# -*- mode: python; coding: utf-8 -*-
# Copyright (c) 2018 Radio Astronomy Software Group
# Licensed under the 2-clause BSD License
"""Commonly used utility functions."""
import copy
import re
import warnings
from collections.abc import Iterable
from copy import deepcopy
import erfa
import numpy as np
from astropy import units
from astropy.coordinates import Angle, Distance, EarthLocation, SkyCoord
from astropy.coordinates.matrix_utilities import rotation_matrix
from astropy.time import Time
from astropy.utils import iers
from scipy.spatial.distance import cdist
from . import _utils
try:
from lunarsky import MoonLocation
from lunarsky import Time as LTime
LUNAR_RADIUS = MoonLocation._lunar_radius
hasmoon = True
except ImportError:
hasmoon = False
__all__ = [
"POL_STR2NUM_DICT",
"POL_NUM2STR_DICT",
"CONJ_POL_DICT",
"JONES_STR2NUM_DICT",
"JONES_NUM2STR_DICT",
"LatLonAlt_from_XYZ",
"XYZ_from_LatLonAlt",
"rotECEF_from_ECEF",
"ECEF_from_rotECEF",
"ENU_from_ECEF",
"ECEF_from_ENU",
"phase_uvw",
"unphase_uvw",
"uvcalibrate",
"apply_uvflag",
"get_lst_for_time",
"polstr2num",
"polnum2str",
"jstr2num",
"jnum2str",
"parse_polstr",
"parse_jpolstr",
"conj_pol",
"reorder_conj_pols",
"baseline_to_antnums",
"antnums_to_baseline",
"baseline_index_flip",
"get_baseline_redundancies",
"get_antenna_redundancies",
"collapse",
"mean_collapse",
"absmean_collapse",
"quadmean_collapse",
"or_collapse",
"and_collapse",
]
# fmt: off
# polarization constants
# maps polarization strings to polarization integers
POL_STR2NUM_DICT = {"pI": 1, "pQ": 2, "pU": 3, "pV": 4,
"I": 1, "Q": 2, "U": 3, "V": 4, # support straight stokes names
"rr": -1, "ll": -2, "rl": -3, "lr": -4,
"xx": -5, "yy": -6, "xy": -7, "yx": -8,
"hh": -5, "vv": -6, "hv": -7, "vh": -8}
# maps polarization integers to polarization strings
POL_NUM2STR_DICT = {1: "pI", 2: "pQ", 3: "pU", 4: "pV",
-1: "rr", -2: "ll", -3: "rl", -4: "lr",
-5: "xx", -6: "yy", -7: "xy", -8: "yx"}
# maps how polarizations change when antennas are swapped
CONJ_POL_DICT = {"xx": "xx", "yy": "yy", "xy": "yx", "yx": "xy",
"ee": "ee", "nn": "nn", "en": "ne", "ne": "en",
"rr": "rr", "ll": "ll", "rl": "lr", "lr": "rl",
"I": "I", "Q": "Q", "U": "U", "V": "V",
"pI": "pI", "pQ": "pQ", "pU": "pU", "pV": "pV"}
# maps jones matrix element strings to jones integers
# Add entries that don't start with "J" to allow shorthand versions
JONES_STR2NUM_DICT = {"Jxx": -5, "Jyy": -6, "Jxy": -7, "Jyx": -8,
"xx": -5, "x": -5, "yy": -6, "y": -6, "xy": -7, "yx": -8,
"Jrr": -1, "Jll": -2, "Jrl": -3, "Jlr": -4,
"rr": -1, "r": -1, "ll": -2, "l": -2, "rl": -3, "lr": -4}
# maps jones integers to jones matrix element strings
JONES_NUM2STR_DICT = {-1: "Jrr", -2: "Jll", -3: "Jrl", -4: "Jlr",
-5: "Jxx", -6: "Jyy", -7: "Jxy", -8: "Jyx"}
# maps uvdata pols to input feed polarizations
POL_TO_FEED_DICT = {"xx": ["x", "x"], "yy": ["y", "y"],
"xy": ["x", "y"], "yx": ["y", "x"],
"ee": ["e", "e"], "nn": ["n", "n"],
"en": ["e", "n"], "ne": ["n", "e"],
"rr": ["r", "r"], "ll": ["l", "l"],
"rl": ["r", "l"], "lr": ["l", "r"]}
# fmt: on
def _get_iterable(x):
"""Return iterable version of input."""
if isinstance(x, Iterable):
return x
else:
return (x,)
def _fits_gethduaxis(hdu, axis):
"""
Make axis arrays for fits files.
Parameters
----------
hdu : astropy.io.fits HDU object
The HDU to make an axis array for.
axis : int
The axis number of interest (1-based).
Returns
-------
ndarray of float
Array of values for the specified axis.
"""
ax = str(axis)
axis_num = hdu.header["NAXIS" + ax]
val = hdu.header["CRVAL" + ax]
delta = hdu.header["CDELT" + ax]
index = hdu.header["CRPIX" + ax] - 1
return delta * (np.arange(axis_num) - index) + val
def _fits_indexhdus(hdulist):
"""
Get a dict of table names and HDU numbers from a FITS HDU list.
Parameters
----------
hdulist : list of astropy.io.fits HDU objects
List of HDUs to get names for
Returns
-------
dict
dictionary with table names as keys and HDU number as values.
"""
tablenames = {}
for i in range(len(hdulist)):
try:
tablenames[hdulist[i].header["EXTNAME"]] = i
except (KeyError):
continue
return tablenames
def _get_fits_extra_keywords(header, keywords_to_skip=None):
"""
Get any extra keywords and return as dict.
Parameters
----------
header : FITS header object
header object to get extra_keywords from.
keywords_to_skip : list of str
list of keywords to not include in extra keywords in addition to standard
FITS keywords.
Returns
-------
dict
dict of extra keywords.
"""
# List standard FITS header items that are still should not be included in
# extra_keywords
# These are the beginnings of FITS keywords to ignore, the actual keywords
# often include integers following these names (e.g. NAXIS1, CTYPE3)
std_fits_substrings = [
"HISTORY",
"SIMPLE",
"BITPIX",
"EXTEND",
"BLOCKED",
"GROUPS",
"PCOUNT",
"GCOUNT",
"BSCALE",
"BZERO",
"NAXIS",
"PTYPE",
"PSCAL",
"PZERO",
"CTYPE",
"CRVAL",
"CRPIX",
"CDELT",
"CROTA",
"CUNIT",
]
if keywords_to_skip is not None:
std_fits_substrings.extend(keywords_to_skip)
extra_keywords = {}
# find all the other header items and keep them as extra_keywords
for key in header:
# check if key contains any of the standard FITS substrings
if np.any([sub in key for sub in std_fits_substrings]):
continue
if key == "COMMENT":
extra_keywords[key] = str(header.get(key))
elif key != "":
extra_keywords[key] = header.get(key)
return extra_keywords
def _check_history_version(history, version_string):
"""Check if version_string is present in history string."""
if version_string.replace(" ", "") in history.replace("\n", "").replace(" ", ""):
return True
else:
return False
def _check_histories(history1, history2):
"""Check if two histories are the same."""
if history1.replace("\n", "").replace(" ", "") == history2.replace(
"\n", ""
).replace(" ", ""):
return True
else:
return False
def _combine_history_addition(history1, history2):
"""
Find extra history to add to have minimal repeats.
Parameters
----------
history1 : str
First history.
history2 : str
Second history
Returns
-------
str
Extra history to add to first history.
"""
# first check if they're the same to avoid more complicated processing.
if _check_histories(history1, history2):
return None
hist2_words = history2.split(" ")
add_hist = ""
test_hist1 = " " + history1 + " "
for i, word in enumerate(hist2_words):
if " " + word + " " not in test_hist1:
add_hist += " " + word
keep_going = i + 1 < len(hist2_words)
while keep_going:
if (hist2_words[i + 1] == " ") or (
" " + hist2_words[i + 1] + " " not in test_hist1
):
add_hist += " " + hist2_words[i + 1]
del hist2_words[i + 1]
keep_going = i + 1 < len(hist2_words)
else:
keep_going = False
if add_hist == "":
add_hist = None
return add_hist
def _test_array_constant(array, tols=None):
"""
Check if an array contains constant values to some tolerance.
Uses np.isclose on the min & max of the arrays with the given tolerances.
Parameters
----------
array : np.ndarray or UVParameter
UVParameter or array to check for constant values.
tols : tuple of float, optional
length 2 tuple giving (rtol, atol) to pass to np.isclose, defaults to (0, 0) if
passing an array, otherwise defaults to using the tolerance on the UVParameter.
Returns
-------
bool
True if the array is constant to the given tolerances, False otherwise.
"""
# Import UVParameter here rather than at the top to avoid circular imports
from pyuvdata.parameter import UVParameter
if isinstance(array, UVParameter):
array_to_test = array.value
if tols is None:
tols = array.tols
else:
array_to_test = array
if tols is None:
tols = (0, 0)
assert isinstance(tols, tuple), "tols must be a length-2 tuple"
assert len(tols) == 2, "tols must be a length-2 tuple"
if array_to_test.size == 1:
# arrays with 1 element are constant by definition
return True
# if min and max are equal don't bother with tolerance checking
if np.min(array_to_test) == np.max(array_to_test):
return True
return np.isclose(
np.min(array_to_test), np.max(array_to_test), rtol=tols[0], atol=tols[1]
)
def _test_array_constant_spacing(array, tols=None):
"""
Check if an array is constantly spaced to some tolerance.
Calls _test_array_constant on the np.diff of the array.
Parameters
----------
array : np.ndarray or UVParameter
UVParameter or array to check for constant spacing.
tols : tuple of float, optional
length 2 tuple giving (rtol, atol) to pass to np.isclose, defaults to (0, 0) if
passing an array, otherwise defaults to using the tolerance on the UVParameter.
Returns
-------
bool
True if the array spacing is constant to the given tolerances, False otherwise.
"""
# Import UVParameter here rather than at the top to avoid circular imports
from pyuvdata.parameter import UVParameter
if isinstance(array, UVParameter):
array_to_test = array.value
if tols is None:
tols = array.tols
else:
array_to_test = array
if tols is None:
tols = (0, 0)
assert isinstance(tols, tuple), "tols must be a length-2 tuple"
assert len(tols) == 2, "tols must be a length-2 tuple"
if array_to_test.size <= 2:
# arrays with 1 or 2 elements are constantly spaced by definition
return True
array_diff = np.diff(array_to_test)
return _test_array_constant(array_diff, tols=tols)
def _check_flex_spw_contiguous(spw_array, flex_spw_id_array):
"""
Check if the spectral windows are contiguous for flex_spw datasets.
This checks the flex_spw_id_array to make sure that all channels for each
spectral window are together in one block, versus being interspersed (e.g.,
channel #1 and #3 is in spw #1, channels #2 and #4 are in spw #2). In theory,
UVH5 and UVData objects can handle this, but MIRIAD, MIR, UVFITS, and MS file
formats cannot, so we just consider it forbidden.
Parameters
----------
spw_array : array of integers
Array of spectral window numbers, shape (Nspws,).
flex_spw_id_array : array of integers
Array of spectral window numbers per frequency channel, shape (Nfreqs,).
"""
exp_spw_ids = np.unique(spw_array)
# This is an internal consistency check to make sure that the indexes match
# up as expected -- this shouldn't error unless someone is mucking with
# settings they shouldn't be.
assert np.all(np.unique(flex_spw_id_array) == exp_spw_ids), (
"There are some entries in flex_spw_id_array that are not in spw_array. "
"This is a bug, please report it in an issue."
)
n_breaks = np.sum(flex_spw_id_array[1:] != flex_spw_id_array[:-1])
if (n_breaks + 1) != spw_array.size:
raise ValueError(
"Channels from different spectral windows are interspersed with "
"one another, rather than being grouped together along the "
"frequency axis. Most file formats do not support such "
"non-grouping of data."
)
def _check_freq_spacing(
freq_array,
freq_tols,
channel_width,
channel_width_tols,
flex_spw,
future_array_shapes,
spw_array,
flex_spw_id_array,
raise_errors=True,
):
"""
Check if frequencies are evenly spaced and separated by their channel width.
This is a requirement for writing uvfits & miriad files.
Parameters
----------
freq_array : array of float
Array of frequencies, shape (1, Nfreqs) or (Nfreqs,) if future_array_shapes=True
freq_tols : tuple of float
freq_array tolerances (from uvobj._freq_array.tols).
channel_width : float or array of float
Channel widths, either a scalar or an array of shape (Nfreqs,) if flex_spw=True
and/or future_array_shapes=True.
channel_width_tols : tuple of float
channel_width tolerances (from uvobj._channel_width.tols).
future_array_shapes : bool
Indicates that parameters have future shapes.
flex_spw : bool
Indicates there are flexible spectral windows.
spw_array : array of integers or None
Array of spectral window numbers, shape (Nspws,). Required if flex_spw is True.
flex_spw_id_array : array of integers or None
Array of spectral window numbers per frequency channel, shape (Nfreqs,).
Required if flex_spw is True.
raise_errors : bool
Option to raise errors if the various checks do not pass.
Returns
-------
spacing_error : bool
Flag that channel spacings or channel widths are not equal.
chanwidth_error : bool
Flag that channel spacing does not match channel width.
"""
spacing_error = False
chanwidth_error = False
Nfreqs = freq_array.size
if future_array_shapes:
freq_spacing = np.diff(freq_array)
freq_array_use = freq_array
else:
freq_spacing = np.diff(freq_array[0])
freq_array_use = freq_array[0]
if Nfreqs == 1:
# Skip all of this if there is only 1 channel
pass
elif flex_spw:
# Check to make sure that the flexible spectral window has indicies set up
# correctly (grouped together) for this check
_check_flex_spw_contiguous(spw_array, flex_spw_id_array)
diff_chanwidth = np.diff(channel_width)
freq_dir = []
# We want to grab unique spw IDs, in the order that they appear in the data
select_mask = np.append((np.diff(flex_spw_id_array) != 0), True)
for idx in flex_spw_id_array[select_mask]:
chan_mask = flex_spw_id_array == idx
diffs = np.diff(freq_array_use[chan_mask])
if diffs.size > 0:
freq_dir += [np.sign(np.mean(diffs))] * np.sum(chan_mask)
else:
freq_dir += [1.0]
# Pop off the first entry, since the above arrays are diff'd
# (and thus one element shorter)
freq_dir = np.array(freq_dir[1:])
# Ignore cases where looking at the boundaries of spectral windows
bypass_check = flex_spw_id_array[1:] != flex_spw_id_array[:-1]
if not np.all(
np.logical_or(
bypass_check,
np.isclose(diff_chanwidth, 0.0, rtol=freq_tols[0], atol=freq_tols[1]),
)
):
spacing_error = True
if not np.all(
np.logical_or(
bypass_check,
np.isclose(
freq_spacing,
channel_width[1:] * freq_dir,
rtol=freq_tols[0],
atol=freq_tols[1],
),
)
):
chanwidth_error = True
else:
freq_dir = np.sign(np.mean(freq_spacing))
if not _test_array_constant(freq_spacing, freq_tols):
spacing_error = True
if future_array_shapes:
if not _test_array_constant(channel_width, freq_tols):
spacing_error = True
else:
if not np.isclose(
np.mean(freq_spacing),
np.mean(channel_width) * freq_dir,
rtol=channel_width_tols[0],
atol=channel_width_tols[1],
):
chanwidth_error = True
else:
if not np.isclose(
np.mean(freq_spacing),
channel_width * freq_dir,
rtol=channel_width_tols[0],
atol=channel_width_tols[1],
):
chanwidth_error = True
if raise_errors and spacing_error:
raise ValueError(
"The frequencies are not evenly spaced (probably "
"because of a select operation) or has differing "
"values of channel widths. Some file formats "
"(e.g. uvfits, miriad) and methods (frequency_average) "
"do not support unevenly spaced frequencies."
)
if raise_errors and chanwidth_error:
raise ValueError(
"The frequencies are separated by more than their "
"channel width (probably because of a select operation). "
"Some file formats (e.g. uvfits, miriad) and "
"methods (frequency_average) do not support "
"frequencies that are spaced by more than their "
"channel width."
)
return spacing_error, chanwidth_error
def _sort_freq_helper(
Nfreqs,
freq_array,
Nspws,
spw_array,
flex_spw,
flex_spw_id_array,
future_array_shapes,
spw_order,
channel_order,
select_spw,
):
"""
Figure out the frequency sorting order for object based frequency sorting.
Parameters
----------
Nfreqs : int
Number of frequencies, taken directly from the object parameter.
freq_array : array_like of float
Frequency array, taken directly from the object parameter.
Nfreqs : int
Number of spectral windows, taken directly from the object parameter.
spw_array : array_like of int
Spectral window array, taken directly from the object parameter.
flex_spw : bool
Flag indicating whether the object has flexible spectral windows, taken
directly from the object parameter.
flex_spw_id_array : array_like of int
Array of SPW IDs for each channel, taken directly from the object parameter.
future_array_shapes : bool
Flag indicating whether the object uses the future array shapes, taken
directly from the object parameter.
spw_order : str or array_like of int
A string describing the desired order of spectral windows along the
frequecy axis. Allowed strings include `number` (sort on spectral window
number) and `freq` (sort on median frequency). A '-' can be prepended
to signify descending order instead of the default ascending order,
e.g., if you have SPW #1 and 2, and wanted them ordered as [2, 1],
you would specify `-number`. Alternatively, one can supply an index array
of length Nspws that specifies how to shuffle the spws (this is not the desired
final spw order). Default is to apply no sorting of spectral windows.
channel_order : str or array_like of int
A string describing the desired order of frequency channels within a
spectral window. Allowed strings include `freq`, which will sort channels
within a spectral window by frequency. A '-' can be optionally prepended
to signify descending order instead of the default ascending order.
Alternatively, one can supply an index array of length Nfreqs that
specifies the new order. Default is to apply no sorting of channels
within a single spectral window. Note that proving an array_like of ints
will cause the values given to `spw_order` and `select_spw` to be ignored.
select_spw : int or array_like of int
An int or array_like of ints which specifies which spectral windows to
apply sorting. Note that setting this argument will cause the value
given to `spw_order` to be ignored.
Returns
-------
index_array : ndarray of int
Array giving the desired order of the channels to be used for sorting along the
frequency axis
Raises
------
UserWarning
Raised if providing arguments to select_spw and channel_order (the latter
overrides the former).
ValueError
Raised if select_spw contains values not in spw_array, or if channel_order
is not the same length as freq_array.
"""
if (spw_order is None) and (channel_order is None):
warnings.warn(
"Not specifying either spw_order or channel_order causes "
"no sorting actions to be applied. Returning object unchanged."
)
return
# Check to see if there are arguments we should be ignoring
if isinstance(channel_order, (np.ndarray, list, tuple)):
if select_spw is not None:
warnings.warn(
"The select_spw argument is ignored when providing an "
"array_like of int for channel_order"
)
if spw_order is not None:
warnings.warn(
"The spw_order argument is ignored when providing an "
"array_like of int for channel_order"
)
channel_order = np.asarray(channel_order)
if not channel_order.size == Nfreqs or not np.all(
np.sort(channel_order) == np.arange(Nfreqs)
):
raise ValueError(
"Index array for channel_order must contain all indicies for "
"the frequency axis, without duplicates."
)
index_array = channel_order
else:
index_array = np.arange(Nfreqs)
# Multipy by 1.0 here to make a cheap copy of the array to manipulate
temp_freqs = 1.0 * (freq_array if future_array_shapes else freq_array[0, :])
# Same trick for ints -- add 0 to make a cheap copy
temp_spws = 0 + (
flex_spw_id_array if flex_spw else (np.zeros(Nfreqs) + spw_array)
)
# Check whether or not we need to sort the channels in individual windows
sort_spw = {idx: channel_order is not None for idx in spw_array}
if select_spw is not None:
if spw_order is not None:
warnings.warn(
"The spw_order argument is ignored when providing an "
"argument for select_spw"
)
if channel_order is None:
warnings.warn(
"Specifying select_spw without providing channel_order causes "
"no sorting actions to be applied. Returning object unchanged."
)
return
if isinstance(select_spw, (np.ndarray, list, tuple)):
sort_spw = {idx: idx in select_spw for idx in spw_array}
else:
sort_spw = {idx: idx == select_spw for idx in spw_array}
elif spw_order is not None:
if isinstance(spw_order, (np.ndarray, list, tuple)):
spw_order = np.asarray(spw_order)
if not spw_order.size == Nspws or not np.all(
np.sort(spw_order) == np.arange(Nspws)
):
raise ValueError(
"Index array for spw_order must contain all indicies for "
"the spw_array, without duplicates."
)
elif spw_order not in ["number", "freq", "-number", "-freq", None]:
raise ValueError(
"spw_order can only be one of 'number', '-number', "
"'freq', '-freq', None or an index array of length Nspws"
)
elif Nspws > 1:
# Only need to do this step if we actually have multiple spws.
# If the string starts with a '-', then we will flip the order at
# the end of the operation
flip_spws = spw_order[0] == "-"
if "number" in spw_order:
spw_order = np.argsort(spw_array)
elif "freq" in spw_order:
spw_order = np.argsort(
[np.median(temp_freqs[temp_spws == idx]) for idx in spw_array]
)
if flip_spws:
spw_order = np.flip(spw_order)
else:
spw_order = np.arange(Nspws)
# Now that we know the spw order, we can apply the first sort
index_array = np.concatenate(
[index_array[temp_spws == spw] for spw in spw_array[spw_order]]
)
temp_freqs = temp_freqs[index_array]
temp_spws = temp_spws[index_array]
# Spectral windows are assumed sorted at this point
if channel_order is not None:
if channel_order not in ["freq", "-freq"]:
raise ValueError(
"channel_order can only be one of 'freq' or '-freq' or an index "
"array of length Nfreqs"
)
for idx in spw_array:
if sort_spw[idx]:
select_mask = temp_spws == idx
subsort_order = index_array[select_mask]
subsort_order = subsort_order[np.argsort(temp_freqs[select_mask])]
index_array[select_mask] = (
np.flip(subsort_order)
if channel_order[0] == "-"
else subsort_order
)
if np.all(index_array[1:] > index_array[:-1]):
# Nothing to do - the data are already sorted!
return
return index_array
def baseline_to_antnums(baseline, Nants_telescope):
"""
Get the antenna numbers corresponding to a given baseline number.
