cq(0, 0) = 0. For the remaining values (0, ky) the symmetry properties 3.6 have
to be satisfied, i.e. on the ky-axis spectral fields must satisfy the condition c(0, ky) = c∗(0,−ky).
In the Graphical User Interface (GUI) spectral fields are visualized on a centerd wave-number

3.4. EVOLUTION EQUATIONS IN FOURIER SPACE 23

grid
(kx, ky) ∈ { kx ∈ [−nkx, . . . , nkx] and ky ∈ [−nky, . . . , nky] }. (3.48)

Visualized are the amplitudes amp(c) and phases pha(c) of the complex fields

amp(kx, ky) =
√
R2(c) + I2(c) and pha(kx, ky) = tan−1(

I(c)

R(c)
). (3.49)

By the symmetry properties 3.6 of spectral fields c the amplitudes amp(c) are symmetric with
respect to the ky-axis and the phases pha(c) are point symmetric with respect to the origin
(0, 0) of the grid of wave numbers. For visualization amplitudes amp and phases pha are thus
represented on the left half space of centered wave numbers denoted by the solid bold black
grid given in plate (b) of figure 3.3 including the ky-axis.

Using the amplitudes amp(kx, ky) and phases pha(kx, ky) defined on the grid (3.46) one can
represent a complex field c(kx, ky) as follows

c(kx, ky) = amp(c(kx, ky)) exp [i pha(c(kx, ky))] . (3.50)

This representation is used to define forcing fields in spectral space.

3.4 Evolution equations in Fourier space

The basic advantage of the Fourier representation is that differential operators as ∂x, ∂y, ∂x∂y,
∇, ∆ are transformed to simple multiplication operators ikx, iky/r, −kxky/r ,(ikx, iky/r),
−(k2x +k2y/r

2) in spectral space with i =
√
−1. Differential equations in physical space are thus

reduced to algebraic equations in spectral space.
In the Fourier space it is now straight forward to determine the stream function ψ̂(kx, ky, t)

and the corresponding velocity fields û(kx, ky, t) and v̂(kx, ky, t) once the vorticity field q̂(kx, ky, t)
is known. The vorticity equation (1.12) of the quasi-2D rotating case reduces to

−
(
k2x +

k2y
r2

+ α2

)
ψ̂(kx, ky, t) = q̂(kx, ky, t), (3.51)

which in the case for α 6= 0 can always be solved for the stream function

ψ̂(kx, ky, t) = − 1

k2x + k2y/r
2 + α2

q̂(kx, ky, t). (3.52)

In the case α = 0 equation (3.52) is still valid except for the zero mode. Here we set ψ̂(0, 0, t) =
0, which is consistent with the definition (1.13) of the stream function and the double periodic
boundary conditions. Further the velocity field is simply given by

û(kx, ky, t) = −iky
r
ψ̂(kx, ky, t) = i

ky/r

k2x + k2y/r
2 + α2

q̂(kx, ky, t) (3.53)

and

v̂(kx, ky, t) = ikx ψ̂(kx, ky, t) = −i kx
k2x + k2y/r

2 + α2
q̂(kx, ky, t). (3.54)

In spectral space the evolution equations of the general quasi-2D rotating case can be
separated into individual ordinary differential equations. For every wave number pair k =
(kx, ky) we get

d

dt
q̂k = i

kxβ

k2x + k2y/r
2 + α2

q̂k − Ĵk + F̂k + D̂k. (3.55)

24 CHAPTER 3. THE PSEUDO-SPECTRAL METHOD

For vanishing Jacobian, Forcing and Dissipation terms we get a linear equation

d

dt
q̂k = i

kxβ

k2x + k2y/r
2 + α2

q̂k (3.56)

which can be solved exactly

q̂k(t) = exp

[
i

kxβ

k2x + k2y/r
2 + α2

∆t

]
q̂k(t0), (3.57)

with q̂k(t0) the initial condition at time t0 and the time interval ∆t = t − t0. The β-term
induces a wave number dependend phase-shift. If one includes a linear dissipation term D̂k the
evolution equation can still be solved exactly (see subsection 3.6). The Jacobian Ĵk, forcing F̂k

and dissipation D̂k terms are described in detail below.

