osx <- tryCatch( { si <- Sys.info() if (!is.null(si["sysname"])) { si["sysname"] == "Darwin" || grepl("^darwin", R.version$os) } else { FALSE } }, error = function(e) { FALSE } ) if (!osx && require("rstanarm", quietly = TRUE)) { test_that("insight::get_predicted", { x <- insight::get_predicted(rstanarm::stan_glm(hp ~ mpg, data = mtcars, iter = 500, refresh = 0)) rez <- point_estimate(x) expect_equal(c(nrow(rez), ncol(rez)), c(32, 4)) rez <- hdi(x) expect_equal(c(nrow(rez), ncol(rez)), c(32, 4)) rez <- eti(x) expect_equal(c(nrow(rez), ncol(rez)), c(32, 4)) rez <- ci(x) expect_equal(c(nrow(rez), ncol(rez)), c(32, 4)) rez <- map_estimate(x) expect_equal(c(nrow(rez), ncol(rez)), c(32, 2)) rez <- p_direction(x) expect_equal(c(nrow(rez), ncol(rez)), c(32, 2)) # rez <- p_map(x) # expect_equal(c(nrow(rez), ncol(rez)), c(2, 2)) # # rez <- p_significance(x) # expect_equal(c(nrow(rez), ncol(rez)), c(2, 2)) # # rez <- rope(x) # expect_equal(c(nrow(rez), ncol(rez)), c(2, 5)) rez <- describe_posterior(x) expect_equal(c(nrow(rez), ncol(rez)), c(32, 5)) # rez <- estimate_density(x) # expect_equal(c(nrow(rez), ncol(rez)), c(2048, 3)) }) } if (!osx && require("bayesQR", quietly = TRUE)) { test_that("bayesQR", { x <- bayesQR::bayesQR(Sepal.Length ~ Petal.Width, data = iris, quantile = 0.1, alasso = TRUE, ndraw = 500) rez <- p_direction(x) expect_equal(c(nrow(rez), ncol(rez)), c(2, 2)) rez <- p_map(x) expect_equal(c(nrow(rez), ncol(rez)), c(2, 2)) rez <- p_significance(x) expect_equal(c(nrow(rez), ncol(rez)), c(2, 2)) rez <- rope(x) expect_equal(c(nrow(rez), ncol(rez)), c(2, 5)) rez <- hdi(x) expect_equal(c(nrow(rez), ncol(rez)), c(2, 4)) rez <- eti(x) expect_equal(c(nrow(rez), ncol(rez)), c(2, 4)) rez <- map_estimate(x) expect_equal(c(nrow(rez), ncol(rez)), c(2, 2)) rez <- point_estimate(x) expect_equal(c(nrow(rez), ncol(rez)), c(2, 4)) rez <- describe_posterior(x) expect_equal(c(nrow(rez), ncol(rez)), c(2, 10)) rez <- estimate_density(x) expect_equal(c(nrow(rez), ncol(rez)), c(2048, 3)) }) }