Parameters
----------
baseline : int or array_like of ints
baseline number
Nants_telescope : int
number of antennas
Returns
-------
int or array_like of int
first antenna number(s)
int or array_like of int
second antenna number(s)
"""
if Nants_telescope > 2147483648:
raise ValueError(
"error Nants={Nants}>2147483648 not supported".format(Nants=Nants_telescope)
)
if np.any(np.asarray(baseline) < 0):
raise ValueError("negative baseline numbers are not supported")
if np.any(np.asarray(baseline) > 4611686018498691072):
raise ValueError("baseline numbers > 4611686018498691072 are not supported")
return_array = isinstance(baseline, (np.ndarray, list, tuple))
ant1, ant2 = _utils.baseline_to_antnums(
np.ascontiguousarray(baseline, dtype=np.int64)
)
if return_array:
return ant1, ant2
else:
return ant1.item(0), ant2.item(0)
def antnums_to_baseline(ant1, ant2, Nants_telescope, attempt256=False):
"""
Get the baseline number corresponding to two given antenna numbers.
Parameters
----------
ant1 : int or array_like of int
first antenna number
ant2 : int or array_like of int
second antenna number
Nants_telescope : int
number of antennas
attempt256 : bool
Option to try to use the older 256 standard used in
many uvfits files. If there are antenna numbers >= 256, the 2048
standard will be used unless there are antenna numbers >= 2048
or Nants_telescope > 2048. In that case, the 2147483648 standard
will be used. Default is False.
Returns
-------
int or array of int
baseline number corresponding to the two antenna numbers.
"""
if Nants_telescope is not None and Nants_telescope > 2147483648:
raise ValueError(
"cannot convert ant1, ant2 to a baseline index "
"with Nants={Nants}>2147483648.".format(Nants=Nants_telescope)
)
if np.any(np.concatenate((np.unique(ant1), np.unique(ant2))) >= 2147483648):
raise ValueError(
"cannot convert ant1, ant2 to a baseline index "
"with antenna numbers greater than 2147483647."
)
if np.any(np.concatenate((np.unique(ant1), np.unique(ant2))) < 0):
raise ValueError(
"cannot convert ant1, ant2 to a baseline index "
"with antenna numbers less than zero."
)
nants_less2048 = True
if Nants_telescope is not None and Nants_telescope > 2048:
nants_less2048 = False
return_array = isinstance(ant1, (np.ndarray, list, tuple))
baseline = _utils.antnums_to_baseline(
np.ascontiguousarray(ant1, dtype=np.int64),
np.ascontiguousarray(ant2, dtype=np.int64),
attempt256=attempt256,
nants_less2048=nants_less2048,
)
if return_array:
return baseline
else:
return baseline.item(0)
def baseline_index_flip(baseline, Nants_telescope):
"""Change baseline number to reverse antenna order."""
ant1, ant2 = baseline_to_antnums(baseline, Nants_telescope)
return antnums_to_baseline(ant2, ant1, Nants_telescope)
def _x_orientation_rep_dict(x_orientation):
"""Create replacement dict based on x_orientation."""
if x_orientation.lower() == "east" or x_orientation.lower() == "e":
return {"x": "e", "y": "n"}
elif x_orientation.lower() == "north" or x_orientation.lower() == "n":
return {"x": "n", "y": "e"}
else:
raise ValueError("x_orientation not recognized.")
def polstr2num(pol, x_orientation=None):
"""
Convert polarization str to number according to AIPS Memo 117.
Prefer 'pI', 'pQ', 'pU' and 'pV' to make it clear that these are pseudo-Stokes,
not true Stokes, but also supports 'I', 'Q', 'U', 'V'.
Parameters
----------
pol : str
polarization string
x_orientation : str, optional
Orientation of the physical dipole corresponding to what is
labelled as the x polarization ("east" or "north") to allow for
converting from E/N strings. See corresonding parameter on UVData
for more details.
Returns
-------
int
Number corresponding to string
Raises
------
ValueError
If the pol string cannot be converted to a polarization number.
Warns
-----
UserWarning
If the x_orientation not recognized.
"""
dict_use = copy.deepcopy(POL_STR2NUM_DICT)
if x_orientation is not None:
try:
rep_dict = _x_orientation_rep_dict(x_orientation)
for key, value in POL_STR2NUM_DICT.items():
new_key = key.replace("x", rep_dict["x"]).replace("y", rep_dict["y"])
dict_use[new_key] = value
except ValueError:
warnings.warn("x_orientation not recognized.")
poldict = {k.lower(): v for k, v in dict_use.items()}
if isinstance(pol, str):
out = poldict[pol.lower()]
elif isinstance(pol, Iterable):
out = [poldict[key.lower()] for key in pol]
else:
raise ValueError(
"Polarization {p} cannot be converted to a polarization number.".format(
p=pol
)
)
return out
def polnum2str(num, x_orientation=None):
"""
Convert polarization number to str according to AIPS Memo 117.
Uses 'pI', 'pQ', 'pU' and 'pV' to make it clear that these are pseudo-Stokes,
not true Stokes
Parameters
----------
num : int
polarization number
x_orientation : str, optional
Orientation of the physical dipole corresponding to what is
labelled as the x polarization ("east" or "north") to convert to
E/N strings. See corresonding parameter on UVData for more details.
Returns
-------
str
String corresponding to polarization number
Raises
------
ValueError
If the polarization number cannot be converted to a polarization string.
Warns
-----
UserWarning
If the x_orientation not recognized.
"""
dict_use = copy.deepcopy(POL_NUM2STR_DICT)
if x_orientation is not None:
try:
rep_dict = _x_orientation_rep_dict(x_orientation)
for key, value in POL_NUM2STR_DICT.items():
new_val = value.replace("x", rep_dict["x"]).replace("y", rep_dict["y"])
dict_use[key] = new_val
except ValueError:
warnings.warn("x_orientation not recognized.")
if isinstance(num, (int, np.int32, np.int64)):
out = dict_use[num]
elif isinstance(num, Iterable):
out = [dict_use[i] for i in num]
else:
raise ValueError(
"Polarization {p} cannot be converted to string.".format(p=num)
)
return out
def jstr2num(jstr, x_orientation=None):
"""
Convert jones polarization str to number according to calfits memo.
Parameters
----------
jstr : str or array_like of str
antenna (jones) polarization string(s) to convert.
x_orientation : str, optional
Orientation of the physical dipole corresponding to what is
labelled as the x polarization ("east" or "north") to allow for
converting from E/N strings. See corresonding parameter on UVData
for more details.
Returns
-------
int or list of int
antenna (jones) polarization number(s) corresponding to the input string(s)
Raises
------
ValueError
If the jones string cannot be converted to a polarization number.
Warns
-----
UserWarning
If the x_orientation not recognized.
"""
dict_use = copy.deepcopy(JONES_STR2NUM_DICT)
if x_orientation is not None:
try:
rep_dict = _x_orientation_rep_dict(x_orientation)
for key, value in JONES_STR2NUM_DICT.items():
new_key = key.replace("x", rep_dict["x"]).replace("y", rep_dict["y"])
dict_use[new_key] = value
except ValueError:
warnings.warn("x_orientation not recognized.")
jdict = {k.lower(): v for k, v in dict_use.items()}
if isinstance(jstr, str):
out = jdict[jstr.lower()]
elif isinstance(jstr, Iterable):
out = [jdict[key.lower()] for key in jstr]
else:
raise ValueError(
"Jones polarization {j} cannot be converted to index.".format(j=jstr)
)
return out
def jnum2str(jnum, x_orientation=None):
"""
Convert jones polarization number to str according to calfits memo.
Parameters
----------
num : int or array_like of int
antenna (jones) polarization number(s) to convert to strings
x_orientation : str, optional
Orientation of the physical dipole corresponding to what is
labelled as the x polarization ("east" or "north") to convert to
E/N strings. See corresonding parameter on UVData for more details.
Returns
-------
str or list of str
antenna (jones) polarization string(s) corresponding to number
Raises
------
ValueError
If the jones polarization number cannot be converted to a jones
polarization string.
Warns
-----
UserWarning
If the x_orientation not recognized.
"""
dict_use = copy.deepcopy(JONES_NUM2STR_DICT)
if x_orientation is not None:
try:
rep_dict = _x_orientation_rep_dict(x_orientation)
for key, value in JONES_NUM2STR_DICT.items():
new_val = value.replace("x", rep_dict["x"]).replace("y", rep_dict["y"])
dict_use[key] = new_val
except ValueError:
warnings.warn("x_orientation not recognized.")
if isinstance(jnum, (int, np.int32, np.int64)):
out = dict_use[jnum]
elif isinstance(jnum, Iterable):
out = [dict_use[i] for i in jnum]
else:
raise ValueError(
"Jones polarization {j} cannot be converted to string.".format(j=jnum)
)
return out
def parse_polstr(polstr, x_orientation=None):
"""
Parse a polarization string and return pyuvdata standard polarization string.
See utils.POL_STR2NUM_DICT for options.
Parameters
----------
polstr : str
polarization string
x_orientation : str, optional
Orientation of the physical dipole corresponding to what is
labelled as the x polarization ("east" or "north") to allow for
converting from E/N strings. See corresonding parameter on UVData
for more details.
Returns
-------
str
AIPS Memo 117 standard string
Raises
------
ValueError
If the pol string cannot be converted to a polarization number.
Warns
-----
UserWarning
If the x_orientation not recognized.
"""
return polnum2str(
polstr2num(polstr, x_orientation=x_orientation), x_orientation=x_orientation
)
def parse_jpolstr(jpolstr, x_orientation=None):
"""
Parse a Jones polarization string and return pyuvdata standard jones string.
See utils.JONES_STR2NUM_DICT for options.
Parameters
----------
jpolstr : str
Jones polarization string
Returns
-------
str
calfits memo standard string
Raises
------
ValueError
If the jones string cannot be converted to a polarization number.
Warns
-----
UserWarning
If the x_orientation not recognized.
"""
return jnum2str(
jstr2num(jpolstr, x_orientation=x_orientation), x_orientation=x_orientation
)
def conj_pol(pol):
"""
Return the polarization for the conjugate baseline.
For example, (1, 2, 'xy') = conj(2, 1, 'yx').
The returned polarization is determined by assuming the antenna pair is
reversed in the data, and finding the correct polarization correlation
which will yield the requested baseline when conjugated. Note this means
changing the polarization for linear cross-pols, but keeping auto-pol
(e.g. xx) and Stokes the same.
Parameters
----------
pol : str or int
Polarization string or integer.
Returns
-------
cpol : str or int
Polarization as if antennas are swapped (type matches input)
"""
cpol_dict = {k.lower(): v for k, v in CONJ_POL_DICT.items()}
if isinstance(pol, str):
cpol = cpol_dict[pol.lower()]
elif isinstance(pol, Iterable):
cpol = [conj_pol(p) for p in pol]
elif isinstance(pol, (int, np.int32, np.int64)):
cpol = polstr2num(cpol_dict[polnum2str(pol).lower()])
else:
raise ValueError("Polarization not recognized, cannot be conjugated.")
return cpol
def reorder_conj_pols(pols):
"""
Reorder multiple pols, swapping pols that are conjugates of one another.
For example ('xx', 'xy', 'yx', 'yy') -> ('xx', 'yx', 'xy', 'yy')
This is useful for the _key2inds function in the case where an antenna
pair is specified but the conjugate pair exists in the data. The conjugated
data should be returned in the order of the polarization axis, so after
conjugating the data, the pols need to be reordered.
For example, if a file contains antpair (0, 1) and pols 'xy' and 'yx', but
the user requests antpair (1, 0), they should get:
[(1x, 0y), (1y, 0x)] = [conj(0y, 1x), conj(0x, 1y)]
Parameters
----------
pols : array_like of str or int
Polarization array (strings or ints).
Returns
-------
conj_order : ndarray of int
Indices to reorder polarization array.
"""
if not isinstance(pols, Iterable):
raise ValueError("reorder_conj_pols must be given an array of polarizations.")
cpols = np.array([conj_pol(p) for p in pols]) # Array needed for np.where
conj_order = [np.where(cpols == p)[0][0] if p in cpols else -1 for p in pols]
if -1 in conj_order:
raise ValueError(
"Not all conjugate pols exist in the polarization array provided."
)
return conj_order
def LatLonAlt_from_XYZ(xyz, frame="ITRS", check_acceptability=True):
"""
Calculate lat/lon/alt from ECEF x,y,z.
Parameters
----------
xyz : ndarray of float
numpy array, shape (Npts, 3), with ECEF x,y,z coordinates.
frame : str
Coordinate frame of xyz.
Valid options are ITRS (default) or MCMF.
check_acceptability : bool
Flag to check XYZ coordinates are reasonable.
Returns
-------
latitude : ndarray or float
latitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians
longitude : ndarray or float
longitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians
altitude : ndarray or float
altitude, numpy array (if Npts > 1) or value (if Npts = 1) in meters
"""
frame = frame.upper()
if not hasmoon and frame == "MCMF":
raise ValueError("Need to install `lunarsky` package to work with MCMF frame.")
if frame == "ITRS":
accept_bounds = (6.35e6, 6.39e6)
elif frame == "MCMF":
accept_bounds = (1.71e6, 1.75e6)
# convert to a numpy array
xyz = np.asarray(xyz)
if xyz.ndim > 1 and xyz.shape[1] != 3:
raise ValueError("The expected shape of ECEF xyz array is (Npts, 3).")
squeeze = xyz.ndim == 1
if squeeze:
xyz = xyz[np.newaxis, :]
xyz = np.ascontiguousarray(xyz.T, dtype=np.float64)
# checking for acceptable values
if check_acceptability:
if frame not in ["ITRS", "MCMF"]:
raise ValueError(f'Cannot check acceptability for unknown frame "{frame}".')
norms = np.linalg.norm(xyz, axis=0)
if not all(
np.logical_and(norms >= accept_bounds[0], norms <= accept_bounds[1])
):
raise ValueError(
f"xyz values should be {frame} x, y, z coordinates in meters"
)
# this helper function returns one 2D array because it is less overhead for cython
if frame == "ITRS":
lla = _utils._lla_from_xyz(xyz)
elif frame == "MCMF":
lla = erfa.gc2gde(LUNAR_RADIUS, 0.0, xyz.T)
lla = np.asarray((lla[1], lla[0], lla[2])) # Swap lon/lat
else:
raise ValueError(
f'No spherical to cartesian transform defined for frame "{frame}".'
)
if squeeze:
return lla[0, 0], lla[1, 0], lla[2, 0]
return lla[0], lla[1], lla[2]
def XYZ_from_LatLonAlt(latitude, longitude, altitude, frame="ITRS"):
"""
Calculate ECEF x,y,z from lat/lon/alt values.
Parameters
----------
latitude : ndarray or float
latitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians
longitude : ndarray or float
longitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians
altitude : ndarray or float
altitude, numpy array (if Npts > 1) or value (if Npts = 1) in meters
frame : str
Coordinate frame of xyz.
Valid options are ITRS (default) or MCMF.
Returns
-------
xyz : ndarray of float
numpy array, shape (Npts, 3), with ECEF x,y,z coordinates.
"""
latitude = np.ascontiguousarray(latitude, dtype=np.float64)
longitude = np.ascontiguousarray(longitude, dtype=np.float64)
altitude = np.ascontiguousarray(altitude, dtype=np.float64)
n_pts = latitude.size
frame = frame.upper()
if not hasmoon and frame == "MCMF":
raise ValueError("Need to install `lunarsky` package to work with MCMF frame.")
if longitude.size != n_pts:
raise ValueError(
"latitude, longitude and altitude must all have the same length"
)
if altitude.size != n_pts:
raise ValueError(
"latitude, longitude and altitude must all have the same length"
)
if frame == "ITRS":
xyz = _utils._xyz_from_latlonalt(latitude, longitude, altitude)
xyz = xyz.T
elif frame == "MCMF":
xyz = erfa.gd2gce(LUNAR_RADIUS, 0.0, longitude, latitude, altitude)
else:
raise ValueError(
f'No cartesian to spherical transform defined for frame "{frame}".'
)
if n_pts == 1:
return xyz[0]
return xyz
def rotECEF_from_ECEF(xyz, longitude):
"""
Get rotated ECEF positions such that the x-axis goes through the longitude.
Miriad and uvfits expect antenna positions in this frame
(with longitude of the array center/telescope location)
Parameters
----------
xyz : ndarray of float
numpy array, shape (Npts, 3), with ECEF x,y,z coordinates.
longitude : float
longitude in radians to rotate coordinates to
(usually the array center/telescope location).
Returns
-------
ndarray of float
Rotated ECEF coordinates, shape (Npts, 3).
"""
angle = -1 * longitude
rot_matrix = np.array(
[
[np.cos(angle), -1 * np.sin(angle), 0],
[np.sin(angle), np.cos(angle), 0],
[0, 0, 1],
]
)
return rot_matrix.dot(xyz.T).T
def ECEF_from_rotECEF(xyz, longitude):
"""
Calculate ECEF from a rotated ECEF (Inverse of rotECEF_from_ECEF).
Parameters
----------
xyz : ndarray of float
numpy array, shape (Npts, 3), with rotated ECEF x,y,z coordinates.
longitude : float
longitude in radians giving the x direction of the rotated coordinates
(usually the array center/telescope location).
Returns
-------
ndarray of float
ECEF coordinates, shape (Npts, 3).
"""
angle = longitude
rot_matrix = np.array(
[
[np.cos(angle), -1 * np.sin(angle), 0],
[np.sin(angle), np.cos(angle), 0],
[0, 0, 1],
]
)
return rot_matrix.dot(xyz.T).T
def ENU_from_ECEF(xyz, latitude, longitude, altitude, frame="ITRS"):
"""
Calculate local ENU (east, north, up) coordinates from ECEF coordinates.
Parameters
----------
xyz : ndarray of float
numpy array, shape (Npts, 3), with ECEF x,y,z coordinates.
latitude : float
Latitude of center of ENU coordinates in radians.
longitude : float
Longitude of center of ENU coordinates in radians.
altitude : float
Altitude of center of ENU coordinates in radians.
frame : str
Coordinate frame of xyz.
Valid options are ITRS (default) or MCMF.
Returns
-------
ndarray of float
numpy array, shape (Npts, 3), with local ENU coordinates
"""
frame = frame.upper()
if not hasmoon and frame == "MCMF":
raise ValueError("Need to install `lunarsky` package to work with MCMF frame.")
if frame == "ITRS":
sensible_radius_range = (6.35e6, 6.39e6)
world = "earth"
elif frame == "MCMF":
world = "moon"
sensible_radius_range = (1.71e6, 1.75e6)
else:
raise ValueError(f'No ENU_from_ECEF transform defined for frame "{frame}".')
xyz = np.asarray(xyz)
if xyz.ndim > 1 and xyz.shape[1] != 3:
raise ValueError("The expected shape of ECEF xyz array is (Npts, 3).")
squeeze = False
if xyz.ndim == 1:
squeeze = True
xyz = xyz[np.newaxis, :]
xyz = np.ascontiguousarray(xyz.T, dtype=np.float64)
# check that these are sensible ECEF values -- their magnitudes need to be
# on the order of Earth's radius
ecef_magnitudes = np.linalg.norm(xyz, axis=0)
if np.any(ecef_magnitudes <= sensible_radius_range[0]) or np.any(
ecef_magnitudes >= sensible_radius_range[1]
):
raise ValueError(
f"{frame} vector magnitudes must be on the order"
f" of the radius of the {world}"
)
if frame == "ITRS":
# the cython utility expects (3, Npts) for faster manipulation
# transpose after we get the array back to match the expected shape
enu = _utils._ENU_from_ECEF(
xyz,
np.ascontiguousarray(latitude, dtype=np.float64),
np.ascontiguousarray(longitude, dtype=np.float64),
np.ascontiguousarray(altitude, dtype=np.float64),
)
enu = enu.T
elif frame == "MCMF":
xyz_cent = erfa.gd2gce(LUNAR_RADIUS, 0.0, longitude, latitude, altitude)
ecef_to_enu = np.matmul(
rotation_matrix(-longitude, "z", unit="rad"),
rotation_matrix(latitude, "y", unit="rad"),
).T
ecef_to_enu = ecef_to_enu[[2, 1, 0]]
enu = np.dot(ecef_to_enu, (xyz.T - xyz_cent).T).T
if squeeze:
enu = np.squeeze(enu)
return enu
def ECEF_from_ENU(enu, latitude, longitude, altitude, frame="ITRS"):
"""
Calculate ECEF coordinates from local ENU (east, north, up) coordinates.
Parameters
----------
enu : ndarray of float
numpy array, shape (Npts, 3), with local ENU coordinates.
latitude : float
Latitude of center of ENU coordinates in radians.
longitude : float
Longitude of center of ENU coordinates in radians.
altitude : float
Altitude of center of ENU coordinates in radians.
frame : str
Coordinate frame of xyz.
Valid options are ITRS (default) or MCMF.
Returns
-------
xyz : ndarray of float
numpy array, shape (Npts, 3), with ECEF x,y,z coordinates.
"""
frame = frame.upper()
if frame not in ["ITRS", "MCMF"]:
raise ValueError(f'No ECEF_from_ENU transform defined for frame "{frame}".')
if not hasmoon and frame == "MCMF":
raise ValueError("Need to install `lunarsky` package to work with MCMF frame.")
enu = np.asarray(enu)
if enu.ndim > 1 and enu.shape[1] != 3:
raise ValueError("The expected shape of the ENU array is (Npts, 3).")
squeeze = False
if enu.ndim == 1:
squeeze = True
enu = enu[np.newaxis, :]
enu = np.ascontiguousarray(enu.T, dtype=np.float64)
if frame == "ITRS":
# the cython utility expects (3, Npts) for faster manipulation
# transpose after we get the array back to match the expected shape
xyz = _utils._ECEF_from_ENU(
enu,
np.ascontiguousarray(latitude, dtype=np.float64),
np.ascontiguousarray(longitude, dtype=np.float64),
np.ascontiguousarray(altitude, dtype=np.float64),
)
xyz = xyz.T
elif frame == "MCMF":
xyz_cent = erfa.gd2gce(LUNAR_RADIUS, 0.0, longitude, latitude, altitude)
ecef_to_enu = np.matmul(
rotation_matrix(-longitude, "z", unit="rad"),
rotation_matrix(latitude, "y", unit="rad"),
).T
enu_to_ecef = np.linalg.inv(ecef_to_enu[[2, 1, 0]])
xyz_rel = np.dot(enu_to_ecef, enu)
xyz = xyz_cent + xyz_rel.T
if squeeze:
xyz = np.squeeze(xyz)
return xyz
def phase_uvw(ra, dec, initial_uvw):
"""
Calculate phased uvws/positions from unphased ones in an icrs or gcrs frame.
