osx <- tryCatch(
{
si <- Sys.info()
if (!is.null(si["sysname"])) {
si["sysname"] == "Darwin" || grepl("^darwin", R.version$os)
} else {
FALSE
}
},
error = function(e) {
FALSE
}
)
if (!osx && require("rstanarm", quietly = TRUE)) {
test_that("insight::get_predicted", {
x <- insight::get_predicted(rstanarm::stan_glm(hp ~ mpg, data = mtcars, iter = 500, refresh = 0))
rez <- point_estimate(x)
expect_equal(c(nrow(rez), ncol(rez)), c(32, 4))
rez <- hdi(x)
expect_equal(c(nrow(rez), ncol(rez)), c(32, 4))
rez <- eti(x)
expect_equal(c(nrow(rez), ncol(rez)), c(32, 4))
rez <- ci(x)
expect_equal(c(nrow(rez), ncol(rez)), c(32, 4))
rez <- map_estimate(x)
expect_equal(c(nrow(rez), ncol(rez)), c(32, 2))
rez <- p_direction(x)
expect_equal(c(nrow(rez), ncol(rez)), c(32, 2))
# rez <- p_map(x)
# expect_equal(c(nrow(rez), ncol(rez)), c(2, 2))
#
# rez <- p_significance(x)
# expect_equal(c(nrow(rez), ncol(rez)), c(2, 2))
#
# rez <- rope(x)
# expect_equal(c(nrow(rez), ncol(rez)), c(2, 5))
rez <- describe_posterior(x)
expect_equal(c(nrow(rez), ncol(rez)), c(32, 5))
# rez <- estimate_density(x)
# expect_equal(c(nrow(rez), ncol(rez)), c(2048, 3))
})
}
if (!osx && require("bayesQR", quietly = TRUE)) {
test_that("bayesQR", {
x <- bayesQR::bayesQR(Sepal.Length ~ Petal.Width, data = iris, quantile = 0.1, alasso = TRUE, ndraw = 500)
rez <- p_direction(x)
expect_equal(c(nrow(rez), ncol(rez)), c(2, 2))
rez <- p_map(x)
expect_equal(c(nrow(rez), ncol(rez)), c(2, 2))
rez <- p_significance(x)
expect_equal(c(nrow(rez), ncol(rez)), c(2, 2))
rez <- rope(x)
expect_equal(c(nrow(rez), ncol(rez)), c(2, 5))
rez <- hdi(x)
expect_equal(c(nrow(rez), ncol(rez)), c(2, 4))
rez <- eti(x)
expect_equal(c(nrow(rez), ncol(rez)), c(2, 4))
rez <- map_estimate(x)
expect_equal(c(nrow(rez), ncol(rez)), c(2, 2))
rez <- point_estimate(x)
expect_equal(c(nrow(rez), ncol(rez)), c(2, 4))
rez <- describe_posterior(x)
expect_equal(c(nrow(rez), ncol(rez)), c(2, 10))
rez <- estimate_density(x)
expect_equal(c(nrow(rez), ncol(rez)), c(2048, 3))
})
}