3.5 Jacobian

The non-linearity of the Jacobian makes it numerically too expensive to solve it exclusively in
spectral space. The individual terms in the products of the Jacobian are first differentiated in
spectral space and then transformed back to the physical space. There the terms are multiplied
and the products are then transformed back to spectral space. Due to this back and forth
transfomations the method is not purely spectral and is called pseudo-spectral method, see e.g.
Kreiss and Oliger [1972] and Orszag [1972]. Due to the products the higher wave numbers have
to be filtered out. In CAT trunction is used, see above.

We present three different forms of the Jacobian J in physical space, see equations (1.6), (1.7)
and (1.8). Using the pseudo-spectral method for each form we get a different representation of
the Jacobian Ĵ in spectral space.

For the Jacobian (1.6) of the first form

J(ψ, ζ) = J(ψ, q) = ∂xψ ∂yq − ∂xq ∂yψ = [v ∂yq + u ∂xq] , (3.58)

one proceeds as follows. First the individual differential terms are determined in spectral
space using the fourier transform of vorticity, and the spectral representation of the differential
operators. We get

F(∂xψ) = ikx F(ψ) = F(v) = − i
kx

k2x + k2y + α
F(q), F(∂yq) = iky F(q) (3.59)

F(∂yψ) = iky F(ψ) = −F(u) = − i
ky

k2x + k2y + α
F(q), F(∂xq) = ikx F(q). (3.60)

Next all four terms defined by equations (3.59) and (3.60) are transformed to physical space.
In physical space the Jacobian J(ψ, ζ) is then calculated following the definition (3.58) and
finally transformed back to spectral space. The Jacobian in spectral space Ĵ is given by

Ĵ = F(v∂yq)−F(u∂xq). (3.61)

Combining all necessary steps we can write

Ĵ = F
(
F−1

(
− i

kx
k2x + k2y + α

q̂

)
F−1 (iky q̂)

)

− F
(
F−1

(
i

ky
k2x + k2y + α

q̂

)
F−1 (ikx q̂)

)
, (3.62)

3.6. DISSIPATION 25

where q̂ is the vorticity in spectral space, the starting point for a new time step. As can be seen
one needs 6 2-FFT operations to determine the Jacobian. The components of the Jacobian Ĵk
are then used to determine the time evolution of the different wave number components of the
vorticity q̂k, see equation (3.55).

In the flux form of the evolution equation (1.7) the second form of the Jacobian arises

J(ψ, q) = ∂x(u q) + ∂x(v q). (3.63)

Following again equations (3.59) and (3.60) we determine F(u) and F(v). Then F(u), F(v)
and F(q) are transformed to the physical space,where the products uq and vq are formed.
Finally the products are transformed back to spectral space where they are differentiated. The
Jacobian Ĵ in spectral space is then given by

Ĵ = ikx F(uq) + iky F(vq). (3.64)

Combining again all necessary steps we can write

Ĵ = ikx F
(
F−1

(
i

ky
k2x + k2y + α

q̂

)
F−1 (q̂)

)

+ iky F
(
F−1

(
− i

kx
k2x + k2y + α

q̂

)
F−1 (q̂)

)
. (3.65)

As we can see the Jacobian in spectral space Ĵ can now be determined by 5 FFT operations.
The third form of the Jacobian used in equation (1.8) is given by

J(ψ, q) = ∂x∂y
(
v2 − u2

)
+ ∂2x∂

2
yuv. (3.66)

In this representation it is possible to reduce the number of FFT operations from 5 to 4. We
first have to determine û and v̂ following equations (3.59) and (3.59) and then to transform
them to physical space where the products v2 − u2 and uv are formed. Finally we have to
transform them back to spectral space where they are differentiated. The Jacobian in spectral
space Ĵ is given by

Ĵ = −kxky F(v2 − u2) + k2xk
2
yF(uv) (3.67)

or by combining all necessary steps

Ĵ = − kxky F

[F−1 (− i
kx

k2x + k2y + α
q̂

)]2
−
[
F−1

(
i

ky
k2x + k2y + α

q̂

)]2
+ k2xk

2
y F

(
F−1

(
i

ky
k2x + k2y + α

q̂

)
F−1

(
− i

kx
k2x + k2y + α

q̂

))
. (3.68)

One can also use hybrid forms of the Jacobian which are a linear combination of the three forms
given above.