This code expects input uvws or positions relative to the telescope
location in the same frame that ra/dec are in (e.g. icrs or gcrs) and
returns phased ones in the same frame.
Note that this code is nearly identical to ENU_from_ECEF, except that it
uses an arbitrary phasing center rather than a coordinate center.
Parameters
----------
ra : float
Right ascension of phase center.
dec : float
Declination of phase center.
initial_uvw : ndarray of float
Unphased uvws or positions relative to the array center,
shape (Nlocs, 3).
Returns
-------
uvw : ndarray of float
uvw array in the same frame as initial_uvws, ra and dec.
"""
if initial_uvw.ndim == 1:
initial_uvw = initial_uvw[np.newaxis, :]
return _utils._phase_uvw(
np.float64(ra),
np.float64(dec),
np.ascontiguousarray(initial_uvw.T, dtype=np.float64),
).T
def unphase_uvw(ra, dec, uvw):
"""
Calculate unphased uvws/positions from phased ones in an icrs or gcrs frame.
This code expects phased uvws or positions in the same frame that ra/dec
are in (e.g. icrs or gcrs) and returns unphased ones in the same frame.
Parameters
----------
ra : float
Right ascension of phase center.
dec : float
Declination of phase center.
uvw : ndarray of float
Phased uvws or positions relative to the array center,
shape (Nlocs, 3).
Returns
-------
unphased_uvws : ndarray of float
Unphased uvws or positions relative to the array center,
shape (Nlocs, 3).
"""
if uvw.ndim == 1:
uvw = uvw[np.newaxis, :]
return _utils._unphase_uvw(
np.float64(ra), np.float64(dec), np.ascontiguousarray(uvw.T, dtype=np.float64)
).T
def polar2_to_cart3(lon_array, lat_array):
"""
Convert 2D polar coordinates into 3D cartesian coordinates.
This is a simple routine for converting a set of spherical angular coordinates
into a 3D cartesian vectors, where the x-direction is set by the position (0, 0).
Parameters
----------
lon_array : float or ndarray
Longitude coordinates, which increases in the counter-clockwise direction.
Units of radians. Can either be a float or ndarray -- if the latter, must have
the same shape as lat_array.
lat_array : float or ndarray
Latitude coordinates, where 0 falls on the equator of the sphere. Units of
radians. Can either be a float or ndarray -- if the latter, must have the same
shape as lat_array.
Returns
-------
xyz_array : ndarray of float
Cartesian coordinates of the given longitude and latitude on a unit sphere.
Shape is (3, coord_shape), where coord_shape is the shape of lon_array and
lat_array if they were provided as type ndarray, otherwise (3,).
"""
# Check to make sure that we are not playing with mixed types
if type(lon_array) is not type(lat_array):
raise ValueError(
"lon_array and lat_array must either both be floats or ndarrays."
)
if isinstance(lon_array, np.ndarray):
if lon_array.shape != lat_array.shape:
raise ValueError("lon_array and lat_array must have the same shape.")
# Once we know that lon_array and lat_array are of the same shape,
# time to create our 3D set of vectors!
xyz_array = np.array(
[
np.cos(lon_array) * np.cos(lat_array),
np.sin(lon_array) * np.cos(lat_array),
np.sin(lat_array),
],
dtype=float,
)
return xyz_array
def cart3_to_polar2(xyz_array):
"""
Convert 3D cartesian coordinates into 2D polar coordinates.
This is a simple routine for converting a set of 3D cartesian vectors into
spherical coordinates, where the position (0, 0) lies along the x-direction.
Parameters
----------
xyz_array : ndarray of float
Cartesian coordinates, need not be of unit vector length. Shape is
(3, coord_shape).
Returns
-------
lon_array : ndarray of float
Longitude coordinates, which increases in the counter-clockwise direction.
Units of radians, shape is (coord_shape,).
lat_array : ndarray of float
Latitude coordinates, where 0 falls on the equator of the sphere. Units of
radians, shape is (coord_shape,).
"""
if not isinstance(xyz_array, np.ndarray):
raise ValueError("xyz_array must be an ndarray.")
if xyz_array.ndim == 0:
raise ValueError("xyz_array must have ndim > 0")
if xyz_array.shape[0] != 3:
raise ValueError("xyz_array must be length 3 across the zeroth axis.")
# The longitude coord is relatively easy to calculate, just take the X and Y
# components and find the arctac of the pair.
lon_array = np.mod(np.arctan2(xyz_array[1], xyz_array[0]), 2.0 * np.pi, dtype=float)
# If we _knew_ that xyz_array was always of length 1, then this call could be a much
# simpler one to arcsin. But to make this generic, we'll use the length of the XY
# component along with arctan2.
lat_array = np.arctan2(
xyz_array[2], np.sqrt((xyz_array[0:2] ** 2.0).sum(axis=0)), dtype=float
)
# Return the two arrays
return lon_array, lat_array
def _rotate_matmul_wrapper(xyz_array, rot_matrix, n_rot):
"""
Apply a rotation matrix to a series of vectors.
This is a simple convenience function which wraps numpy's matmul function for use
with various vector rotation functions in this module. This code could, in
principle, be replaced by a cythonized piece of code, although the matmul function
is _pretty_ well optimized already. This function is not meant to be called by
users, but is instead used by multiple higher-level utility functions (namely those
that perform rotations).
Parameters
----------
xyz_array : ndarray of floats
Array of vectors to be rotated. When nrot > 1, shape may be (n_rot, 3, n_vec)
or (1, 3, n_vec), the latter is useful for when performing multiple rotations
on a fixed set of vectors. If nrot = 1, shape may be (1, 3, n_vec), (3, n_vec),
or (3,).
rot_matrix : ndarray of floats
Series of rotation matricies to be applied to the stack of vectors. Must be
of shape (n_rot, 3, 3)
n_rot : int
Number of individual rotation matricies to be applied.
Returns
-------
rotated_xyz : ndarray of floats
Array of vectors that have been rotated, of shape (n_rot, 3, n_vectors,).
"""
# Do a quick check to make sure that things look sensible
if rot_matrix.shape != (n_rot, 3, 3):
raise ValueError(
"rot_matrix must be of shape (n_rot, 3, 3), where n_rot=%i." % n_rot
)
if (xyz_array.ndim == 3) and (
(xyz_array.shape[0] not in [1, n_rot]) or (xyz_array.shape[-2] != 3)
):
raise ValueError("Misshaped xyz_array - expected shape (n_rot, 3, n_vectors).")
if (xyz_array.ndim < 3) and (xyz_array.shape[0] != 3):
raise ValueError("Misshaped xyz_array - expected shape (3, n_vectors) or (3,).")
rotated_xyz = np.matmul(rot_matrix, xyz_array)
return rotated_xyz
def _rotate_one_axis(xyz_array, rot_amount, rot_axis):
"""
Rotate an array of 3D positions around the a single axis (x, y, or z).
This function performs a basic rotation of 3D vectors about one of the priciple
axes -- the x-axis, the y-axis, or the z-axis.
Note that the rotations here obey the right-hand rule -- that is to say, from the
perspective of the positive side of the axis of rotation, a positive rotation will
cause points on the plane intersecting this axis to move in a counter-clockwise
fashion.
Parameters
----------
xyz_array : ndarray of float
Set of 3-dimensional vectors be rotated, in typical right-handed cartesian
order, e.g. (x, y, z). Shape is (Nrot, 3, Nvectors).
rot_amount : float or ndarray of float
Amount (in radians) to rotate the given set of coordinates. Can either be a
single float (or ndarray of shape (1,)) if rotating all vectors by the same
amount, otherwise expected to be shape (Nrot,).
rot_axis : int
Axis around which the rotation is applied. 0 is the x-axis, 1 is the y-axis,
and 2 is the z-axis.
Returns
-------
rotated_xyz : ndarray of float
Set of rotated 3-dimensional vectors, shape (Nrot, 3, Nvector).
"""
# If rot_amount is None or all zeros, then this is just one big old no-op.
if (rot_amount is None) or np.all(rot_amount == 0.0):
if np.ndim(xyz_array) == 1:
return deepcopy(xyz_array[np.newaxis, :, np.newaxis])
elif np.ndim(xyz_array) == 2:
return deepcopy(xyz_array[np.newaxis, :, :])
else:
return deepcopy(xyz_array)
# Check and see how big of a rotation matrix we need
n_rot = 1 if (not isinstance(rot_amount, np.ndarray)) else (rot_amount.shape[0])
n_vec = xyz_array.shape[-1]
# The promotion of values to float64 is to suppress numerical precision issues,
# since the matrix math can - in limited circumstances - introduce precision errors
# of order 10x the limiting numerical precision of the float. For a float32/single,
# thats a part in 1e6 (~arcsec-level errors), but for a float64 it translates to
# a part in 1e15.
rot_matrix = np.zeros((3, 3, n_rot), dtype=np.float64)
# Figure out which pieces of the matrix we need to update
temp_jdx = (rot_axis + 1) % 3
temp_idx = (rot_axis + 2) % 3
# Fill in the rotation matricies accordingly
rot_matrix[rot_axis, rot_axis] = 1
rot_matrix[temp_idx, temp_idx] = np.cos(rot_amount, dtype=np.float64)
rot_matrix[temp_jdx, temp_jdx] = rot_matrix[temp_idx, temp_idx]
rot_matrix[temp_idx, temp_jdx] = np.sin(rot_amount, dtype=np.float64)
rot_matrix[temp_jdx, temp_idx] = -rot_matrix[temp_idx, temp_jdx]
# The rot matrix was shape (3, 3, n_rot) to help speed up filling in the elements
# of each matrix, but now we want to flip it into its proper shape of (n_rot, 3, 3)
rot_matrix = np.transpose(rot_matrix, axes=[2, 0, 1])
if (n_rot == 1) and (n_vec == 1) and (xyz_array.ndim == 3):
# This is a special case where we allow the rotation axis to "expand" along
# the 0th axis of the rot_amount arrays. For xyz_array, if n_vectors = 1
# but n_rot !=1, then it's a lot faster (by about 10x) to "switch it up" and
# swap the n_vector and n_rot axes, and then swap them back once everything
# else is done.
return np.transpose(
_rotate_matmul_wrapper(
np.transpose(xyz_array, axes=[2, 1, 0]), rot_matrix, n_rot
),
axes=[2, 1, 0],
)
else:
return _rotate_matmul_wrapper(xyz_array, rot_matrix, n_rot)
def _rotate_two_axis(xyz_array, rot_amount1, rot_amount2, rot_axis1, rot_axis2):
"""
Rotate an array of 3D positions sequentially around a pair of axes (x, y, or z).
This function performs a sequential pair of basic rotations of 3D vectors about
the priciple axes -- the x-axis, the y-axis, or the z-axis.
Note that the rotations here obey the right-hand rule -- that is to say, from the
perspective of the positive side of the axis of rotation, a positive rotation will
cause points on the plane intersecting this axis to move in a counter-clockwise
fashion.
Parameters
----------
xyz_array : ndarray of float
Set of 3-dimensional vectors be rotated, in typical right-handed cartesian
order, e.g. (x, y, z). Shape is (Nrot, 3, Nvectors).
rot_amount1 : float or ndarray of float
Amount (in radians) of rotatation to apply during the first rotation of the
sequence, to the given set of coordinates. Can either be a single float (or
ndarray of shape (1,)) if rotating all vectors by the same amount, otherwise
expected to be shape (Nrot,).
rot_amount2 : float or ndarray of float
Amount (in radians) of rotatation to apply during the second rotation of the
sequence, to the given set of coordinates. Can either be a single float (or
ndarray of shape (1,)) if rotating all vectors by the same amount, otherwise
expected to be shape (Nrot,).
rot_axis1 : int
Axis around which the first rotation is applied. 0 is the x-axis, 1 is the
y-axis, and 2 is the z-axis.
rot_axis2 : int
Axis around which the second rotation is applied. 0 is the x-axis, 1 is the
y-axis, and 2 is the z-axis.
Returns
-------
rotated_xyz : ndarray of float
Set of rotated 3-dimensional vectors, shape (Nrot, 3, Nvector).
"""
# Capture some special cases upfront, where we can save ourselves a bit of work
no_rot1 = (rot_amount1 is None) or np.all(rot_amount1 == 0.0)
no_rot2 = (rot_amount2 is None) or np.all(rot_amount2 == 0.0)
if no_rot1 and no_rot2:
# If rot_amount is None, then this is just one big old no-op.
return deepcopy(xyz_array)
elif no_rot1:
# If rot_amount1 is None, then ignore it and just work w/ the 2nd rotation
return _rotate_one_axis(xyz_array, rot_amount2, rot_axis2)
elif no_rot2:
# If rot_amount2 is None, then ignore it and just work w/ the 1st rotation
return _rotate_one_axis(xyz_array, rot_amount1, rot_axis1)
elif rot_axis1 == rot_axis2:
# Capture the case where someone wants to do a sequence of rotations on the same
# axis. Also known as just rotating a single axis.
return _rotate_one_axis(xyz_array, rot_amount1 + rot_amount2, rot_axis1)
# Figure out how many individual rotation matricies we need, accounting for the
# fact that these can either be floats or ndarrays.
n_rot = max(
rot_amount1.shape[0] if isinstance(rot_amount1, np.ndarray) else 1,
rot_amount2.shape[0] if isinstance(rot_amount2, np.ndarray) else 1,
)
n_vec = xyz_array.shape[-1]
# The promotion of values to float64 is to suppress numerical precision issues,
# since the matrix math can - in limited circumstances - introduce precision errors
# of order 10x the limiting numerical precision of the float. For a float32/single,
# thats a part in 1e6 (~arcsec-level errors), but for a float64 it translates to
# a part in 1e15.
rot_matrix = np.empty((3, 3, n_rot), dtype=np.float64)
# There are two permulations per pair of axes -- when the pair is right-hand
# oriented vs left-hand oriented. Check here which one it is. For example,
# rotating first on the x-axis, second on the y-axis is considered a
# "right-handed" pair, whereas z-axis first, then y-axis would be considered
# a "left-handed" pair.
lhd_order = np.mod(rot_axis2 - rot_axis1, 3) != 1
temp_idx = [
np.mod(rot_axis1 - lhd_order, 3),
np.mod(rot_axis1 + 1 - lhd_order, 3),
np.mod(rot_axis1 + 2 - lhd_order, 3),
]
# We're using lots of sin and cos calculations -- doing them once upfront saves
# quite a bit of time by eliminating redundant calculations
sin_lo = np.sin(rot_amount2 if lhd_order else rot_amount1, dtype=np.float64)
cos_lo = np.cos(rot_amount2 if lhd_order else rot_amount1, dtype=np.float64)
sin_hi = np.sin(rot_amount1 if lhd_order else rot_amount2, dtype=np.float64)
cos_hi = np.cos(rot_amount1 if lhd_order else rot_amount2, dtype=np.float64)
# Take care of the diagonal terms first, since they aren't actually affected by the
# order of rotational opertations
rot_matrix[temp_idx[0], temp_idx[0]] = cos_hi
rot_matrix[temp_idx[1], temp_idx[1]] = cos_lo
rot_matrix[temp_idx[2], temp_idx[2]] = cos_lo * cos_hi
# Now time for the off-diagonal terms, as a set of 3 pairs. The rotation matrix
# for a left-hand oriented pair of rotation axes (e.g., x-rot, then y-rot) is just
# a transpose of the right-hand orientation of the same pair (e.g., y-rot, then
# x-rot).
rot_matrix[temp_idx[0 + lhd_order], temp_idx[1 - lhd_order]] = sin_lo * sin_hi
rot_matrix[temp_idx[0 - lhd_order], temp_idx[lhd_order - 1]] = (
cos_lo * sin_hi * ((-1.0) ** lhd_order)
)
rot_matrix[temp_idx[1 - lhd_order], temp_idx[0 + lhd_order]] = 0.0
rot_matrix[temp_idx[1 + lhd_order], temp_idx[2 - lhd_order]] = sin_lo * (
(-1.0) ** (1 + lhd_order)
)
rot_matrix[temp_idx[lhd_order - 1], temp_idx[0 - lhd_order]] = sin_hi * (
(-1.0) ** (1 + lhd_order)
)
rot_matrix[temp_idx[2 - lhd_order], temp_idx[1 + lhd_order]] = (
sin_lo * cos_hi * ((-1.0) ** (lhd_order))
)
# The rot matrix was shape (3, 3, n_rot) to help speed up filling in the elements
# of each matrix, but now we want to flip it into its proper shape of (n_rot, 3, 3)
rot_matrix = np.transpose(rot_matrix, axes=[2, 0, 1])
if (n_rot == 1) and (n_vec == 1) and (xyz_array.ndim == 3):
# This is a special case where we allow the rotation axis to "expand" along
# the 0th axis of the rot_amount arrays. For xyz_array, if n_vectors = 1
# but n_rot !=1, then it's a lot faster (by about 10x) to "switch it up" and
# swap the n_vector and n_rot axes, and then swap them back once everything
# else is done.
return np.transpose(
_rotate_matmul_wrapper(
np.transpose(xyz_array, axes=[2, 1, 0]), rot_matrix, n_rot
),
axes=[2, 1, 0],
)
else:
return _rotate_matmul_wrapper(xyz_array, rot_matrix, n_rot)
def calc_uvw(
app_ra=None,
app_dec=None,
frame_pa=None,
lst_array=None,
use_ant_pos=True,
uvw_array=None,
antenna_positions=None,
antenna_numbers=None,
ant_1_array=None,
ant_2_array=None,
old_app_ra=None,
old_app_dec=None,
old_frame_pa=None,
telescope_lat=None,
telescope_lon=None,
from_enu=False,
to_enu=False,
):
"""
Calculate an array of baseline coordinates, in either uvw or ENU.
This routine is meant as a convenience function for producing baseline coordinates
based under a few different circumstances:
1) Calculating ENU coordinates using antenna positions
2) Calculating uvw coordinates at a given sky position using antenna positions
3) Converting from ENU coordinates to uvw coordinates
4) Converting from uvw coordinate to ENU coordinates
5) Converting from uvw coordinates at one sky position to another sky position
Different conversion pathways have different parameters that are required.
Parameters
----------
app_ra : ndarray of float
Apparent RA of the target phase center, required if calculating baseline
coordinates in uvw-space (vs ENU-space). Shape is (Nblts,), units are
radians.
app_dec : ndarray of float
Apparent declination of the target phase center, required if calculating
baseline coordinates in uvw-space (vs ENU-space). Shape is (Nblts,),
units are radians.
frame_pa : ndarray of float
Position angle between the great circle of declination in the apparent frame
versus that of the reference frame, used for making sure that "North" on
the derived maps points towards a particular celestial pole (not just the
topocentric one). Required if not deriving baseline coordinates from antenna
positions, from_enu=False, and a value for old_frame_pa is given. Shape is
(Nblts,), units are radians.
old_app_ra : ndarray of float
Apparent RA of the previous phase center, required if not deriving baseline
coordinates from antenna positions and from_enu=False. Shape is (Nblts,),
units are radians.
old_app_dec : ndarray of float
Apparent declination of the previous phase center, required if not deriving
baseline coordinates from antenna positions and from_enu=False. Shape is
(Nblts,), units are radians.
old_frame_pa : ndarray of float
Frame position angle of the previous phase center, required if not deriving
baseline coordinates from antenna positions, from_enu=False, and a value
for frame_pa is supplied. Shape is (Nblts,), units are radians.
lst_array : ndarray of float
Local apparent sidereal time, required if deriving baseline coordinates from
antenna positions, or converting to/from ENU coordinates. Shape is (Nblts,).
use_ant_pos : bool
Switch to determine whether to derive uvw values from the antenna positions
(if set to True), or to use the previously calculated uvw coordinates to derive
new the new baseline vectors (if set to False). Default is True.
uvw_array : ndarray of float
Array of previous baseline coordinates (in either uvw or ENU), required if
not deriving new coordinates from antenna positions. Shape is (Nblts, 3).
antenna_positions : ndarray of float
List of antenna positions relative to array center in ECEF coordinates,
required if not providing `uvw_array`. Shape is (Nants, 3).
antenna_numbers: ndarray of int
List of antenna numbers, ordered in the same way as `antenna_positions` (e.g.,
`antenna_numbers[0]` should given the number of antenna that resides at ECEF
position given by `antenna_positions[0]`). Shape is (Nants,), requred if not
providing `uvw_array`. Contains all unique entires of the joint set of
`ant_1_array` and `ant_2_array`.
ant_1_array : ndarray of int
Antenna number of the first antenna in the baseline pair, for all baselines
Required if not providing `uvw_array`, shape is (Nblts,).
ant_2_array : ndarray of int
Antenna number of the second antenna in the baseline pair, for all baselines
Required if not providing `uvw_array`, shape is (Nblts,).
telescope_lat : float
Latitude of the phase center, units radians, required if deriving baseline
coordinates from antenna positions, or converting to/from ENU coordinates.
telescope_lon : float
Longitude of the phase center, units radians, required if deriving baseline
coordinates from antenna positions, or converting to/from ENU coordinates.
from_enu : boolean
Set to True if uvw_array is expressed in ENU coordinates. Default is False.
to_enu : boolean
Set to True if you would like the output expressed in ENU coordinates. Default
is False.
Returns
-------
new_coords : ndarray of float64
Set of baseline coordinates, shape (Nblts, 3).
"""
if to_enu:
if lst_array is None and not use_ant_pos:
raise ValueError(
"Must include lst_array to calculate baselines in ENU coordinates!"
)
if telescope_lat is None:
raise ValueError(
"Must include telescope_lat to calculate baselines "
"in ENU coordinates!"