3.6 Dissipation

In CAT the default parameterization of viscosity (internal dissipation) and friction (dissipation
at the horizontal boundaries of the fluid) is based on positive and negative powers of the
Laplacian (see equation 1.15). In spectral space the dissipation operator is given by the linear
superposition

D̂kq̂k = −
[
σ
(
k2x + k2y

)pσ
+ λ

(
k2x + k2y

)pλ]
q̂k. (3.69)

26 CHAPTER 3. THE PSEUDO-SPECTRAL METHOD

Using the definitions σ and λ of (1.17) we can write the dissipation operator (3.69) in the form

D̂kq̂k = −
[

1

tσ

(
1

kσ

)2pσ (
k2x + k2y

)pσ
+

1

tλ

(
1

kλ

)2pλ (
k2x + k2y

)pλ]
q̂k. (3.70)

Mind that pλ ≤ 0. A dissipation term based on the superposition of powers of Laplacian is a
multiplication operator in the spectral space. Introducing the radius rk =

√
k2x + k2y in spectral

space the dissipation operator can be written as

D̂kq̂k = −
[
σ r2pσk + λ r2pλk

]
q̂k. (3.71)

Using linear superpositions of different powers of the Laplacian as defined in (1.18) we get in
Fourier space the more general dissipation operator

D̂kq̂k =
nmax∑
n=1

D̂k,nq̂k, with D̂k,nq̂k = −
[
σn−1 r

2(n−1)
k + λn r

−2n
k

]
q̂k. (3.72)

Including the dissipation operator described above into the equation (3.56) we get for every
wave number k the linear evolution equation

d

dt
q̂k =

[
i

kxβ

k2x + k2y/r
2 + α2

−
nmax∑
n=1

[
σn−1r

2(n−1)
k + λnr

−2n
k

]]
q̂k, (3.73)

which has the exact solution

q̂k(t) = exp

[
i

kxβ

k2x + k2y/r
2 + α2

∆t

]
exp

[
−

nmax∑
n=1

(
σn−1r

2(n−1)
k + λnr

−2n
k

)
∆t

]
q̂k(t0), (3.74)

with q̂k(t0) the initial condition at time t0 and the time interval ∆t = t − t0. As the solution
(3.74) shows the dissipation operator introduces a wave-number dependent exponential damping
without phase shift.

Considering the connection between convolutions and Fourier transforms f ∗ g = f̂ ĝ the
dissipation operator can be seen as a special spectral filter. Using the filter approach one can
introduce more general dissipation operators. Figure 3.4 shows a a simple cut-off filter given
by

q̂k(t) =

{
q̂k(t) for k with rmin ≤ |rk| ≤ rmax
0 otherwise.

(3.75)

With higher order exponential functions one can create a smoothed cut-off filter.

3.7 Forcing

3.8 Time-stepping schemes

3.8. TIME-STEPPING SCHEMES 27

k
x

k
y

-1
-2

-nky

nky

1
0

0

rmax

nkx

c(k
x
,k

y
)

rmax

a) b)

rk

1

1
0

1

~

0

 0.99

rmax

Figure 3.4: Cut-off (plate a) and gaussian filter (plate b) in spectral space.

28 CHAPTER 3. THE PSEUDO-SPECTRAL METHOD

Chapter 4

Predefined simulations, test cases and
performance

In CAT different series of predefined simulations are implemented. They comprise simple
idealized examples allowing the study of basic propeties of 2D and rotating balanced flows.
Further simulations of previous studies are included allowing the reproduction reference cases.

4.1 Initial Value Problems in Physical Space

Initial value problems in physical space simulate the time evolution of vorticity (potential vor-
ticity) distributions prescribed in physical space under the action of dissipation. The predefined
simulations can be seen on the one hand as illustrative examples for teaching purposes and on
the other hand as starting point for new and more general simulations.

4.1.1 Top Hat Jet: Option sim = "jet01"

4.1.2 Gaussian Jet: Option sim = "jet02"

4.1.3 Fourier Jet: Option sim = "jet03"

4.1.4 Circular Top Hat Jet: Option sim = "jet04"

4.1.5 Circular Gaussian Jet: Option sim = "jet05"

4.1.6 Circular Fourier Jet: Option sim = "jet06"

4.1.7 Elliptical Vortex Patches: Option sim = "vor01"

4.1.8 Elliptical Gaussian Vortices: Option sim = "vor02"

4.2 Initial Value Problems in Spectral Space

Initial value problems in spectral space simulate the time evolution of vorticity (potential
vorticity) distributions prescribed in spectral space under the action of dissipation. This class
of simulations contains as a special case the classical decaying turbulence experiments.

29

30 CHAPTER 4. PREDEFINED SIMULATIONS, TEST CASES AND PERFORMANCE

4.2.1 discs in Fourier Space: Option sim = "dec01"

4.2.2 Rings in Fourier Space: Option sim = "dec01"

4.3 Forced decaying flows

Part III

Using CAT

31

Chapter 5

Implementing CAT

33

34 CHAPTER 5. IMPLEMENTING CAT

Chapter 6

Running CAT

35

36 CHAPTER 6. RUNNING CAT

Chapter 7

Analysing CAT output

37

38 CHAPTER 7. ANALYSING CAT OUTPUT

Chapter 8

Modifying CAT

39

40 CHAPTER 8. MODIFYING CAT

Part IV

Appendix

41

Appendix A

Namelists and parameters

To set-up a CAT simulation different types of namelists are available. A CAT namelist cat nl
to control the numerics and physics of CAT simulations in general and a simulation namelist
sim nl which specifies a list of predefined simulations.

CAT control: cat nl
We have subdivided the control parameters of CAT into a group of model numerics and model
physics.

Model set-up
parameter default options, description and type
nx 64 grid points in x-direction (integer)
ny 64 grid points in y-direction (integer) [not active ny = nx]
nl 1 number of layers (integer) [not active]
nsteps 10000 number of time steps to be integrated (integer)
ngp 100 time steps between output of grid-point

fields (integer)
nsp 100 time steps between output of spectral

fields (integer)
ngui 1 1/0 graphical user interface on/off (integer)

Physics
parameter default options and description
jac mthd 1 approximation method of Jacobian

0 : no Jacobian
1 : divergence form

Postprocessing
parameter default options and description
npost 0 1/0 additional postprocessing on/off

Predefined simulations: sim nl
With activated predefined

Simulations

43

44 APPENDIX A. NAMELISTS AND PARAMETERS

parameter default options and description
sim "dec01" class of predefined simulations (character array)

"dec01" : decaying turbulence

"for01" : forced decaying turbulence

"jet01" : top-hat jet

"vor01" : gaussian elliptical vortex

Appendix B

Moduls and basic model variables

45

46 APPENDIX B. MODULS AND BASIC MODEL VARIABLES

Appendix C

Structure of code and flow scheme

47

48 APPENDIX C. STRUCTURE OF CODE AND FLOW SCHEME

Bibliography

G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp,
1967.

A. Bracco and J. C. McWilliams. Reynolds-number dependency in homogeneous, stationary
two-dimensional turbulence. J. Fluid Mech., 646:517–526, 2010.

C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zhang. Spectral Methods in Fluid
Dynamics. Spinger Series in Computational Physics. Spinger, Spinger-Verlag Berlin Hei-
delberg, 1988.

S. Danilov and D. Gurarie. Quasi-two-dimensional turbulence. Physics-Uspekhi, 43:863–900,
2000.

S. Danilov and D. Gurarie. Forced two-dimensional turbulence in spectral and physical space.
Phys. Rev. E, 63:061208, 2001.

B. Fornberg. The pseudospectral method: Comparison with finite differences for the elastic
wave equation. Geophysics, 52:483–501, 1987.

G.J.F. Van Heijst. Topography Effects on Vortices in a Rotating Fluid. Meccanica, 29:431–451,
1994.

H. Johnston and J.-G. Liu. Accurate, stable and efficient Navier-Stokes solvers based on explicit
treatment of the pressure term. J. Comput. Phys., 199:221–259, 2004.

H.-O. Kreiss and J. Oliger. Comparison of accurate methods for the integration of hyperbolic
equations. Tellus, 24:199–215, 1972.

S. Orszag. Comparison of pseudospectral and spectral approximation. Stud. Appl. Math., 51:
253–259, 1972.

49