)
else:
if ((app_ra is None) or (app_dec is None)) and frame_pa is None:
raise ValueError(
"Must include both app_ra and app_dec, or frame_pa to calculate "
"baselines in uvw coordinates!"
)
if use_ant_pos:
# Assume at this point we are dealing w/ antenna positions
if antenna_positions is None:
raise ValueError("Must include antenna_positions if use_ant_pos=True.")
if (ant_1_array is None) or (ant_2_array is None) or (antenna_numbers is None):
raise ValueError(
"Must include ant_1_array, ant_2_array, and antenna_numbers "
"setting use_ant_pos=True."
)
if lst_array is None and not to_enu:
raise ValueError(
"Must include lst_array if use_ant_pos=True and not calculating "
"baselines in ENU coordinates."
)
if telescope_lon is None:
raise ValueError("Must include telescope_lon if use_ant_pos=True.")
ant_dict = {ant_num: idx for idx, ant_num in enumerate(antenna_numbers)}
ant_1_index = np.array(
[ant_dict[ant_num] for ant_num in ant_1_array], dtype=int
)
ant_2_index = np.array(
[ant_dict[ant_num] for ant_num in ant_2_array], dtype=int
)
N_ants = antenna_positions.shape[0]
# Use the app_ra, app_dec, and lst_array arrays to figure out how many unique
# rotations are actually needed. If the ratio of Nblts to number of unique
# entries is favorable, we can just rotate the antenna positions and save
# outselves a bit of work.
if to_enu:
# If to_enu, skip all this -- there's only one unique ha + dec combo
unique_mask = np.zeros(len(ant_1_index), dtype=np.bool_)
unique_mask[0] = True
else:
unique_mask = np.append(
True,
(
((lst_array[:-1] - app_ra[:-1]) != (lst_array[1:] - app_ra[1:]))
| (app_dec[:-1] != app_dec[1:])
),
)
# GHA -> Hour Angle as measured at Greenwich (because antenna coords are
# centered such that x-plane intersects the meridian at longitude 0).
if to_enu:
# Unprojected coordinates are given in the ENU convention -- that's
# equivalent to calculating uvw's based on zenith. We can use that to our
# advantage and spoof the gha and dec based on telescope lon and lat
unique_gha = np.zeros(1) - telescope_lon
unique_dec = np.zeros(1) + telescope_lat
unique_pa = None
else:
unique_gha = (lst_array[unique_mask] - app_ra[unique_mask]) - telescope_lon
unique_dec = app_dec[unique_mask]
unique_pa = 0.0 if frame_pa is None else frame_pa[unique_mask]
# Tranpose the ant vectors so that they are in the proper shape
ant_vectors = np.transpose(antenna_positions)[np.newaxis, :, :]
# Apply rotations, and then reorganize the ndarray so that you can access
# individual antenna vectors quickly.
ant_rot_vectors = np.reshape(
np.transpose(
_rotate_one_axis(
_rotate_two_axis(ant_vectors, unique_gha, unique_dec, 2, 1),
unique_pa,
0,
),
axes=[0, 2, 1],
),
(-1, 3),
)
unique_mask[0] = False
unique_map = np.cumsum(unique_mask) * N_ants
new_coords = (
ant_rot_vectors[unique_map + ant_2_index]
- ant_rot_vectors[unique_map + ant_1_index]
)
else:
if uvw_array is None:
raise ValueError("Must include uvw_array if use_ant_pos=False.")
if from_enu:
if to_enu:
# Well this was pointless... returning your uvws unharmed
return uvw_array
# Unprojected coordinates appear to be stored in ENU coordinates -- that's
# equivalent to calculating uvw's based on zenith. We can use that to our
# advantage and spoof old_app_ra and old_app_dec based on lst_array and
# telescope_lat
if telescope_lat is None:
raise ValueError(
"Must include telescope_lat if moving between "
"ENU (i.e., 'unprojected') and uvw coordinates!"
)
if lst_array is None:
raise ValueError(
"Must include lst_array if moving between ENU "
"(i.e., 'unprojected') and uvw coordinates!"
)
else:
if (old_frame_pa is None) and not (frame_pa is None or to_enu):
raise ValueError(
"Must include old_frame_pa values if data are phased and "
"applying new position angle values (frame_pa)."
)
if ((old_app_ra is None) and not (app_ra is None or to_enu)) or (
(old_app_dec is None) and not (app_dec is None or to_enu)
):
raise ValueError(
"Must include old_app_ra and old_app_dec values when data are "
"already phased and phasing to a new position."
)
# For this operation, all we need is the delta-ha coverage, which _should_ be
# entirely encapsulated by the change in RA.
if (app_ra is None) and (old_app_ra is None):
gha_delta_array = 0.0
else:
gha_delta_array = (lst_array if from_enu else old_app_ra) - (
lst_array if to_enu else app_ra
)
# Notice below there's an axis re-orientation here, to go from uvw -> XYZ,
# where X is pointing in the direction of the source. This is mostly here
# for convenience and code legibility -- a slightly different pair of
# rotations would give you the same result w/o needing to cycle the axes.
# Up front, we want to trap the corner-case where the sky position you are
# phasing up to hasn't changed, just the position angle (i.e., which way is
# up on the map). This is a much easier transform to handle.
if np.all(gha_delta_array == 0.0) and np.all(old_app_dec == app_dec):
new_coords = _rotate_one_axis(
uvw_array[:, [2, 0, 1], np.newaxis],
frame_pa - (0.0 if old_frame_pa is None else old_frame_pa),
0,
)[:, :, 0]
else:
new_coords = _rotate_two_axis(
_rotate_two_axis( # Yo dawg, I heard you like rotation matricies...
uvw_array[:, [2, 0, 1], np.newaxis],
0.0 if (from_enu or old_frame_pa is None) else (-old_frame_pa),
(-telescope_lat) if from_enu else (-old_app_dec),
0,
1,
),
gha_delta_array,
telescope_lat if to_enu else app_dec,
2,
1,
)
# One final rotation applied here, to compensate for the fact that we want
# the Dec-axis of our image (Fourier dual to the v-axis) to be aligned with
# the chosen frame, if we not in ENU coordinates
if not to_enu:
new_coords = _rotate_one_axis(new_coords, frame_pa, 0)
# Finally drop the now-vestigal last axis of the array
new_coords = new_coords[:, :, 0]
# There's one last task to do, which is to re-align the axes from projected
# XYZ -> uvw, where X (which points towards the source) falls on the w axis,
# and Y and Z fall on the u and v axes, respectively.
return new_coords[:, [1, 2, 0]]
def transform_sidereal_coords(
lon,
lat,
in_coord_frame,
out_coord_frame,
in_coord_epoch=None,
out_coord_epoch=None,
time_array=None,
):
"""
Transform a given set of coordinates from one sidereal coordinate frame to another.
Uses astropy to convert from a coordinates from sidereal frame into another.
This function will support transforms from several frames, including GCRS,
FK5 (i.e., J2000), FK4 (i.e., B1950), Galactic, Supergalactic, CIRS, HCRS, and
a few others (basically anything that doesn't require knowing the observers
location on Earth/other celestial body).
Parameters
----------
lon_coord : float or ndarray of floats
Logitudinal coordinate to be transformed, typically expressed as the right
ascension, in units of radians. Can either be a float, or an ndarray of
floats with shape (Ncoords,). Must agree with lat_coord.
lat_coord : float or ndarray of floats
Latitudinal coordinate to be transformed, typically expressed as the
declination, in units of radians. Can either be a float, or an ndarray of
floats with shape (Ncoords,). Must agree with lon_coord.
in_coord_frame : string
Reference frame for the provided coordinates. Expected to match a list of
those supported within the astropy SkyCoord object. An incomplete list includes
'gcrs', 'fk4', 'fk5', 'galactic', 'supergalactic', 'cirs', and 'hcrs'.
out_coord_frame : string
Reference frame to output coordinates in. Expected to match a list of
those supported within the astropy SkyCoord object. An incomplete list includes
'gcrs', 'fk4', 'fk5', 'galactic', 'supergalactic', 'cirs', and 'hcrs'.
in_coord_epoch : float
Epoch for the input coordinate frame. Optional parameter, only required
when using either the FK4 (B1950) or FK5 (J2000) coordinate systems. Units are
in fractional years.
out_coord_epoch : float
Epoch for the output coordinate frame. Optional parameter, only required
when using either the FK4 (B1950) or FK5 (J2000) coordinate systems. Units are
in fractional years.
time_array : float or ndarray of floats
Julian date(s) to which the coordinates correspond to, only used in frames
with annular motion terms (e.g., abberation in GCRS). Can either be a float,
or an ndarray of floats with shape (Ntimes,), assuming that either lat_coord
and lon_coord are floats, or that Ntimes == Ncoords.
Returns
-------
new_lat : float or ndarray of floats
Longitudinal coordinates, in units of radians. Output will be an ndarray
if any inputs were, with shape (Ncoords,) or (Ntimes,), depending on inputs.
new_lon : float or ndarray of floats
Latidudinal coordinates, in units of radians. Output will be an ndarray
if any inputs were, with shape (Ncoords,) or (Ntimes,), depending on inputs.
"""
lon_coord = lon * units.rad
lat_coord = lat * units.rad
# Check here to make sure that lat_coord and lon_coord are the same length,
# either 1 or len(time_array)
if lat_coord.shape != lon_coord.shape:
raise ValueError("lon and lat must be the same shape.")
if lon_coord.ndim == 0:
lon_coord.shape += (1,)
lat_coord.shape += (1,)
# Check to make sure that we have a properly formatted epoch for our in-bound
# coordinate frame
in_epoch = None
if isinstance(in_coord_epoch, str) or isinstance(in_coord_epoch, Time):
# If its a string or a Time object, we don't need to do anything more
in_epoch = Time(in_coord_epoch)
elif in_coord_epoch is not None:
if in_coord_frame.lower() in ["fk4", "fk4noeterms"]:
in_epoch = Time(in_coord_epoch, format="byear")
else:
in_epoch = Time(in_coord_epoch, format="jyear")
# Now do the same for the outbound frame
out_epoch = None
if isinstance(out_coord_epoch, str) or isinstance(out_coord_epoch, Time):
# If its a string or a Time object, we don't need to do anything more
out_epoch = Time(out_coord_epoch)
elif out_coord_epoch is not None:
if out_coord_frame.lower() in ["fk4", "fk4noeterms"]:
out_epoch = Time(out_coord_epoch, format="byear")
else:
out_epoch = Time(out_coord_epoch, format="jyear")
# Make sure that time array matched up with what we expect. Thanks to astropy
# weirdness, time_array has to be the same length as lat/lon coords
rep_time = False
rep_crds = False
if time_array is None:
time_obj_array = None
else:
if isinstance(time_array, Time):
time_obj_array = time_array
else:
time_obj_array = Time(time_array, format="jd", scale="utc")
if (time_obj_array.size != 1) and (lon_coord.size != 1):
if time_obj_array.shape != lon_coord.shape:
raise ValueError(
"Shape of time_array must be either that of "
" lat_coord/lon_coord if len(time_array) > 1."
)
else:
rep_crds = (time_obj_array.size != 1) and (lon_coord.size == 1)
rep_time = (time_obj_array.size == 1) and (lon_coord.size != 1)
if rep_crds:
lon_coord = np.repeat(lon_coord, len(time_array))
lat_coord = np.repeat(lat_coord, len(time_array))
if rep_time:
time_obj_array = Time(
np.repeat(time_obj_array.jd, len(lon_coord)), format="jd", scale="utc"
)
coord_object = SkyCoord(
lon_coord,
lat_coord,
frame=in_coord_frame,
equinox=in_epoch,
obstime=time_obj_array,
)
# Easiest, most general way to transform to the new frame is to create a dummy
# SkyCoord with all the attributes needed -- note that we particularly need this
# in order to use a non-standard equinox/epoch
new_coord = coord_object.transform_to(
SkyCoord(0, 0, unit="rad", frame=out_coord_frame, equinox=out_epoch)
)
return new_coord.spherical.lon.rad, new_coord.spherical.lat.rad
def transform_icrs_to_app(
time_array,
ra,
dec,
telescope_loc,
epoch=2000.0,
pm_ra=None,
pm_dec=None,
vrad=None,
dist=None,
astrometry_library="erfa",
):
"""
Transform a set of coordinates in ICRS to topocentric/apparent coordinates.
This utility uses one of three libraries (astropy, NOVAS, or ERFA) to calculate
the apparent (i.e., topocentric) coordinates of a source at a given time and
location, given a set of coordinates expressed in the ICRS frame. These coordinates
are most typically used for defining the phase center of the array (i.e, calculating
baseline vectors).
As of astropy v4.2, the agreement between the three libraries is consistent down to
the level of better than 1 mas, with the values produced by astropy and pyERFA
consistent to bettter than 10 µas (this is not surprising, given that astropy uses
pyERFA under the hood for astrometry). ERFA is the default as it outputs
coordinates natively in the apparent frame (whereas NOVAS and astropy do not), as
well as the fact that of the three libraries, it produces results the fastest.
Parameters
----------
time_array : float or array-like of float
Julian dates to calculate coordinate positions for. Can either be a single
float, or an array-like of shape (Ntimes,).
ra : float or array-like of float
ICRS RA of the celestial target, expressed in units of radians. Can either
be a single float or array of shape (Ntimes,), although this must be consistent
with other parameters (with the exception of telescope location parameters).
dec : float or array-like of float
ICRS Dec of the celestial target, expressed in units of radians. Can either
be a single float or array of shape (Ntimes,), although this must be consistent
with other parameters (with the exception of telescope location parameters).
telescope_loc : array-like of floats or EarthLocation
ITRF latitude, longitude, and altitude (rel to sea-level) of the phase center
of the array. Can either be provided as an astropy EarthLocation, or a tuple
of shape (3,) containung (in order) the latitude, longitude, and altitude,
in units of radians, radians, and meters, respectively.
epoch : int or float or str or Time object
Epoch of the coordinate data supplied, only used when supplying proper motion
values. If supplying a number, it will assumed to be in Julian years. Default
is J2000.0.
pm_ra : float or array-like of float
Proper motion in RA of the source, expressed in units of milliarcsec / year.
Proper motion values are applied relative to the J2000 (i.e., RA/Dec ICRS
values should be set to their expected values when the epoch is 2000.0).
Can either be a single float or array of shape (Ntimes,), although this must
be consistent with other parameters (namely ra_coord and dec_coord). Note that
units are in dRA/dt, not cos(Dec)*dRA/dt. Not required.
pm_dec : float or array-like of float
Proper motion in Dec of the source, expressed in units of milliarcsec / year.
Proper motion values are applied relative to the J2000 (i.e., RA/Dec ICRS
values should be set to their expected values when the epoch is 2000.0).
Can either be a single float or array of shape (Ntimes,), although this must
be consistent with other parameters (namely ra_coord and dec_coord). Not
required.
vrad : float or array-like of float
Radial velocity of the source, expressed in units of km / sec. Can either be
a single float or array of shape (Ntimes,), although this must be consistent
with other parameters (namely ra_coord and dec_coord). Not required.
dist : float or array-like of float
Distance of the source, expressed in milliarcseconds. Can either be a single
float or array of shape (Ntimes,), although this must be consistent with other
parameters (namely ra_coord and dec_coord). Not required.
astrometry_library : str
Library used for running the coordinate conversions. Allowed options are
'erfa' (which uses the pyERFA), 'novas' (which uses the python-novas library),
and 'astropy' (which uses the astropy utilities). Default is erfa.
Returns
-------
app_ra : ndarray of floats
Apparent right ascension coordinates, in units of radians, of shape (Ntimes,).
app_dec : ndarray of floats
Apparent declination coordinates, in units of radians, of shape (Ntimes,).
"""
# Make sure that the library requested is actually permitted
if astrometry_library not in ["erfa", "novas", "astropy"]:
raise ValueError(
"Requested coordinate transformation library is not supported, please "
"select either 'erfa', 'novas', or 'astropy' for astrometry_library."
)
ra_coord = ra * units.rad
dec_coord = dec * units.rad
# Check here to make sure that ra_coord and dec_coord are the same length,
# either 1 or len(time_array)
multi_coord = ra_coord.size != 1
if ra_coord.shape != dec_coord.shape:
raise ValueError("ra and dec must be the same shape.")
pm_ra_coord = None if pm_ra is None else pm_ra * (units.mas / units.yr)
pm_dec_coord = None if pm_dec is None else pm_dec * (units.mas / units.yr)
d_coord = (
None if (dist is None or np.all(dist == 0.0)) else Distance(dist * units.pc)
)
v_coord = None if vrad is None else vrad * (units.km / units.s)
opt_list = [pm_ra_coord, pm_dec_coord, d_coord, v_coord]
opt_names = ["pm_ra", "pm_dec", "dist", "vrad"]
# Check the optional inputs, make sure that they're sensible
for item, name in zip(opt_list, opt_names):
if item is not None:
if ra_coord.shape != item.shape:
raise ValueError("%s must be the same shape as ra and dec." % name)
if isinstance(telescope_loc, EarthLocation):
site_loc = telescope_loc
else:
site_loc = EarthLocation.from_geodetic(
telescope_loc[1] * (180.0 / np.pi),
telescope_loc[0] * (180.0 / np.pi),
height=telescope_loc[2],
)
# Useful for both astropy and novas methods, the latter of which gives easy
# access to the IERS data that we want.
if isinstance(time_array, Time):
time_obj_array = time_array
else:
time_obj_array = Time(time_array, format="jd", scale="utc")
if time_obj_array.size != 1:
if (time_obj_array.shape != ra_coord.shape) and multi_coord:
raise ValueError(
"time_array must be of either of length 1 (single "
"float) or same length as ra and dec."
)
elif time_obj_array.ndim == 0:
# Make the array at least 1-dimensional so we don't run into indexing
# issues later.
time_obj_array = Time([time_obj_array])
# Check to make sure that we have a properly formatted epoch for our in-bound
# coordinate frame
coord_epoch = None
if isinstance(epoch, str) or isinstance(epoch, Time):
# If its a string or a Time object, we don't need to do anything more
coord_epoch = Time(epoch)
elif epoch is not None:
coord_epoch = Time(epoch, format="jyear")
# Note if time_array is a single element
multi_time = time_obj_array.size != 1
# Get IERS data, which is needed for NOVAS and ERFA
polar_motion_data = iers.earth_orientation_table.get()
pm_x_array, pm_y_array = polar_motion_data.pm_xy(time_obj_array)
delta_x_array, delta_y_array = polar_motion_data.dcip_xy(time_obj_array)
pm_x_array = pm_x_array.to_value("arcsec")
pm_y_array = pm_y_array.to_value("arcsec")
delta_x_array = delta_x_array.to_value("marcsec")
delta_y_array = delta_y_array.to_value("marcsec")
# Catch the case where we don't have CIP delta values yet (they don't typically have
# predictive values like the polar motion does)
delta_x_array[np.isnan(delta_x_array)] = 0.0
delta_y_array[np.isnan(delta_y_array)] = 0.0
# If the source was instantiated w/ floats, it'll be a 0-dim object, which will
# throw errors if we try to treat it as an array. Reshape to a 1D array of len 1
# so that all the calls can be uniform
if ra_coord.ndim == 0:
ra_coord.shape += (1,)
dec_coord.shape += (1,)
if pm_ra_coord is not None:
pm_ra
if d_coord is not None:
d_coord.shape += (1,)
if v_coord is not None:
v_coord.shape += (1,)
# If there is an epoch and a proper motion, apply that motion now
if astrometry_library == "astropy":
# Astropy doesn't have (oddly enough) a way of getting at the apparent RA/Dec
# directly, but we can cheat this by going to AltAz, and then coverting back
# to apparent RA/Dec using the telescope lat and LAST.
if (epoch is not None) and (pm_ra is not None) and (pm_dec is not None):
# astropy is a bit weird in how it handles proper motion, so rather than
# fight with it to do it all in one step, we separate it into two: first
# apply proper motion to ICRS, then transform to topocentric.
sky_coord = SkyCoord(
ra=ra_coord,
dec=dec_coord,
pm_ra_cosdec=pm_ra_coord * np.cos(dec_coord),
pm_dec=pm_dec_coord,
frame="icrs",
)
sky_coord = sky_coord.apply_space_motion(dt=(time_obj_array - coord_epoch))
ra_coord = sky_coord.ra
dec_coord = sky_coord.dec
if d_coord is not None:
d_coord = d_coord.repeat(ra_coord.size)
if v_coord is not None:
v_coord = v_coord.repeat(ra_coord.size)
sky_coord = SkyCoord(
ra=ra_coord,
dec=dec_coord,
distance=d_coord,
radial_velocity=v_coord,
frame="icrs",
)
azel_data = sky_coord.transform_to(
SkyCoord(
np.zeros_like(time_obj_array) * units.rad,
np.zeros_like(time_obj_array) * units.rad,
location=site_loc,
obstime=time_obj_array,
frame="altaz",
)
)
app_ha, app_dec = erfa.ae2hd(
azel_data.az.rad, azel_data.alt.rad, site_loc.lat.rad
)
app_ra = np.mod(
time_obj_array.sidereal_time("apparent", longitude=site_loc.lon).rad
- app_ha,
2 * np.pi,
)
elif astrometry_library == "novas":
# Import the NOVAS library only if it's needed/available.
try:
import novas_de405 # noqa
from novas import compat as novas
from novas.compat import eph_manager
except ImportError as e: # pragma: no cover
raise ImportError(
"novas and/or novas_de405 are not installed but is required for "
"NOVAS functionality"
) from e
# Call is needed to load high-precision ephem data in NOVAS
jd_start, jd_end, number = eph_manager.ephem_open()
# Define the obs location, which is needed to calculate diurnal abb term
# and polar wobble corrections
site_loc = novas.make_on_surface(
site_loc.lat.deg, # latitude in deg
site_loc.lon.deg, # Longitude in deg
site_loc.height.to_value("m"), # Height in meters
0.0, # Temperature, set to 0 for now (no atm refrac)
0.0, # Pressure, set to 0 for now (no atm refrac)
)
# NOVAS wants things in terrestial time and UT1
tt_time_array = time_obj_array.tt.jd
ut1_time_array = time_obj_array.ut1.jd
gast_array = time_obj_array.sidereal_time("apparent", "greenwich").rad
if np.any(tt_time_array < jd_start) or np.any(tt_time_array > jd_end):
raise ValueError(
"No current support for JPL ephems outside of 1700 - 2300 AD. "
"Check back later (or possibly earlier)..."
)
app_ra = np.zeros(tt_time_array.shape) + np.zeros(ra_coord.shape)
app_dec = np.zeros(tt_time_array.shape) + np.zeros(ra_coord.shape)
for idx in range(len(app_ra)):
if multi_coord or (idx == 0):
# Create a catalog entry for the source in question
cat_entry = novas.make_cat_entry(
"dummy_name", # Dummy source name
"GKK", # Catalog ID, fixed for now
156, # Star ID number, fixed for now
ra_coord[idx].to_value("hourangle"),
dec_coord[idx].to_value("deg"),
0.0
if pm_ra is None
else (
pm_ra_coord.to_value("mas/yr")
* np.cos(dec_coord[idx].to_value("rad"))
),
0.0 if pm_dec is None else pm_dec_coord.to_value("mas/yr"),
0.0
if (dist is None or np.any(dist == 0.0))
else (d_coord.kiloparsec**-1.0),
0.0 if (vrad is None) else v_coord.to_value("km/s"),
)
# Update polar wobble parameters for a given timestamp
if multi_time or (idx == 0):
gast = gast_array[idx]
pm_x = pm_x_array[idx] * np.cos(gast) + pm_y_array[idx] * np.sin(gast)
pm_y = pm_y_array[idx] * np.cos(gast) - pm_x_array[idx] * np.sin(gast)
tt_time = tt_time_array[idx]
ut1_time = ut1_time_array[idx]
novas.cel_pole(tt_time, 2, delta_x_array[idx], delta_y_array[idx])
# Calculate topocentric RA/Dec values
[temp_ra, temp_dec] = novas.topo_star(
tt_time, (tt_time - ut1_time) * 86400.0, cat_entry, site_loc, accuracy=0
)
xyz_array = polar2_to_cart3(
temp_ra * (np.pi / 12.0), temp_dec * (np.pi / 180.0)
)
xyz_array = novas.wobble(tt_time, pm_x, pm_y, xyz_array, 1)
app_ra[idx], app_dec[idx] = cart3_to_polar2(np.array(xyz_array))
elif astrometry_library == "erfa":
# liberfa wants things in radians
pm_x_array *= np.pi / (3600.0 * 180.0)
pm_y_array *= np.pi / (3600.0 * 180.0)
[_, _, _, app_dec, app_ra, eqn_org] = erfa.atco13(
ra_coord.to_value("rad"),
dec_coord.to_value("rad"),
0.0 if (pm_ra is None) else pm_ra_coord.to_value("rad/yr"),
0.0 if (pm_dec is None) else pm_dec_coord.to_value("rad/yr"),
0.0 if (dist is None or np.any(dist == 0.0)) else (d_coord.pc**-1.0),
0.0 if (vrad is None) else v_coord.to_value("km/s"),
time_obj_array.utc.jd,
0.0,
time_obj_array.delta_ut1_utc,
site_loc.lon.rad,
site_loc.lat.rad,
site_loc.height.to_value("m"),
pm_x_array,
pm_y_array,
0, # ait pressure, used for refraction (ignored)
0, # amb temperature, used for refraction (ignored)
0, # rel humidity, used for refraction (ignored)
0, # wavelength, used for refraction (ignored)
)
app_ra = np.mod(app_ra - eqn_org, 2 * np.pi)
return app_ra, app_dec
def transform_app_to_icrs(
time_array, app_ra, app_dec, telescope_loc, astrometry_library="erfa"
):
"""
Transform a set of coordinates in topocentric/apparent to ICRS coordinates.
This utility uses either astropy or erfa to calculate the ICRS coordinates of
a given set of apparent source coordinates. These coordinates are most typically
used for defining the celestial/catalog position of a source. Note that at present,
this is only implemented in astropy and pyERFA, although it could hypothetically
be extended to NOVAS at some point.
Parameters
----------
time_array : float or ndarray of float
Julian dates to calculate coordinate positions for. Can either be a single
float, or an ndarray of shape (Ntimes,).
app_ra : float or ndarray of float
ICRS RA of the celestial target, expressed in units of radians. Can either
be a single float or array of shape (Ncoord,). Note that if time_array is
not a singleton value, then Ncoord must be equal to Ntimes.
app_dec : float or ndarray of float
ICRS Dec of the celestial target, expressed in units of radians. Can either
be a single float or array of shape (Ncoord,). Note that if time_array is
not a singleton value, then Ncoord must be equal to Ntimes.
telescope_loc : tuple of floats or EarthLocation
ITRF latitude, longitude, and altitude (rel to sea-level) of the phase center
of the array. Can either be provided as an astropy EarthLocation, or a tuple
of shape (3,) containung (in order) the latitude, longitude, and altitude,
in units of radians, radians, and meters, respectively.
Returns
-------
icrs_ra : ndarray of floats
ICRS right ascension coordinates, in units of radians, of either shape
(Ntimes,) if Ntimes >1, otherwise (Ncoord,).
icrs_dec : ndarray of floats
ICRS declination coordinates, in units of radians, of either shape
(Ntimes,) if Ntimes >1, otherwise (Ncoord,).
"""
# Make sure that the library requested is actually permitted
if astrometry_library not in ["erfa", "astropy"]:
raise ValueError(
"Requested coordinate transformation library is not supported, please "
"select either 'erfa' or 'astropy' for astrometry_library."
)
ra_coord = app_ra * units.rad
dec_coord = app_dec * units.rad
# Check here to make sure that ra_coord and dec_coord are the same length,
# either 1 or len(time_array)
multi_coord = ra_coord.size != 1
if ra_coord.shape != dec_coord.shape:
raise ValueError("app_ra and app_dec must be the same shape.")
if isinstance(telescope_loc, EarthLocation):
site_loc = telescope_loc
else:
site_loc = EarthLocation.from_geodetic(
telescope_loc[1] * (180.0 / np.pi),
telescope_loc[0] * (180.0 / np.pi),
height=telescope_loc[2],
)
assert time_array.size > 0
if isinstance(time_array, Time):
time_obj_array = time_array
else:
time_obj_array = Time(time_array, format="jd", scale="utc")
if time_obj_array.size != 1:
if (time_obj_array.shape != ra_coord.shape) and multi_coord:
raise ValueError(
"time_array must be of either of length 1 (single "
"float) or same length as ra and dec."
)
elif time_obj_array.ndim == 0:
# Make the array at least 1-dimensional so we don't run into indexing
# issues later.
time_obj_array = Time([time_obj_array])
if astrometry_library == "astropy":
az_coord, el_coord = erfa.hd2ae(
np.mod(
time_obj_array.sidereal_time("apparent", longitude=site_loc.lon).rad
- ra_coord.to_value("rad"),
2 * np.pi,
),
dec_coord.to_value("rad"),
site_loc.lat.rad,
)
sky_coord = SkyCoord(
az_coord * units.rad,
el_coord * units.rad,
frame="altaz",
location=site_loc,
obstime=time_obj_array,
)
coord_data = sky_coord.transform_to("icrs")
icrs_ra = coord_data.ra.rad
icrs_dec = coord_data.dec.rad
elif astrometry_library == "erfa":
# Get IERS data, which is needed for highest precision
polar_motion_data = iers.earth_orientation_table.get()
pm_x_array, pm_y_array = polar_motion_data.pm_xy(time_obj_array)
pm_x_array = pm_x_array.to_value("rad")
pm_y_array = pm_y_array.to_value("rad")
bpn_matrix = erfa.pnm06a(time_obj_array.tt.jd, 0.0)
cip_x, cip_y = erfa.bpn2xy(bpn_matrix)
cio_s = erfa.s06(time_obj_array.tt.jd, 0.0, cip_x, cip_y)
eqn_org = erfa.eors(bpn_matrix, cio_s)
# Observed to ICRS via ERFA
icrs_ra, icrs_dec = erfa.atoc13(
"r",
ra_coord.to_value("rad") + eqn_org,
dec_coord.to_value("rad"),
time_obj_array.utc.jd,
0.0, # Second half of the UT date, not needed
time_obj_array.delta_ut1_utc,
site_loc.lon.rad,
site_loc.lat.rad,
site_loc.height.value,
pm_x_array,
pm_y_array,
0, # ait pressure, used for refraction (ignored)
0, # amb temperature, used for refraction (ignored)
0, # rel humidity, used for refraction (ignored)
0, # wavelength, used for refraction (ignored)
)
# Return back the two RA/Dec arrays
return icrs_ra, icrs_dec
def calc_parallactic_angle(app_ra, app_dec, lst_array, telescope_lat):
"""
Calculate the parallactic angle between RA/Dec and the AltAz frame.
Parameters
----------
app_ra : ndarray of floats
Array of apparent RA values in units of radians, shape (Ntimes,).
app_dec : ndarray of floats
Array of apparent dec values in units of radians, shape (Ntimes,).
telescope_lat : float
Latitude of the observatory, in units of radians.
lst_array : float or ndarray of float
Array of local apparent sidereal timesto calculate position angle values
for, in units of radians. Can either be a single float or an array of shape
(Ntimes,).
"""
# This is just a simple wrapped around the pas function in ERFA
return erfa.pas(app_ra, app_dec, lst_array, telescope_lat)
def calc_frame_pos_angle(
time_array,
app_ra,
app_dec,
telescope_loc,
ref_frame,
ref_epoch=None,
offset_pos=(np.pi / 360.0),
):
"""
Calculate an position angle given apparent position and reference frame.
This function is used to determine the position angle between the great
circle of declination in apparent coordinates, versus that in a given
reference frame. Note that this is slightly different than parallactic
angle, which is the difference between apparent declination and elevation.
Paramters
---------
time_array : float or ndarray of floats
Array of julian dates to calculate position angle values for, of shape
(Ntimes,).
app_ra : ndarray of floats
Array of apparent RA values in units of radians, shape (Ntimes,).
app_dec : ndarray of floats
Array of apparent dec values in units of radians, shape (Ntimes,).
telescope_loc : tuple of floats or EarthLocation
ITRF latitude, longitude, and altitude (rel to sea-level) of the observer.
Can either be provided as an astropy EarthLocation, or an array-like of shape
(3,) containing the latitude, longitude, and altitude, in that order, with units
of radians, radians, and meters, respectively.
offset_pos : float
Distance of the offset position used to calculate the frame PA. Default
is 0.5 degrees, which should be sufficent for most applications.
ref_frame : str
Coordinate frame to calculate position angles for. Can be any of the
several supported frames in astropy (a limited list: fk4, fk5, icrs,
gcrs, cirs, galactic).
ref_epoch : str or flt
Epoch of the coordinates, only used when ref_frame = fk4 or fk5. Given
in unites of fractional years, either as a float or as a string with
the epoch abbreviation (e.g, Julian epoch 2000.0 would be J2000.0).
Returns
-------
frame_pa : ndarray of floats
Array of position angles, in units of radians.
"""
# Check to see if the position angles should default to zero
if (ref_frame is None) or (ref_frame == "topo"):
# No-op detected, ENGAGE MAXIMUM SNARK!
return np.zeros_like(time_array)
# This creates an array of unique entries of ra + dec + time, since the processing
# time for each element can be non-negligible, and entries along the Nblt axis can
# be highly redundant.
unique_mask = np.union1d(
np.union1d(
np.unique(app_ra, return_index=True)[1],
np.unique(app_dec, return_index=True)[1],
),
np.unique(time_array, return_index=True)[1],
)
# Pluck out the unique entries for each
unique_ra = app_ra[unique_mask]
unique_dec = app_dec[unique_mask]
unique_time = time_array[unique_mask]
# Figure out how many elements we need to transform
n_coord = len(unique_mask)
# Offset north/south positions by 0.5 deg, such that the PA is determined over a
# 1 deg arc.
up_dec = unique_dec + (np.pi / 360.0)
dn_dec = unique_dec - (np.pi / 360.0)
up_ra = dn_ra = unique_ra
# Wrap the positions if they happen to go over the poles
up_ra[up_dec > (np.pi / 2.0)] = np.mod(
up_ra[up_dec > (np.pi / 2.0)] + np.pi, 2.0 * np.pi
)
up_dec[up_dec > (np.pi / 2.0)] = np.pi - up_dec[up_dec > (np.pi / 2.0)]
dn_ra[-dn_dec > (np.pi / 2.0)] = np.mod(
dn_ra[dn_dec > (np.pi / 2.0)] + np.pi, 2.0 * np.pi
)
dn_dec[-dn_dec > (np.pi / 2.0)] = np.pi - dn_dec[-dn_dec > (np.pi / 2.0)]
# Run the set of offset coordinates through the "reverse" transform. The two offset
# positions are concat'd together to help reduce overheads
ref_ra, ref_dec = calc_sidereal_coords(
np.tile(unique_time, 2),
np.concatenate((dn_ra, up_ra)),
np.concatenate((dn_dec, up_dec)),
telescope_loc,
ref_frame,
coord_epoch=ref_epoch,
)
# Use the pas function from ERFA to calculate the position angle. The negative sign
# is here because we're measuring PA of app -> frame, but we want frame -> app.
unique_pa = -erfa.pas(
ref_ra[:n_coord], ref_dec[:n_coord], ref_ra[n_coord:], ref_dec[n_coord:]
)
# Finally, we have to go back through and "fill in" the redundant entries
frame_pa = np.zeros_like(app_ra)
for idx in range(n_coord):
select_mask = np.logical_and(
np.logical_and(unique_ra[idx] == app_ra, unique_dec[idx] == app_dec),
unique_time[idx] == time_array,
)
frame_pa[select_mask] = unique_pa[idx]
return frame_pa
def lookup_jplhorizons(
target_name,
time_array,
telescope_loc=None,
high_cadence=False,
force_indv_lookup=None,
):
"""
Lookup solar system body coordinates via the JPL-Horizons service.
This utility is useful for generating ephemerides, which can then be interpolated in
order to provide positional data for a target which is moving, such as planetary
bodies and other solar system objects. Use of this function requires the
installation of the `astroquery` module.
Parameters
----------
target_name : str
Name of the target to gather an ephemeris for. Must match the name
in the JPL-Horizons database.
time_array : array-like of float
Times in UTC Julian days to gather an ephemeris for.
telescope_loc : array-like of float
ITRF latitude, longitude, and altitude (rel to sea-level) of the observer. Must
be an array-like of shape (3,) containing the latitude, longitude, and
altitude, in that order, with units of radians, radians, and meters,
respectively.
high_cadence : bool
If set to True, will calculate ephemeris points every 3 minutes in time, as
opposed to the default of every 3 hours.
force_indv_lookup : bool
If set to True, will calculate coordinate values for each value found within
`time_array`. If False, a regularized time grid is sampled that encloses the
values contained within `time_array`. Default is False, unless `time_array` is
of length 1, in which the default is set to True.
Returns
-------
ephem_times : ndarray of float
Times for which the ephemeris values were calculated, in UTC Julian days.
ephem_ra : ndarray of float
ICRS Right ascension of the target at the values within `ephem_times`, in
units of radians.
ephem_dec : ndarray of float
ICRS Declination of the target at the values within `ephem_times`, in units
of radians.
ephem_dist : ndarray of float
Distance of the target relative to the observer, at the values within
`ephem_times`, in units of parsecs.
ephem_vel : ndarray of float
Velocity of the targets relative to the observer, at the values within
`ephem_times`, in units of km/sec.
"""
try:
from astroquery.jplhorizons import Horizons
except ImportError as err: # pragma: no cover
raise ImportError(
"astroquery is not installed but is required for "
"planet ephemeris functionality"
) from err
from json import load as json_load
from os.path import join as path_join
from pyuvdata.data import DATA_PATH
# Get the telescope location into a format that JPL-Horizons can understand,
# which is nominally a dict w/ entries for lon (units of deg), lat (units of
# deg), and elevation (units of km).
if isinstance(telescope_loc, EarthLocation):
site_loc = {
"lon": telescope_loc.lon.deg,
"lat": telescope_loc.lat.deg,
"elevation": telescope_loc.height.to_value(unit=units.km),
}
elif telescope_loc is None:
# Setting to None will report the geocentric position
site_loc = None
else:
site_loc = {
"lon": telescope_loc[1] * (180.0 / np.pi),
"lat": telescope_loc[0] * (180.0 / np.pi),
"elevation": telescope_loc[2] * (0.001), # m -> km
}
# If force_indv_lookup is True, or unset but only providing a single value, then
# just calculate the RA/Dec for the times requested rather than creating a table
# to interpolate from.
if force_indv_lookup or (
(np.array(time_array).size == 1) and (force_indv_lookup is None)
):
epoch_list = np.unique(time_array)
if len(epoch_list) > 50:
raise ValueError(
"Requesting too many individual ephem points from JPL-Horizons. This "
"can be remedied by setting force_indv_lookup=False or limiting the "
"number of values in time_array."
)
else:
# When querying for multiple times, its faster (and kinder to the
# good folks at JPL) to create a range to query, and then interpolate
# between values. The extra buffer of 0.001 or 0.25 days for high and
# low cadence is to give enough data points to allow for spline
# interpolation of the data.
if high_cadence:
start_time = np.min(time_array) - 0.001
stop_time = np.max(time_array) + 0.001
step_time = "3m"
n_entries = (stop_time - start_time) * (1440.0 / 3.0)
else:
# The start/stop time here are setup to maximize reusability of the
# data, since astroquery appears to cache the results from previous
# queries.
start_time = (0.25 * np.floor(4.0 * np.min(time_array))) - 0.25
stop_time = (0.25 * np.ceil(4.0 * np.max(time_array))) + 0.25
step_time = "3h"
n_entries = (stop_time - start_time) * (24.0 / 3.0)
# We don't want to overtax the JPL service, so limit ourselves to 1000
# individual queries at a time. Note that this is likely a conservative
# cap for JPL-Horizons, but there should be exceptionally few applications
# that actually require more than this.
if n_entries > 1000:
if (len(np.unique(time_array)) <= 50) and (force_indv_lookup is None):
# If we have a _very_ sparse set of epochs, pass that along instead
epoch_list = np.unique(time_array)
else:
# Otherwise, time to raise an error
raise ValueError(
"Too many ephem points requested from JPL-Horizons. This "
"can be remedied by setting high_cadance=False or limiting "
"the number of values in time_array."
)
else:
epoch_list = {
"start": Time(start_time, format="jd").isot,
"stop": Time(stop_time, format="jd").isot,
"step": step_time,
}
# Check to make sure dates are within the 1700-2200 time range,
# since not all targets are supported outside of this range
if (np.min(time_array) < 2341973.0) or (np.max(time_array) > 2524593.0):
raise ValueError(
"No current support for JPL ephems outside of 1700 - 2300 AD. "
"Check back later (or possibly earlier)..."
)
# JPL-Horizons has a separate catalog with what it calls 'major bodies',
# and will throw an error if you use the wrong catalog when calling for
# astrometry. We'll use the dict below to capture this behavior.
with open(path_join(DATA_PATH, "jpl_major_bodies.json"), "r") as fhandle:
major_body_dict = json_load(fhandle)
target_id = target_name
id_type = "smallbody"
# If we find the target in the major body database, then we can extract the
# target ID to make the query a bit more robust (otherwise JPL-Horizons will fail
# on account that id will find multiple partial matches: e.g., "Mars" will be
# matched with "Mars", "Mars Explorer", "Mars Barycenter"..., and JPL-Horizons will
# not know which to choose).
if target_name in major_body_dict.keys():
target_id = major_body_dict[target_name]
id_type = None
query_obj = Horizons(
id=target_id, location=site_loc, epochs=epoch_list, id_type=id_type
)
# If not in the major bodies catalog, try the minor bodies list, and if
# still not found, throw an error.
try:
ephem_data = query_obj.ephemerides(extra_precision=True)
except KeyError:
# This is a fix for an astroquery + JPL-Horizons bug, that's related to
# API change on JPL's side. In this case, the source is identified, but
# astroquery can't correctly parse the return message from JPL-Horizons.
# See astroquery issue #2169.
ephem_data = query_obj.ephemerides(extra_precision=False) # pragma: no cover
except ValueError as err:
query_obj._session.close()
if "Unknown target" in str(err):
raise ValueError(
"Target ID is not recognized in either the small or major bodies "
"catalogs, please consult the JPL-Horizons database for supported "
"targets (https://ssd.jpl.nasa.gov/?horizons)."
) from err
else:
raise # pragma: no cover
# This is explicitly closed here to trap a bug that occassionally throws an
# unexpected warning, see astroquery issue #1807
query_obj._session.close()
# Now that we have the ephem data, extract out the relevant data
ephem_times = np.array(ephem_data["datetime_jd"])
ephem_ra = np.array(ephem_data["RA"]) * (np.pi / 180.0)
ephem_dec = np.array(ephem_data["DEC"]) * (np.pi / 180.0)
ephem_dist = np.array(ephem_data["delta"]) # AU
ephem_vel = np.array(ephem_data["delta_rate"]) # km/s
return ephem_times, ephem_ra, ephem_dec, ephem_dist, ephem_vel
def interpolate_ephem(
time_array, ephem_times, ephem_ra, ephem_dec, ephem_dist=None, ephem_vel=None
):
"""
Interpolates ephemerides to give positions for requested times.
This is a simple tool for calculated interpolated RA and Dec positions, as well
as distances and velocities, for a given ephemeris. Under the hood, the method
uses as cubic spline interpolation to calculate values at the requested times,
provided that there are enough values to interpolate over to do so (requires
>= 4 points), otherwise a linear interpolation is used.
Parameters
----------
time_array : array-like of floats
Times to interpolate positions for, in UTC Julian days.
ephem_times : array-like of floats
Times in UTC Julian days which describe that match to the recorded postions
of the target. Must be array-like, of shape (Npts,), where Npts is the number
of ephemeris points.
ephem_ra : array-like of floats
Right ascencion of the target, at the times given in `ephem_times`. Units are
in radians, must have the same shape as `ephem_times`.
ephem_dec : array-like of floats
Declination of the target, at the times given in `ephem_times`. Units are
in radians, must have the same shape as `ephem_times`.
ephem_dist : array-like of floats
Distance of the target from the observer, at the times given in `ephem_times`.
Optional argument, in units of parsecs. Must have the same shape as
`ephem_times`.
ephem_vel : array-like of floats
Velocities of the target, at the times given in `ephem_times`. Optional
argument, in units of km/sec. Must have the same shape as `ephem_times`.
Returns
-------
ra_vals : ndarray of float
Interpolated RA values, returned as an ndarray of floats with
units of radians, and the same shape as `time_array`.
dec_vals : ndarray of float
Interpolated declination values, returned as an ndarray of floats with
units of radians, and the same shape as `time_array`.
dist_vals : None or ndarray of float
If `ephem_dist` was provided, an ndarray of floats (with same shape as
`time_array`) with the interpolated target distances, in units of parsecs.
If `ephem_dist` was not provided, this returns as None.
vel_vals : None or ndarray of float
If `ephem_vals` was provided, an ndarray of floats (with same shape as
`time_array`) with the interpolated target velocities, in units of km/sec.
If `ephem_vals` was not provided, this returns as None.
"""
# We're importing this here since it's only used for this one function
from scipy.interpolate import interp1d
ephem_shape = np.array(ephem_times).shape
# Make sure that things look reasonable
if np.array(ephem_ra).shape != ephem_shape:
raise ValueError("ephem_ra must have the same shape as ephem_times.")
if np.array(ephem_dec).shape != ephem_shape:
raise ValueError("ephem_dec must have the same shape as ephem_times.")
if (np.array(ephem_dist).shape != ephem_shape) and (ephem_dist is not None):
raise ValueError("ephem_dist must have the same shape as ephem_times.")
if (np.array(ephem_vel).shape != ephem_shape) and (ephem_vel is not None):
raise ValueError("ephem_vel must have the same shape as ephem_times.")
ra_vals = np.zeros_like(time_array, dtype=float)
dec_vals = np.zeros_like(time_array, dtype=float)
dist_vals = None if ephem_dist is None else np.zeros_like(time_array, dtype=float)
vel_vals = None if ephem_vel is None else np.zeros_like(time_array, dtype=float)
if len(ephem_times) == 1:
ra_vals += ephem_ra
dec_vals += ephem_dec
if ephem_dist is not None:
dist_vals += ephem_dist
if ephem_vel is not None:
vel_vals += ephem_vel
else:
if len(ephem_times) > 3:
interp_kind = "cubic"
else:
interp_kind = "linear"
# If we have values that line up perfectly, just use those directly
select_mask = np.isin(time_array, ephem_times)
if np.any(select_mask):
time_select = time_array[select_mask]
ra_vals[select_mask] = interp1d(ephem_times, ephem_ra, kind="nearest")(
time_select
)
dec_vals[select_mask] = interp1d(ephem_times, ephem_dec, kind="nearest")(
time_select
)
if ephem_dist is not None:
dist_vals[select_mask] = interp1d(
ephem_times, ephem_dist, kind="nearest"
)(time_select)
if ephem_vel is not None:
vel_vals[select_mask] = interp1d(
ephem_times, ephem_vel, kind="nearest"
)(time_select)
# If we have values lining up between grid points, use spline interpolation
# to calculate their values
select_mask = ~select_mask
if np.any(select_mask):
time_select = time_array[select_mask]
ra_vals[select_mask] = interp1d(ephem_times, ephem_ra, kind=interp_kind)(
time_select
)
dec_vals[select_mask] = interp1d(ephem_times, ephem_dec, kind=interp_kind)(
time_select
)
if ephem_dist is not None:
dist_vals[select_mask] = interp1d(
ephem_times, ephem_dist, kind=interp_kind
)(time_select)
if ephem_vel is not None:
vel_vals[select_mask] = interp1d(
ephem_times, ephem_vel, kind=interp_kind
)(time_select)
return (ra_vals, dec_vals, dist_vals, vel_vals)
def calc_app_coords(
lon_coord,
lat_coord,
coord_frame="icrs",
coord_epoch=None,
coord_times=None,
coord_type="sidereal",
time_array=None,
lst_array=None,
telescope_loc=None,
pm_ra=None,
pm_dec=None,
vrad=None,
dist=None,
):
"""
Calculate apparent coordinates for several different coordinate types.
This function calculates apparent positions at the current epoch.
Parameters
----------
lon_coord : float or ndarray of float
Longitudinal (e.g., RA) coordinates, units of radians. Must match the same
shape as lat_coord.
lat_coord : float or ndarray of float
Latitudinal (e.g., Dec) coordinates, units of radians. Must match the same
shape as lon_coord.
coord_frame : string
The requested reference frame for the output coordinates, can be any frame
that is presently supported by astropy.
coord_epoch : float or str or Time object
Epoch for ref_frame, nominally only used if converting to either the FK4 or
FK5 frames, in units of fractional years. If provided as a float and the
coord_frame is an FK4-variant, value will assumed to be given in Besselian
years (i.e., 1950 would be 'B1950'), otherwise the year is assumed to be
in Julian years.
coord_times : float or ndarray of float
Only used when `coord_type="ephem"`, the JD UTC time for each value of
`lon_coord` and `lat_coord`. These values are used to interpolate `lon_coord`
and `lat_coord` values to those times listed in `time_array`.
coord_type : str
coord_type : str
Type of source to calculate coordinates for. Must be one of:
"sidereal" (fixed RA/Dec),
"ephem" (RA/Dec that moves with time),
"driftscan" (fixed az/el position),
"unprojected" (alias for "driftscan" with (Az, Alt) = (0 deg, 90 deg)).
time_array : float or ndarray of float or Time object
Times for which the apparent coordinates were calculated, in UTC JD. If more
than a single element, must be the same shape as lon_coord and lat_coord if
both of those are arrays (instead of single floats).
telescope_loc : array-like of floats or EarthLocation
ITRF latitude, longitude, and altitude (rel to sea-level) of the phase center
of the array. Can either be provided as an astropy EarthLocation, or a tuple
of shape (3,) containung (in order) the latitude, longitude, and altitude,
in units of radians, radians, and meters, respectively.
coord_frame : string
The requested reference frame for the output coordinates, can be any frame
that is presently supported by astropy. Default is ICRS.
coord_epoch : float or str or Time object
Epoch for ref_frame, nominally only used if converting to either the FK4 or
FK5 frames, in units of fractional years. If provided as a float and the
ref_frame is an FK4-variant, value will assumed to be given in Besselian
years (i.e., 1950 would be 'B1950'), otherwise the year is assumed to be
in Julian years.
pm_ra : float or ndarray of float
Proper motion in RA of the source, expressed in units of milliarcsec / year.
Can either be a single float or array of shape (Ntimes,), although this must
be consistent with other parameters (namely ra_coord and dec_coord). Not
required, motion is calculated relative to the value of `coord_epoch`.
pm_dec : float or ndarray of float
Proper motion in Dec of the source, expressed in units of milliarcsec / year.
Can either be a single float or array of shape (Ntimes,), although this must
be consistent with other parameters (namely ra_coord and dec_coord). Not
required, motion is calculated relative to the value of `coord_epoch`.
vrad : float or ndarray of float
Radial velocity of the source, expressed in units of km / sec. Can either be
a single float or array of shape (Ntimes,), although this must be consistent
with other parameters (namely ra_coord and dec_coord). Not required.
dist : float or ndarray of float
Distance of the source, expressed in milliarcseconds. Can either be a single
float or array of shape (Ntimes,), although this must be consistent with other
parameters (namely ra_coord and dec_coord). Not required.
Returns
-------
app_ra : ndarray of floats
Apparent right ascension coordinates, in units of radians.
app_dec : ndarray of floats
Apparent declination coordinates, in units of radians.
"""
if isinstance(telescope_loc, EarthLocation):
site_loc = telescope_loc
else:
site_loc = EarthLocation.from_geodetic(
telescope_loc[1] * (180.0 / np.pi),
telescope_loc[0] * (180.0 / np.pi),
height=telescope_loc[2],
)
# Time objects and unique don't seem to play well together, so we break apart
# their handling here
if isinstance(time_array, Time):
unique_time_array, unique_mask = np.unique(time_array.utc.jd, return_index=True)
else:
unique_time_array, unique_mask = np.unique(time_array, return_index=True)
if coord_type == "unphased":
warnings.warn(
"The 'unphased' catalog type has been renamed to 'unprojected'. Using "
"unprojected for now, this warning will become an error in version 2.4",
DeprecationWarning,
)
coord_type = "unprojected"
if coord_type in ["driftscan", "unprojected"]:
if lst_array is None:
unique_lst = get_lst_for_time(
unique_time_array,
site_loc.lat.deg,
site_loc.lon.deg,
site_loc.height.to_value("m"),
)
else:
unique_lst = lst_array[unique_mask]
if coord_type == "sidereal":
# If the coordinates are not in the ICRS frame, go ahead and transform them now
if coord_frame != "icrs":
icrs_ra, icrs_dec = transform_sidereal_coords(
lon_coord,
lat_coord,
coord_frame,
"icrs",
in_coord_epoch=coord_epoch,
time_array=unique_time_array,
)
else:
icrs_ra = lon_coord
icrs_dec = lat_coord
unique_app_ra, unique_app_dec = transform_icrs_to_app(
unique_time_array,
icrs_ra,
icrs_dec,
site_loc,
pm_ra=pm_ra,
pm_dec=pm_dec,
vrad=vrad,
dist=dist,
)
elif coord_type == "driftscan":
# Use the ERFA function ae2hd, which will do all the heavy
# lifting for us
unique_app_ha, unique_app_dec = erfa.ae2hd(
lon_coord, lat_coord, site_loc.lat.rad
)
# The above returns HA/Dec, so we just need to rotate by
# the LST to get back app RA and Dec
unique_app_ra = np.mod(unique_app_ha + unique_lst, 2 * np.pi)
unique_app_dec = unique_app_dec + np.zeros_like(unique_app_ra)
elif coord_type == "ephem":
interp_ra, interp_dec, _, _ = interpolate_ephem(
unique_time_array, coord_times, lon_coord, lat_coord
)
if coord_frame != "icrs":
icrs_ra, icrs_dec = transform_sidereal_coords(
interp_ra,
interp_dec,
coord_frame,
"icrs",
in_coord_epoch=coord_epoch,
time_array=unique_time_array,
)
else:
icrs_ra = interp_ra
icrs_dec = interp_dec
# TODO: Vel and distance handling to be integrated here, once they are are
# needed for velocity frame tracking
unique_app_ra, unique_app_dec = transform_icrs_to_app(
unique_time_array, icrs_ra, icrs_dec, site_loc, pm_ra=pm_ra, pm_dec=pm_dec
)
elif coord_type == "unprojected":
# This is the easiest one - this is just supposed to be ENU, so set the
# apparent coords to the current lst and telescope_lat.
unique_app_ra = unique_lst.copy()
unique_app_dec = np.zeros_like(unique_app_ra) + site_loc.lat.rad
else:
raise ValueError("Object type %s is not recognized." % coord_type)
# Now that we've calculated all the unique values, time to backfill through the
# "redundant" entries in the Nblt axis.
app_ra = np.zeros(np.array(time_array).shape)
app_dec = np.zeros(np.array(time_array).shape)
# Need this promotion in order to match entries
if isinstance(time_array, Time):
unique_time_array = Time(unique_time_array, format="jd", scale="utc")
for idx, unique_time in enumerate(unique_time_array):
select_mask = time_array == unique_time
app_ra[select_mask] = unique_app_ra[idx]
app_dec[select_mask] = unique_app_dec[idx]
return app_ra, app_dec
def calc_sidereal_coords(
time_array, app_ra, app_dec, telescope_loc, coord_frame, coord_epoch=None
):
"""
Calculate sidereal coordinates given apparent coordinates.
This function calculates coordinates in the requested frame (at a given epoch)
from a set of apparent coordinates.
Parameters
----------
time_array : float or ndarray of float or Time object
Times for which the apparent coordinates were calculated, in UTC JD. Must
match the shape of app_ra and app_dec.
app_ra : float or ndarray of float
Array of apparent right ascension coordinates, units of radians. Must match
the shape of time_array and app_dec.
app_ra : float or ndarray of float
Array of apparent right declination coordinates, units of radians. Must match
the shape of time_array and app_dec.
telescope_loc : tuple of floats or EarthLocation
ITRF latitude, longitude, and altitude (rel to sea-level) of the phase center
of the array. Can either be provided as an astropy EarthLocation, or a tuple
of shape (3,) containung (in order) the latitude, longitude, and altitude,
in units of radians, radians, and meters, respectively.
coord_frame : string
The requested reference frame for the output coordinates, can be any frame
that is presently supported by astropy. Default is ICRS.
coord_epoch : float or str or Time object
Epoch for ref_frame, nominally only used if converting to either the FK4 or
FK5 frames, in units of fractional years. If provided as a float and the
ref_frame is an FK4-variant, value will assumed to be given in Besselian
years (i.e., 1950 would be 'B1950'), otherwise the year is assumed to be
in Julian years.
Returns
-------
ref_ra : ndarray of floats
Right ascension coordinates in the requested frame, in units of radians.
Either shape (Ntimes,) if Ntimes >1, otherwise (Ncoord,).
ref_dec : ndarray of floats
Declination coordinates in the requested frame, in units of radians.
Either shape (Ntimes,) if Ntimes >1, otherwise (Ncoord,).
"""
# Check to make sure that we have a properly formatted epoch for our in-bound
# coordinate frame
epoch = None
if isinstance(coord_epoch, str) or isinstance(coord_epoch, Time):
# If its a string or a Time object, we don't need to do anything more
epoch = Time(coord_epoch)
elif coord_epoch is not None:
if coord_frame.lower() in ["fk4", "fk4noeterms"]:
epoch = Time(coord_epoch, format="byear")
else:
epoch = Time(coord_epoch, format="jyear")
icrs_ra, icrs_dec = transform_app_to_icrs(
time_array, app_ra, app_dec, telescope_loc
)
if coord_frame == "icrs":
ref_ra, ref_dec = (icrs_ra, icrs_dec)
else:
ref_ra, ref_dec = transform_sidereal_coords(
icrs_ra,
icrs_dec,
"icrs",
coord_frame,
out_coord_epoch=epoch,
time_array=time_array,
)
return ref_ra, ref_dec
def get_lst_for_time(
jd_array, latitude, longitude, altitude, astrometry_library="erfa", frame="itrs"
):
"""
Get the local apparent sidereal time for a set of jd times at an earth location.
This function calculates the local apparent sidereal time (LAST), given a UTC time
and a position on the Earth, using either the astropy or NOVAS libraries. It
is important to note that there is an apporoximate 20 microsecond difference
between the two methods, presumably due to small differences in the apparent
reference frame. These differences will cancel out when calculating coordinates
in the TOPO frame, so long as apparent coordinates are calculated using the
same library (i.e., astropy or NOVAS). Failing to do so can introduce errors
up to ~1 mas in the horizontal coordinate system (i.e., AltAz).
Parameters
----------
jd_array : ndarray of float
JD times to get lsts for.
latitude : float
Latitude of location to get lst for in degrees.
longitude : float
Longitude of location to get lst for in degrees.
altitude : float
Altitude of location to get lst for in meters.
astrometry_library : str
Library used for running the LST calculations. Allowed options are 'erfa'
(which uses the pyERFA), 'novas' (which uses the python-novas library),
and 'astropy' (which uses the astropy utilities). Default is erfa.
frame : str
Reference frame for latitude/longitude/altitude.
Options are ITRS (default) or MCMF.
If MCMF, the 'astrometry_library' keyword will default to astropy.
Returns
-------
ndarray of float
LASTs in radians corresponding to the jd_array.
"""
if isinstance(jd_array, np.ndarray):
lst_array = np.zeros_like(jd_array)
else:
lst_array = np.zeros(1)
jd, reverse_inds = np.unique(jd_array, return_inverse=True)
if frame.upper() == "MCMF":
if not hasmoon:
raise ValueError(
"Need to install `lunarsky` package to work with MCMF frame."
)
TimeClass = LTime
loc = MoonLocation.from_selenodetic(
Angle(longitude, unit="deg"), Angle(latitude, unit="deg"), altitude
)
if not astrometry_library == "astropy":
warnings.warn("Defaulting to `astrometry_library=astropy` for MCMF frame.")
astrometry_library = "astropy"
else:
TimeClass = Time # astropy.time.Time
loc = (Angle(longitude, unit="deg"), Angle(latitude, unit="deg"), altitude)
times = TimeClass(jd, format="jd", scale="utc", location=loc)
if iers.conf.auto_max_age is None: # pragma: no cover
delta, status = times.get_delta_ut1_utc(return_status=True)
if np.any(
np.isin(status, (iers.TIME_BEFORE_IERS_RANGE, iers.TIME_BEYOND_IERS_RANGE))
):
warnings.warn(
"time is out of IERS range, setting delta ut1 utc to "
"extrapolated value"
)
times.delta_ut1_utc = delta
if astrometry_library == "erfa":
# This appears to be what astropy is using under the hood,
# so it _should_ be totally consistent.
gast_array = erfa.gst06a(times.ut1.jd, 0.0, times.tt.jd, 0.0)
lst_array = np.mod(gast_array + (longitude * (np.pi / 180.0)), 2.0 * np.pi)[
reverse_inds
]
elif astrometry_library == "astropy":
lst_array = times.sidereal_time("apparent").radian[reverse_inds]
elif astrometry_library == "novas":
# Import the NOVAS library only if it's needed/available.
try:
import novas_de405 # noqa
from novas import compat as novas
from novas.compat import eph_manager
except ImportError as e: # pragma: no cover
raise ImportError(
"novas and/or novas_de405 are not installed but is required for "
"NOVAS functionality"
) from e
jd_start, jd_end, number = eph_manager.ephem_open()
tt_time_array = times.tt.value
ut1_time_array = times.ut1.value
polar_motion_data = iers.earth_orientation_table.get()
delta_x_array = np.interp(
times.mjd,
polar_motion_data["MJD"].value,
polar_motion_data["dX_2000A_B"].value,
left=0.0,
right=0.0,
)
delta_y_array = np.interp(
times.mjd,
polar_motion_data["MJD"].value,
polar_motion_data["dY_2000A_B"].value,
left=0.0,
right=0.0,
)
# Catch the case where we don't have CIP delta values yet (they don't typically
# have predictive values like the polar motion does)
delta_x_array[np.isnan(delta_x_array)] = 0.0
delta_y_array[np.isnan(delta_y_array)] = 0.0
for idx in range(len(times)):
novas.cel_pole(
tt_time_array[idx], 2, delta_x_array[idx], delta_y_array[idx]
)
# The NOVAS routine will return Greenwich Apparent Sidereal Time (GAST),
# in units of hours
lst_array[reverse_inds == idx] = novas.sidereal_time(
ut1_time_array[idx],
0.0,
(tt_time_array[idx] - ut1_time_array[idx]) * 86400.0,
)
# Add the telescope lon to convert from GAST to LAST (local)
lst_array = np.mod(lst_array + (longitude / 15.0), 24.0)
# Convert from hours back to rad
lst_array *= np.pi / 12.0
return lst_array
def _adj_list(vecs, tol, n_blocks=None):
"""Identify neighbors of each vec in vecs, to distance tol."""
n_items = len(vecs)
max_items = 2**10 # Max array size used is max_items**2. Avoid using > 1 GiB
if n_blocks is None:
n_blocks = max(n_items // max_items, 1)
# We may sort blocks so that some pairs of blocks may be skipped.
# Reorder vectors by x.
order = np.argsort(vecs[:, 0])
blocks = np.array_split(order, n_blocks)
adj = [{k} for k in range(n_items)] # Adjacency lists
for b1 in blocks:
for b2 in blocks:
v1, v2 = vecs[b1], vecs[b2]
# Check for no overlap, with tolerance.
xmin1 = v1[0, 0] - tol
xmax1 = v1[-1, 0] + tol
xmin2 = v2[0, 0] - tol
xmax2 = v2[-1, 0] + tol
if max(xmin1, xmin2) > min(xmax1, xmax2):
continue
adj_mat = cdist(vecs[b1], vecs[b2]) < tol
for bi, col in enumerate(adj_mat):
adj[b1[bi]] = adj[b1[bi]].union(b2[col])
return [frozenset(g) for g in adj]
def _find_cliques(adj, strict=False):
n_items = len(adj)
loc_gps = []
visited = np.zeros(n_items, dtype=bool)
for k in range(n_items):
if visited[k]:
continue
a0 = adj[k]
visited[k] = True
if all(adj[it].__hash__() == a0.__hash__() for it in a0):
group = list(a0)
group.sort()
visited[list(a0)] = True
loc_gps.append(group)
# Require all adjacency lists to be isolated maximal cliques:
if strict:
if not all(sorted(st) in loc_gps for st in adj):
raise ValueError("Non-isolated cliques found in graph.")
return loc_gps
def find_clusters(location_ids, location_vectors, tol, strict=False):
"""
Find clusters of vectors (e.g. redundant baselines, times).
Parameters
----------
location_ids : array_like of int
ID labels for locations.
location_vectors : array_like of float
location vectors, can be multidimensional
tol : float
tolerance for clusters
strict : bool
Require that all adjacency lists be isolated maximal cliques.
This ensures that vectors do not fall into multiple clusters.
Default: False
Returns
-------
list of list of location_ids
"""
location_vectors = np.asarray(location_vectors)
location_ids = np.asarray(location_ids)
if location_vectors.ndim == 1:
location_vectors = location_vectors[:, np.newaxis]
adj = _adj_list(location_vectors, tol) # adj = list of sets
loc_gps = _find_cliques(adj, strict=strict)
loc_gps = [np.sort(location_ids[gp]).tolist() for gp in loc_gps]
return loc_gps
def get_baseline_redundancies(
baselines, baseline_vecs, tol=1.0, include_conjugates=False, with_conjugates=False
):
"""
Find redundant baseline groups.
Parameters
----------
baselines : array_like of int
Baseline numbers, shape (Nbls,)
baseline_vecs : array_like of float
Baseline vectors in meters, shape (Nbls, 3)
tol : float
Absolute tolerance of redundancy, in meters.
include_conjugates : bool
Option to include baselines that are redundant when flipped.
with_conjugates : bool
Deprecated, use `include_conjugates` instead. Option to include baselines that
are redundant when flipped.
Returns
-------
baseline_groups : list of lists of int
list of lists of redundant baseline numbers
vec_bin_centers : list of array_like of float
List of vectors describing redundant group centers
lengths : list of float
List of redundant group baseline lengths in meters
baseline_ind_conj : list of int
List of baselines that are redundant when reversed. Only returned if
include_conjugates is True
"""
Nbls = baselines.shape[0]
if not baseline_vecs.shape == (Nbls, 3):
raise ValueError("Baseline vectors must be shape (Nbls, 3)")
baseline_vecs = copy.copy(baseline_vecs) # Protect the vectors passed in.
if with_conjugates:
warnings.warn(
"The with_conjugates keyword is deprecated and will be removed in "
"version 2.4. Use include_conjugates instead.",
DeprecationWarning,
)
include_conjugates = True
if include_conjugates:
conjugates = []
for bv in baseline_vecs:
uneg = bv[0] < -tol
uzer = np.isclose(bv[0], 0.0, atol=tol)
vneg = bv[1] < -tol
vzer = np.isclose(bv[1], 0.0, atol=tol)
wneg = bv[2] < -tol
conjugates.append(uneg or (uzer and vneg) or (uzer and vzer and wneg))
conjugates = np.array(conjugates, dtype=bool)
baseline_vecs[conjugates] *= -1
baseline_ind_conj = baselines[conjugates]
bl_gps, vec_bin_centers, lens = get_baseline_redundancies(
baselines, baseline_vecs, tol=tol, include_conjugates=False
)
return bl_gps, vec_bin_centers, lens, baseline_ind_conj
try:
bl_gps = find_clusters(baselines, baseline_vecs, tol, strict=True)
except ValueError as exc:
raise ValueError(
"Some baselines are falling into multiple"
" redundant groups. Lower the tolerance to resolve ambiguity."
) from exc
n_unique = len(bl_gps)
vec_bin_centers = np.zeros((n_unique, 3))
for gi, gp in enumerate(bl_gps):
inds = [np.where(i == baselines)[0] for i in gp]
vec_bin_centers[gi] = np.mean(baseline_vecs[inds, :], axis=0)
lens = np.sqrt(np.sum(vec_bin_centers**2, axis=1))
return bl_gps, vec_bin_centers, lens
def get_antenna_redundancies(
antenna_numbers, antenna_positions, tol=1.0, include_autos=False
):
"""
Find redundant baseline groups based on antenna positions.
Parameters
----------
antenna_numbers : array_like of int
Antenna numbers, shape (Nants,).
antenna_positions : array_like of float
Antenna position vectors in the ENU (topocentric) frame in meters,
shape (Nants, 3).
tol : float
Redundancy tolerance in meters.
include_autos : bool
Option to include autocorrelations.
Returns
-------
baseline_groups : list of lists of int
list of lists of redundant baseline numbers
vec_bin_centers : list of array_like of float
List of vectors describing redundant group centers
lengths : list of float
List of redundant group baseline lengths in meters
Notes
-----
The baseline numbers refer to antenna pairs (a1, a2) such that
the baseline vector formed from ENU antenna positions,
blvec = enu[a1] - enu[a2]
is close to the other baselines in the group.
This is achieved by putting baselines in a form of the u>0
convention, but with a tolerance in defining the signs of
vector components.
To guarantee that the same baseline numbers are present in a UVData
object, ``UVData.conjugate_bls('u>0', uvw_tol=tol)``, where `tol` is
the tolerance used here.
"""
Nants = antenna_numbers.size
bls = []
bl_vecs = []
for aj in range(Nants):
mini = aj + 1
if include_autos:
mini = aj
for ai in range(mini, Nants):
anti, antj = antenna_numbers[ai], antenna_numbers[aj]
bidx = antnums_to_baseline(antj, anti, Nants)
bv = antenna_positions[ai] - antenna_positions[aj]
bl_vecs.append(bv)
bls.append(bidx)
bls = np.array(bls)
bl_vecs = np.array(bl_vecs)
gps, vecs, lens, conjs = get_baseline_redundancies(
bls, bl_vecs, tol=tol, include_conjugates=True
)
# Flip the baselines in the groups.
for gi, gp in enumerate(gps):
for bi, bl in enumerate(gp):
if bl in conjs:
gps[gi][bi] = baseline_index_flip(bl, Nants)
return gps, vecs, lens
def mean_collapse(
arr, weights=None, axis=None, return_weights=False, return_weights_square=False
):
"""
Collapse by averaging data.
This is similar to np.average, except it handles infs (by giving them
zero weight) and zero weight axes (by forcing result to be inf with zero
output weight).
Parameters
----------
arr : array
Input array to process.
weights: ndarray, optional
weights for average. If none, will default to equal weight for all
non-infinite data.
axis : int or tuple, optional
Axis or axes to collapse (passed to np.sum). Default is all.
return_weights : bool
Whether to return sum of weights.
return_weights_square: bool
Whether to return the sum of the square of the weights. Default is False.
"""
arr = copy.deepcopy(arr) # avoid changing outside
if weights is None:
weights = np.ones_like(arr)
else:
weights = copy.deepcopy(weights)
weights = weights * np.logical_not(np.isinf(arr))
arr[np.isinf(arr)] = 0
weight_out = np.sum(weights, axis=axis)
if return_weights_square:
weights_square = weights**2
weights_square_out = np.sum(weights_square, axis=axis)
out = np.sum(weights * arr, axis=axis)
where = weight_out > 1e-10
out = np.true_divide(out, weight_out, where=where)
out = np.where(where, out, np.inf)
if return_weights and return_weights_square:
return out, weight_out, weights_square_out
elif return_weights:
return out, weight_out
elif return_weights_square:
return out, weights_square_out
else:
return out
def absmean_collapse(
arr, weights=None, axis=None, return_weights=False, return_weights_square=False
):
"""
Collapse by averaging absolute value of data.
Parameters
----------
arr : array
Input array to process.
weights: ndarray, optional
weights for average. If none, will default to equal weight for all
non-infinite data.
axis : int or tuple, optional
Axis or axes to collapse (passed to np.sum). Default is all.
return_weights : bool
Whether to return sum of weights.
return_weights_square: bool
whether to return the sum of the squares of the weights. Default is False.
"""
return mean_collapse(
np.abs(arr),
weights=weights,
axis=axis,
return_weights=return_weights,
return_weights_square=return_weights_square,
)
def quadmean_collapse(
arr, weights=None, axis=None, return_weights=False, return_weights_square=False
):
"""
Collapse by averaging in quadrature.
Parameters
----------
arr : array
Input array to process.
weights: ndarray, optional
weights for average. If none, will default to equal weight for all
non-infinite data.
axis : int or tuple, optional
Axis or axes to collapse (passed to np.sum). Default is all.
return_weights : bool
Whether to return sum of weights.
return_weights_square: bool
whether to return the sum of the squares of the weights. Default is False.
"""
out = mean_collapse(
np.abs(arr) ** 2,
weights=weights,
axis=axis,
return_weights=return_weights,
return_weights_square=return_weights_square,
)
if return_weights and return_weights_square:
return np.sqrt(out[0]), out[1], out[2]
elif return_weights or return_weights_square:
return np.sqrt(out[0]), out[1]
else:
return np.sqrt(out)
def or_collapse(
arr, weights=None, axis=None, return_weights=False, return_weights_square=False
):
"""
Collapse using OR operation.
Parameters
----------
arr : array
Input array to process.
weights: ndarray, optional
NOT USED, but kept for symmetry with other collapsing functions.
axis : int or tuple, optional
Axis or axes to collapse (take OR over). Default is all.
return_weights : bool
Whether to return dummy weights array.
NOTE: the dummy weights will simply be an array of ones
return_weights_square: bool
NOT USED, but kept for symmetry with other collapsing functions.
"""
if arr.dtype != np.bool_:
raise ValueError("Input to or_collapse function must be boolean array")
out = np.any(arr, axis=axis)
if (weights is not None) and not np.all(weights == weights.reshape(-1)[0]):
warnings.warn("Currently weights are not handled when OR-ing boolean arrays.")
if return_weights:
return out, np.ones_like(out, dtype=np.float64)
else:
return out
def and_collapse(
arr, weights=None, axis=None, return_weights=False, return_weights_square=False
):
"""
Collapse using AND operation.
Parameters
----------
arr : array
Input array to process.
weights: ndarray, optional
NOT USED, but kept for symmetry with other collapsing functions.
axis : int or tuple, optional
Axis or axes to collapse (take AND over). Default is all.
return_weights : bool
Whether to return dummy weights array.
NOTE: the dummy weights will simply be an array of ones
return_weights_square: bool
NOT USED, but kept for symmetry with other collapsing functions.
"""
if arr.dtype != np.bool_:
raise ValueError("Input to and_collapse function must be boolean array")
out = np.all(arr, axis=axis)
if (weights is not None) and not np.all(weights == weights.reshape(-1)[0]):
warnings.warn("Currently weights are not handled when AND-ing boolean arrays.")
if return_weights:
return out, np.ones_like(out, dtype=np.float64)
else:
return out
def collapse(
arr, alg, weights=None, axis=None, return_weights=False, return_weights_square=False
):
"""
Parent function to collapse an array with a given algorithm.
Parameters
----------
arr : array
Input array to process.
alg : str
Algorithm to use. Must be defined in this function with
corresponding subfunction above.
weights: ndarray, optional
weights for collapse operation (e.g. weighted mean).
NOTE: Some subfunctions do not use the weights. See corresponding
doc strings.
axis : int or tuple, optional
Axis or axes to collapse. Default is all.
return_weights : bool
Whether to return sum of weights.
return_weights_square: bool
Whether to return the sum of the squares of the weights. Default is False.
"""
collapse_dict = {
"mean": mean_collapse,
"absmean": absmean_collapse,
"quadmean": quadmean_collapse,
"or": or_collapse,
"and": and_collapse,
}
try:
out = collapse_dict[alg](
arr,
weights=weights,
axis=axis,
return_weights=return_weights,
return_weights_square=return_weights_square,
)
except KeyError as err:
raise ValueError(
"Collapse algorithm must be one of: "
+ ", ".join(collapse_dict.keys())
+ "."
) from err
return out
def uvcalibrate(
uvdata,
uvcal,
inplace=True,
prop_flags=True,
Dterm_cal=False,
flip_gain_conj=False,
delay_convention="minus",
undo=False,
time_check=True,
ant_check=True,
):
"""
Calibrate a UVData object with a UVCal object.
Parameters
----------
uvdata : UVData object
UVData object to calibrate.
uvcal : UVCal object
UVCal object containing the calibration.
inplace : bool, optional
if True edit uvdata in place, else return a calibrated copy
prop_flags : bool, optional
if True, propagate calibration flags to data flags
and doesn't use flagged gains. Otherwise, uses flagged gains and
does not propagate calibration flags to data flags.
Dterm_cal : bool, optional
Calibrate the off-diagonal terms in the Jones matrix if present
in uvcal. Default is False. Currently not implemented.
flip_gain_conj : bool, optional
This function uses the UVData ant_1_array and ant_2_array to specify the
antennas in the UVCal object. By default, the conjugation convention, which
follows the UVData convention (i.e. ant2 - ant1), is that the applied
gain = ant1_gain * conjugate(ant2_gain). If the other convention is required,
set flip_gain_conj=True.
delay_convention : str, optional
Exponent sign to use in conversion of 'delay' to 'gain' cal_type
if the input uvcal is not inherently 'gain' cal_type. Default to 'minus'.
undo : bool, optional
If True, undo the provided calibration. i.e. apply the calibration with
flipped gain_convention. Flag propagation rules apply the same.
time_check : bool
Option to check that times match between the UVCal and UVData
objects if UVCal has a single time or time range. Times are always
checked if UVCal has multiple times.
ant_check : bool
Option to check that all antennas with data on the UVData
object have calibration solutions in the UVCal object. If this option is
set to False, uvcalibrate will proceed without erroring and data for
antennas without calibrations will be flagged.
Returns
-------
UVData, optional
Returns if not inplace
"""
if uvcal.cal_type == "gain" and uvcal.wide_band:
raise ValueError(
"uvcalibrate currently does not support wide-band calibrations"
)
if uvcal.cal_type == "delay" and uvcal.Nspws > 1:
# To fix this, need to make UVCal.convert_to_gain support multiple spws
raise ValueError(
"uvcalibrate currently does not support multi spectral window delay "
"calibrations"
)
if not inplace:
uvdata = uvdata.copy()
# check both objects
uvdata.check()
uvcal.check()
# Check whether the UVData antennas *that have data associated with them*
# have associated data in the UVCal object
uvdata_unique_nums = np.unique(np.append(uvdata.ant_1_array, uvdata.ant_2_array))
uvdata.antenna_names = np.asarray(uvdata.antenna_names)
uvdata_used_antnames = np.array(
[
uvdata.antenna_names[np.where(uvdata.antenna_numbers == antnum)][0]
for antnum in uvdata_unique_nums
]
)
uvcal_unique_nums = np.unique(uvcal.ant_array)
uvcal.antenna_names = np.asarray(uvcal.antenna_names)
uvcal_used_antnames = np.array(
[
uvcal.antenna_names[np.where(uvcal.antenna_numbers == antnum)][0]
for antnum in uvcal_unique_nums
]
)
ant_arr_match = uvcal_used_antnames.tolist() == uvdata_used_antnames.tolist()
if not ant_arr_match:
# check more carefully
name_missing = []
for this_ant_name in uvdata_used_antnames:
wh_ant_match = np.nonzero(uvcal_used_antnames == this_ant_name)
if wh_ant_match[0].size == 0:
name_missing.append(this_ant_name)
if len(name_missing) > 0:
if len(name_missing) == uvdata_used_antnames.size:
# all antenna_names with data on UVData are missing on UVCal.
if not ant_check:
warnings.warn(
"All antenna names with data on UVData are missing "
"on UVCal. Since ant_check is False, calibration will "
"proceed but all data will be flagged."
)
else:
raise ValueError(
"All antenna names with data on UVData are missing "
"on UVCal. To continue with calibration "
"(and flag all the data), set ant_check=False."
)
else:
# Only some antenna_names with data on UVData are missing on UVCal
if not ant_check:
warnings.warn(
f"Antennas {name_missing} have data on UVData but are missing "
"on UVCal. Since ant_check is False, calibration will "
"proceed and the data for these antennas will be flagged."
)
else:
raise ValueError(
f"Antennas {name_missing} have data on UVData but "
"are missing on UVCal. To continue calibration and "
"flag the data from missing antennas, set ant_check=False."
)
uvdata_times = np.unique(uvdata.time_array)
downselect_cal_times = False
if uvcal.Ntimes > 1:
if uvcal.Ntimes < uvdata.Ntimes:
raise ValueError(
"The uvcal object has more than one time but fewer than the "
"number of unique times on the uvdata object."
)
uvcal_times = np.unique(uvcal.time_array)
try:
time_arr_match = np.allclose(
uvcal_times,
uvdata_times,
atol=uvdata._time_array.tols[1],
rtol=uvdata._time_array.tols[0],
)
except ValueError:
time_arr_match = False
if not time_arr_match:
# check more carefully
uvcal_times_to_keep = []
for this_time in uvdata_times:
wh_time_match = np.nonzero(
np.isclose(
uvcal.time_array - this_time,
0,
atol=uvdata._time_array.tols[1],
rtol=uvdata._time_array.tols[0],
)
)
if wh_time_match[0].size > 0:
uvcal_times_to_keep.append(uvcal.time_array[wh_time_match][0])
else:
raise ValueError(
f"Time {this_time} exists on UVData but not on UVCal."
)
if len(uvcal_times_to_keep) < uvcal.Ntimes:
downselect_cal_times = True
elif uvcal.time_range is None:
# only one UVCal time, no time_range.
# This cannot match if UVData.Ntimes > 1.
# If they are both NTimes = 1, then check if they're close.
if uvdata.Ntimes > 1 or not np.isclose(
uvdata_times,
uvcal.time_array,
atol=uvdata._time_array.tols[1],
rtol=uvdata._time_array.tols[0],
):
if not time_check:
warnings.warn(
"Times do not match between UVData and UVCal "
"but time_check is False, so calibration "
"will be applied anyway."
)
else:
raise ValueError(
"Times do not match between UVData and UVCal. "
"Set time_check=False to apply calibration anyway."
)
else:
# time_array is length 1 and time_range exists: check uvdata_times in time_range
if (
np.min(uvdata_times) < uvcal.time_range[0]
or np.max(uvdata_times) > uvcal.time_range[1]
):
if not time_check:
warnings.warn(
"Times do not match between UVData and UVCal "
"but time_check is False, so calibration "
"will be applied anyway."
)
else:
raise ValueError(
"Times do not match between UVData and UVCal. "
"Set time_check=False to apply calibration anyway. "
)
downselect_cal_freq = False
if uvdata.future_array_shapes:
uvdata_freq_arr_use = uvdata.freq_array
else:
uvdata_freq_arr_use = uvdata.freq_array[0, :]
if uvcal.future_array_shapes:
uvcal_freq_arr_use = uvcal.freq_array
else:
uvcal_freq_arr_use = uvcal.freq_array[0, :]
try:
freq_arr_match = np.allclose(
np.sort(uvcal_freq_arr_use),
np.sort(uvdata_freq_arr_use),
atol=uvdata._freq_array.tols[1],
rtol=uvdata._freq_array.tols[0],
)
except ValueError:
freq_arr_match = False
if freq_arr_match is False:
# check more carefully
uvcal_freqs_to_keep = []
for this_freq in uvdata_freq_arr_use:
wh_freq_match = np.nonzero(
np.isclose(
uvcal.freq_array - this_freq,
0,
atol=uvdata._freq_array.tols[1],
rtol=uvdata._freq_array.tols[0],
)
)
if wh_freq_match[0].size > 0:
uvcal_freqs_to_keep.append(uvcal.freq_array[wh_freq_match][0])
else:
raise ValueError(
f"Frequency {this_freq} exists on UVData but not on UVCal."
)
if len(uvcal_freqs_to_keep) < uvcal.Nfreqs:
downselect_cal_freq = True
# check if uvdata.x_orientation isn't set (it's required for uvcal)
uvd_x = uvdata.x_orientation
if uvd_x is None:
# use the uvcal x_orientation throughout
uvd_x = uvcal.x_orientation
warnings.warn(
"UVData object does not have `x_orientation` specified but UVCal does. "
"Matching based on `x` and `y` only "
)
uvdata_pol_strs = polnum2str(uvdata.polarization_array, x_orientation=uvd_x)
uvcal_pol_strs = jnum2str(uvcal.jones_array, x_orientation=uvcal.x_orientation)
uvdata_feed_pols = {
feed for pol in uvdata_pol_strs for feed in POL_TO_FEED_DICT[pol]
}
for feed in uvdata_feed_pols:
# get diagonal jones str
jones_str = parse_jpolstr(feed, x_orientation=uvcal.x_orientation)
if jones_str not in uvcal_pol_strs:
raise ValueError(
f"Feed polarization {feed} exists on UVData but not on UVCal. "
)
# downselect UVCal times, frequencies
if downselect_cal_freq or downselect_cal_times:
if not downselect_cal_times:
uvcal_times_to_keep = None
elif not downselect_cal_freq:
uvcal_freqs_to_keep = None
uvcal_use = uvcal.select(
times=uvcal_times_to_keep, frequencies=uvcal_freqs_to_keep, inplace=False
)
new_uvcal = True
else:
uvcal_use = uvcal
new_uvcal = False
# input checks
if uvcal_use.cal_type == "delay":
if not new_uvcal:
# make a copy to convert to gain
uvcal_use = uvcal_use.copy()
new_uvcal = True
if uvdata.future_array_shapes:
freq_array_use = uvdata.freq_array
else:
freq_array_use = uvdata.freq_array[0, :]
if uvcal.future_array_shapes == uvdata.future_array_shapes:
channel_width = uvdata.channel_width
elif uvcal.future_array_shapes:
channel_width = np.zeros(uvdata.Nfreqs, dtype=float) + uvdata.channel_width
else:
channel_width = uvdata.channel_width[0]
uvcal_use.convert_to_gain(
delay_convention=delay_convention,
freq_array=freq_array_use,
channel_width=channel_width,
)
# D-term calibration
if Dterm_cal:
# check for D-terms
if -7 not in uvcal_use.jones_array and -8 not in uvcal_use.jones_array:
raise ValueError(
"Cannot apply D-term calibration without -7 or -8"
"Jones polarization in uvcal object."
)
raise NotImplementedError("D-term calibration is not yet implemented.")
# No D-term calibration
else:
# key is number, value is name
uvdata_ant_dict = dict(zip(uvdata.antenna_numbers, uvdata.antenna_names))
# opposite: key is name, value is number
uvcal_ant_dict = dict(zip(uvcal.antenna_names, uvcal.antenna_numbers))
# iterate over keys
for key in uvdata.get_antpairpols():
# get indices for this key
blt_inds = uvdata.antpair2ind(key)
pol_ind = np.argmin(
np.abs(uvdata.polarization_array - polstr2num(key[2], uvd_x))
)
# try to get gains for each antenna
ant1_num = key[0]
ant2_num = key[1]
feed1, feed2 = POL_TO_FEED_DICT[key[2]]
try:
uvcal_ant1_num = uvcal_ant_dict[uvdata_ant_dict[ant1_num]]
except KeyError:
uvcal_ant1_num = None
try:
uvcal_ant2_num = uvcal_ant_dict[uvdata_ant_dict[ant2_num]]
except KeyError:
uvcal_ant2_num = None
uvcal_key1 = (uvcal_ant1_num, feed1)
uvcal_key2 = (uvcal_ant2_num, feed2)
if (uvcal_ant1_num is None or uvcal_ant2_num is None) or not (
uvcal_use._has_key(*uvcal_key1) and uvcal_use._has_key(*uvcal_key2)
):
if uvdata.future_array_shapes:
uvdata.flag_array[blt_inds, :, pol_ind] = True
else:
uvdata.flag_array[blt_inds, 0, :, pol_ind] = True
continue
if flip_gain_conj:
gain = (
np.conj(uvcal_use.get_gains(uvcal_key1))
* uvcal_use.get_gains(uvcal_key2)
).T # tranpose to match uvdata shape
else:
gain = (
uvcal_use.get_gains(uvcal_key1)
* np.conj(uvcal_use.get_gains(uvcal_key2))
).T # tranpose to match uvdata shape
flag = (uvcal_use.get_flags(uvcal_key1) | uvcal_use.get_flags(uvcal_key2)).T
# propagate flags
if prop_flags:
mask = np.isclose(gain, 0.0) | flag
gain[mask] = 1.0
if uvdata.future_array_shapes:
uvdata.flag_array[blt_inds, :, pol_ind] += mask
else:
uvdata.flag_array[blt_inds, 0, :, pol_ind] += mask
# apply to data
mult_gains = uvcal_use.gain_convention == "multiply"
if undo:
mult_gains = not mult_gains
if uvdata.future_array_shapes:
if mult_gains:
uvdata.data_array[blt_inds, :, pol_ind] *= gain
else:
uvdata.data_array[blt_inds, :, pol_ind] /= gain
else:
if mult_gains:
uvdata.data_array[blt_inds, 0, :, pol_ind] *= gain
else:
uvdata.data_array[blt_inds, 0, :, pol_ind] /= gain
# update attributes
uvdata.history += "\nCalibrated with pyuvdata.utils.uvcalibrate."
if undo:
uvdata.vis_units = "uncalib"
else:
if uvcal_use.gain_scale is not None:
uvdata.vis_units = uvcal_use.gain_scale
if not inplace:
return uvdata
def apply_uvflag(
uvd, uvf, inplace=True, unflag_first=False, flag_missing=True, force_pol=True
):
"""
Apply flags from a UVFlag to a UVData instantiation.
Note that if uvf.Nfreqs or uvf.Ntimes is 1, it will broadcast flags across
that axis.
Parameters
----------
uvd : UVData object
UVData object to add flags to.
uvf : UVFlag object
A UVFlag object in flag mode.
inplace : bool
If True overwrite flags in uvd, otherwise return new object
unflag_first : bool
If True, completely unflag the UVData before applying flags.
Else, OR the inherent uvd flags with uvf flags.
flag_missing : bool
If input uvf is a baseline type and antpairs in uvd do not exist in uvf,
flag them in uvd. Otherwise leave them untouched.
force_pol : bool
If True, broadcast flags to all polarizations if they do not match.
Only works if uvf.Npols == 1.
Returns
-------
UVData
If not inplace, returns new UVData object with flags applied
"""
# assertions
if uvf.mode != "flag":
raise ValueError("UVFlag must be flag mode")
if not inplace:
uvd = uvd.copy()
# make a deepcopy by default b/c it is generally edited inplace downstream
uvf = uvf.copy()
# convert to baseline type
if uvf.type != "baseline":
# edits inplace
uvf.to_baseline(uvd, force_pol=force_pol)
else:
# make sure polarizations match or force_pol
uvd_pols, uvf_pols = (
uvd.polarization_array.tolist(),
uvf.polarization_array.tolist(),
)
if set(uvd_pols) != set(uvf_pols):
if uvf.Npols == 1 and force_pol:
# if uvf is 1pol we can make them match: also edits inplace
uvf.polarization_array = uvd.polarization_array
uvf.Npols = len(uvf.polarization_array)
uvf_pols = uvf.polarization_array.tolist()
else:
raise ValueError("Input uvf and uvd polarizations do not match")
# make sure polarization ordering is correct: also edits inplace
uvf.polarization_array = uvf.polarization_array[
[uvd_pols.index(pol) for pol in uvf_pols]
]
# check time and freq shapes match: if Ntimes or Nfreqs is 1, allow
# implicit broadcasting
if uvf.Ntimes == 1:
mismatch_times = False
elif uvf.Ntimes == uvd.Ntimes:
tdiff = np.unique(uvf.time_array) - np.unique(uvd.time_array)
mismatch_times = np.any(tdiff > np.max(np.abs(uvf._time_array.tols)))
else:
mismatch_times = True
if mismatch_times:
raise ValueError("UVFlag and UVData have mismatched time arrays.")
if uvf.Nfreqs == 1:
mismatch_freqs = False
elif uvf.Nfreqs == uvd.Nfreqs:
fdiff = np.unique(uvf.freq_array) - np.unique(uvd.freq_array)
mismatch_freqs = np.any(fdiff > np.max(np.abs(uvf._freq_array.tols)))
else:
mismatch_freqs = True
if mismatch_freqs:
raise ValueError("UVFlag and UVData have mismatched frequency arrays.")
# unflag if desired
if unflag_first:
uvd.flag_array[:] = False
# iterate over antpairs and apply flags: TODO need to be able to handle
# conjugated antpairs
uvf_antpairs = uvf.get_antpairs()
for ap in uvd.get_antpairs():
uvd_ap_inds = uvd.antpair2ind(ap)
if ap not in uvf_antpairs:
if flag_missing:
uvd.flag_array[uvd_ap_inds] = True
continue
uvf_ap_inds = uvf.antpair2ind(*ap)
# addition of boolean is OR
if uvd.future_array_shapes == uvf.future_array_shapes:
uvd.flag_array[uvd_ap_inds] += uvf.flag_array[uvf_ap_inds]
elif uvd.future_array_shapes:
uvd.flag_array[uvd_ap_inds] += uvf.flag_array[uvf_ap_inds, 0, :, :]
else:
uvd.flag_array[uvd_ap_inds, 0, :, :] += uvf.flag_array[uvf_ap_inds]
uvd.history += "\nFlagged with pyuvdata.utils.apply_uvflags."
if not inplace:
return uvd
def parse_ants(uv, ant_str, print_toggle=False, x_orientation=None):
"""
Get antpair and polarization from parsing an aipy-style ant string.
Used to support the select function. Generates two lists of antenna pair
tuples and polarization indices based on parsing of the string ant_str.
If no valid polarizations (pseudo-Stokes params, or combinations of [lr]
or [xy]) or antenna numbers are found in ant_str, ant_pairs_nums and
polarizations are returned as None.
Parameters
----------
uv : UVBase Object
A UVBased object that supports the following functions and parameters:
- get_ants
- get_antpairs
- get_pols
These are used to construct the baseline ant_pair_nums
and polarizations returned.
ant_str : str
String containing antenna information to parse. Can be 'all',
'auto', 'cross', or combinations of antenna numbers and polarization
indicators 'l' and 'r' or 'x' and 'y'. Minus signs can also be used
in front of an antenna number or baseline to exclude it from being
output in ant_pairs_nums. If ant_str has a minus sign as the first
character, 'all,' will be appended to the beginning of the string.
See the tutorial for examples of valid strings and their behavior.
print_toggle : bool
Boolean for printing parsed baselines for a visual user check.
x_orientation : str, optional
Orientation of the physical dipole corresponding to what is
labelled as the x polarization ("east" or "north") to allow for
converting from E/N strings. If input uv object has an `x_orientation`
parameter and the input to this function is `None`, the value from the
object will be used. Any input given to this function will override the
value on the uv object. See corresonding parameter on UVData
for more details.
Returns
-------
ant_pairs_nums : list of tuples of int or None
List of tuples containing the parsed pairs of antenna numbers, or
None if ant_str is 'all' or a pseudo-Stokes polarizations.
polarizations : list of int or None
List of desired polarizations or None if ant_str does not contain a
polarization specification.
"""
required_attrs = ["get_ants", "get_antpairs", "get_pols"]
if not all(hasattr(uv, attr) for attr in required_attrs):
raise ValueError(
"UVBased objects must have all the following attributes in order "
f"to call 'parse_ants': {required_attrs}."
)
if x_orientation is None and (
hasattr(uv, "x_orientation") and uv.x_orientation is not None
):
x_orientation = uv.x_orientation
ant_re = r"(\(((-?\d+[lrxy]?,?)+)\)|-?\d+[lrxy]?)"
bl_re = "(^(%s_%s|%s),?)" % (ant_re, ant_re, ant_re)
str_pos = 0
ant_pairs_nums = []
polarizations = []
ants_data = uv.get_ants()
ant_pairs_data = uv.get_antpairs()
pols_data = uv.get_pols()
warned_ants = []
warned_pols = []
if ant_str.startswith("-"):
ant_str = "all," + ant_str
while str_pos < len(ant_str):
m = re.search(bl_re, ant_str[str_pos:])
if m is None:
if ant_str[str_pos:].upper().startswith("ALL"):
if len(ant_str[str_pos:].split(",")) > 1:
ant_pairs_nums = uv.get_antpairs()
elif ant_str[str_pos:].upper().startswith("AUTO"):
for pair in ant_pairs_data:
if pair[0] == pair[1] and pair not in ant_pairs_nums:
ant_pairs_nums.append(pair)
elif ant_str[str_pos:].upper().startswith("CROSS"):
for pair in ant_pairs_data:
if not (pair[0] == pair[1] or pair in ant_pairs_nums):
ant_pairs_nums.append(pair)
elif ant_str[str_pos:].upper().startswith("PI"):
polarizations.append(polstr2num("pI"))
elif ant_str[str_pos:].upper().startswith("PQ"):
polarizations.append(polstr2num("pQ"))
elif ant_str[str_pos:].upper().startswith("PU"):
polarizations.append(polstr2num("pU"))
elif ant_str[str_pos:].upper().startswith("PV"):
polarizations.append(polstr2num("pV"))
else:
raise ValueError("Unparsible argument {s}".format(s=ant_str))
comma_cnt = ant_str[str_pos:].find(",")
if comma_cnt >= 0:
str_pos += comma_cnt + 1
else:
str_pos = len(ant_str)
else:
m = m.groups()
str_pos += len(m[0])
if m[2] is None:
ant_i_list = [m[8]]
ant_j_list = list(uv.get_ants())
else:
if m[3] is None:
ant_i_list = [m[2]]
else:
ant_i_list = m[3].split(",")
if m[6] is None:
ant_j_list = [m[5]]
else:
ant_j_list = m[6].split(",")
for ant_i in ant_i_list:
include_i = True
if type(ant_i) == str and ant_i.startswith("-"):
ant_i = ant_i[1:] # nibble the - off the string
include_i = False
for ant_j in ant_j_list:
include_j = True
if type(ant_j) == str and ant_j.startswith("-"):
ant_j = ant_j[1:]
include_j = False
pols = None
ant_i, ant_j = str(ant_i), str(ant_j)
if not ant_i.isdigit():
ai = re.search(r"(\d+)([x,y,l,r])", ant_i).groups()
if not ant_j.isdigit():
aj = re.search(r"(\d+)([x,y,l,r])", ant_j).groups()
if ant_i.isdigit() and ant_j.isdigit():
ai = [ant_i, ""]
aj = [ant_j, ""]
elif ant_i.isdigit() and not ant_j.isdigit():
if "x" in ant_j or "y" in ant_j:
pols = ["x" + aj[1], "y" + aj[1]]
else:
pols = ["l" + aj[1], "r" + aj[1]]
ai = [ant_i, ""]
elif not ant_i.isdigit() and ant_j.isdigit():
if "x" in ant_i or "y" in ant_i:
pols = [ai[1] + "x", ai[1] + "y"]
else:
pols = [ai[1] + "l", ai[1] + "r"]
aj = [ant_j, ""]
elif not ant_i.isdigit() and not ant_j.isdigit():
pols = [ai[1] + aj[1]]
ant_tuple = (abs(int(ai[0])), abs(int(aj[0])))
# Order tuple according to order in object
if ant_tuple in ant_pairs_data:
pass
elif ant_tuple[::-1] in ant_pairs_data:
ant_tuple = ant_tuple[::-1]
else:
if not (
ant_tuple[0] in ants_data or ant_tuple[0] in warned_ants
):
warned_ants.append(ant_tuple[0])
if not (
ant_tuple[1] in ants_data or ant_tuple[1] in warned_ants
):
warned_ants.append(ant_tuple[1])
if pols is not None:
for pol in pols:
if not (pol.lower() in pols_data or pol in warned_pols):
warned_pols.append(pol)
continue
if include_i and include_j:
if ant_tuple not in ant_pairs_nums:
ant_pairs_nums.append(ant_tuple)
if pols is not None:
for pol in pols:
if (
pol.lower() in pols_data
and polstr2num(pol, x_orientation=x_orientation)
not in polarizations
):
polarizations.append(
polstr2num(pol, x_orientation=x_orientation)
)
elif not (
pol.lower() in pols_data or pol in warned_pols
):
warned_pols.append(pol)
else:
if pols is not None:
for pol in pols:
if pol.lower() in pols_data:
if uv.Npols == 1 and [pol.lower()] == pols_data:
ant_pairs_nums.remove(ant_tuple)
if (
polstr2num(pol, x_orientation=x_orientation)
in polarizations
):
polarizations.remove(
polstr2num(pol, x_orientation=x_orientation)
)
elif not (
pol.lower() in pols_data or pol in warned_pols
):
warned_pols.append(pol)
elif ant_tuple in ant_pairs_nums:
ant_pairs_nums.remove(ant_tuple)
if ant_str.upper() == "ALL":
ant_pairs_nums = None
elif len(ant_pairs_nums) == 0:
if not ant_str.upper() in ["AUTO", "CROSS"]:
ant_pairs_nums = None
if len(polarizations) == 0:
polarizations = None
else:
polarizations.sort(reverse=True)
if print_toggle:
print("\nParsed antenna pairs:")
if ant_pairs_nums is not None:
for pair in ant_pairs_nums:
print(pair)
print("\nParsed polarizations:")
if polarizations is not None:
for pol in polarizations:
print(polnum2str(pol, x_orientation=x_orientation))
if len(warned_ants) > 0:
warnings.warn(
"Warning: Antenna number {a} passed, but not present "
"in the ant_1_array or ant_2_array".format(
a=(",").join(map(str, warned_ants))
)
)
if len(warned_pols) > 0:
warnings.warn(
"Warning: Polarization {p} is not present in "
"the polarization_array".format(p=(",").join(warned_pols).upper())
)
return ant_pairs_nums, polarizations
def _combine_filenames(filename1, filename2):
"""Combine the filename attribute from multiple UVBase objects.
The 4 cases are:
1. `filename1` has been set, `filename2` has not
2. `filename1` has not been set, `filename2` has
3. `filename1` and `filename2` both have been set
4. `filename1` and `filename2` both have not been set
In case (1), we do not want to update the attribute, because it is
already set correctly. In case (2), we want to replace `filename1`
with the value from `filename2. In case (3), we want to take the union of
the sets of the filenames. In case (4), we want the filename attribute
to still be `None`.
Parameters
----------
filename1 : list of str or None
The list of filenames for the first UVBase object. If it is not set, it
should be `None`.
filename2 : list of str or None
The list of filenames for the second UVData object. If it is not set, it
should be `None`.
Returns
-------
combined_filenames : list of str or None
The combined list, with potentially duplicate entries removed.
"""
combined_filenames = filename1
if filename1 is not None:
if filename2 is not None:
combined_filenames = sorted(set(filename1).union(set(filename2)))
elif filename2 is not None:
combined_filenames = filename2
return combined_filenames
def _get_dset_shape(dset, indices):
"""
Given a 3-tuple of indices, determine the indexed array shape.
Parameters
----------
dset : numpy array or h5py dataset
A numpy array or a reference to an HDF5 dataset on disk. Requires the
`dset.shape` attribute exists and returns a tuple.
indices : tuple
A 3-tuple with the indices to extract along each dimension of dset.
Each element should contain a list of indices, a slice element,
or a list of slice elements that will be concatenated after slicing.
For data arrays with 4 dimensions, the second dimension (the old spw axis)
should not be included because it can only be length one.
Returns
-------
tuple
a 3- or 4-tuple with the shape of the indexed array
tuple
a 3- or 4-tuple with indices used (will be different than input if dset has
4 dimensions)
"""
dset_shape = list(dset.shape)
if len(dset_shape) == 4 and len(indices) == 3:
indices = (indices[0], np.s_[:], indices[1], indices[2])
for i, inds in enumerate(indices):
# check for integer
if isinstance(inds, (int, np.integer)):
dset_shape[i] = 1
# check for slice object
if isinstance(inds, slice):
dset_shape[i] = _get_slice_len(inds, dset_shape[i])
# check for list
if isinstance(inds, list):
# check for list of integers
if isinstance(inds[0], (int, np.integer)):
dset_shape[i] = len(inds)
elif isinstance(inds[0], slice):
dset_shape[i] = sum((_get_slice_len(s, dset_shape[i]) for s in inds))
return dset_shape, indices
def _convert_to_slices(indices, max_nslice_frac=0.1):
"""
Convert list of indices to a list of slices.
Parameters
----------
indices : list
A 1D list of integers for array indexing.
max_nslice_frac : float
A float from 0 -- 1. If the number of slices
needed to represent input 'indices' divided by len(indices)
exceeds this fraction, then we determine that we cannot
easily represent 'indices' with a list of slices.
Returns
-------
list
list of slice objects used to represent indices
bool
If True, indices is easily represented by slices
(max_nslice_frac condition met), otherwise False
Notes
-----
Example:
if: indices = [1, 2, 3, 4, 10, 11, 12, 13, 14]
then: slices = [slice(1, 5, 1), slice(11, 15, 1)]
"""
# check for integer index
if isinstance(indices, (int, np.integer)):
indices = [indices]
# check for already a slice
if isinstance(indices, slice):
return [indices], True
# assert indices is longer than 2, or return trivial solutions
if len(indices) == 0:
return [slice(0, 0, 0)], False
elif len(indices) == 1:
return [slice(indices[0], indices[0] + 1, 1)], True
elif len(indices) == 2:
return [slice(indices[0], indices[1] + 1, indices[1] - indices[0])], True
# setup empty slices list
Ninds = len(indices)
slices = []
# iterate over indices
for i, ind in enumerate(indices):
if i == 0:
# start the first slice object
start = ind
last_step = indices[i + 1] - ind
continue
# calculate step from previous index
step = ind - indices[i - 1]
# if step != last_step, this ends the slice
if step != last_step:
# append to list
slices.append(slice(start, indices[i - 1] + 1, last_step))
# check if this is the last element
if i == Ninds - 1:
# append last element
slices.append(slice(ind, ind + 1, 1))
continue
# setup next step
start = ind
last_step = indices[i + 1] - ind
# check if this is the last element
elif i == Ninds - 1:
# end slice and append
slices.append(slice(start, ind + 1, step))
# determine whether slices are a reasonable representation
Nslices = len(slices)
passed = (float(Nslices) / len(indices)) < max_nslice_frac
return slices, passed
def _get_slice_len(s, axlen):
"""
Get length of a slice s into array of len axlen.
Parameters
----------
s : slice object
Slice object to index with
axlen : int
Length of axis s slices into
Returns
-------
int
Length of slice object
"""
if s.start is None:
start = 0
else:
start = s.start
if s.stop is None:
stop = axlen
else:
stop = np.min([s.stop, axlen])
if s.step is None:
step = 1
else:
step = s.step
return ((stop - 1 - start) // step) + 1
def _index_dset(dset, indices, input_array=None):
"""
Index a UVH5 data, flags or nsamples h5py dataset.
Parameters
----------
dset : h5py dataset
A reference to an HDF5 dataset on disk.
indices : tuple
A 3-tuple with the indices to extract along each dimension of dset.
Each element should contain a list of indices, a slice element,
or a list of slice elements that will be concatenated after slicing.
Indices must be provided such that all dimensions can be indexed
simultaneously. For data arrays with 4 dimensions, the second dimension
(the old spw axis) should not be included because it can only be length one.
Returns
-------
ndarray
The indexed dset
Notes
-----
This makes and fills an empty array with dset indices.
For trivial indexing, (e.g. a trivial slice), constructing
a new array and filling it is suboptimal over direct
indexing, e.g. dset[indices].
This function specializes in repeated slices over the same axis,
e.g. if indices is [[slice(0, 5), slice(10, 15), ...], ..., ]
"""
# get dset and arr shape
dset_shape = dset.shape
arr_shape, indices = _get_dset_shape(dset, indices)
if input_array is None:
# create empty array of dset dtype
arr = np.empty(arr_shape, dtype=dset.dtype)
else:
arr = input_array
# get arr and dset indices for each dimension in indices
dset_indices = []
arr_indices = []
for i, dset_inds in enumerate(indices):
if isinstance(dset_inds, (int, np.integer)):
# this dimension is len 1, so slice is fine
arr_indices.append([slice(None)])
dset_indices.append([[dset_inds]])
elif isinstance(dset_inds, slice):
# this dimension is just a slice, so slice is fine
arr_indices.append([slice(None)])
dset_indices.append([dset_inds])
elif isinstance(dset_inds, (list, np.ndarray)):
if isinstance(dset_inds[0], (int, np.integer)):
# this is a list of integers, append slice
arr_indices.append([slice(None)])
dset_indices.append([dset_inds])
elif isinstance(dset_inds[0], slice):
# this is a list of slices, need list of slice lens
slens = [_get_slice_len(s, dset_shape[i]) for s in dset_inds]
ssums = [sum(slens[:j]) for j in range(len(slens))]
arr_inds = [slice(s, s + l) for s, l in zip(ssums, slens)]
arr_indices.append(arr_inds)
dset_indices.append(dset_inds)
if len(dset_shape) == 3:
freq_dim = 1
pol_dim = 2
else:
freq_dim = 2
pol_dim = 3
# iterate over each of the 3 axes and fill the array
for blt_arr, blt_dset in zip(arr_indices[0], dset_indices[0]):
for freq_arr, freq_dset in zip(arr_indices[freq_dim], dset_indices[freq_dim]):
for pol_arr, pol_dset in zip(arr_indices[pol_dim], dset_indices[pol_dim]):
if input_array is None:
# index dset and assign to arr
if len(dset_shape) == 3:
arr[blt_arr, freq_arr, pol_arr] = dset[
blt_dset, freq_dset, pol_dset
]
else:
arr[blt_arr, :, freq_arr, pol_arr] = dset[
blt_dset, :, freq_dset, pol_dset
]
else:
# index arr and assign to dset
if len(dset_shape) == 3:
dset[blt_dset, freq_dset, pol_dset] = arr[
blt_arr, freq_arr, pol_arr
]
else:
dset[blt_dset, :, freq_dset, pol_dset] = arr[
blt_arr, :, freq_arr, pol_arr
]
if input_array is None:
return arr
else:
return