Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:8c19e308ad6a79b31155b90c88a0cd0d9481555a

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
# Copyright (c) 2023 Amphion.

# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from pathlib import Path
from typing import List, Tuple
import os
import numpy as np
import torch
from text.symbol_table import SymbolTable
from text import text_to_sequence


"""
    TextToken: map text to id
"""


# TextTokenCollator is modified from
# https://github.com/lifeiteng/vall-e/blob/9c69096d603ce13174fb5cb025f185e2e9b36ac7/valle/data/collation.py
class TextTokenCollator:
    def __init__(
        self,
        text_tokens: List[str],
        add_eos: bool = True,
        add_bos: bool = True,
        pad_symbol: str = "<pad>",
        bos_symbol: str = "<bos>",
        eos_symbol: str = "<eos>",
    ):
        self.pad_symbol = pad_symbol
        self.add_eos = add_eos
        self.add_bos = add_bos
        self.bos_symbol = bos_symbol
        self.eos_symbol = eos_symbol

        unique_tokens = [pad_symbol]
        if add_bos:
            unique_tokens.append(bos_symbol)
        if add_eos:
            unique_tokens.append(eos_symbol)
        unique_tokens.extend(sorted(text_tokens))

        self.token2idx = {token: idx for idx, token in enumerate(unique_tokens)}
        self.idx2token = unique_tokens

    def index(self, tokens_list: List[str]) -> Tuple[torch.Tensor, torch.Tensor]:
        seqs, seq_lens = [], []
        for tokens in tokens_list:
            assert all([True if s in self.token2idx else False for s in tokens]) is True
            seq = (
                ([self.bos_symbol] if self.add_bos else [])
                + list(tokens)
                + ([self.eos_symbol] if self.add_eos else [])
            )
            seqs.append(seq)
            seq_lens.append(len(seq))

        max_len = max(seq_lens)
        for k, (seq, seq_len) in enumerate(zip(seqs, seq_lens)):
            seq.extend([self.pad_symbol] * (max_len - seq_len))

        tokens = torch.from_numpy(
            np.array(
                [[self.token2idx[token] for token in seq] for seq in seqs],
                dtype=np.int64,
            )
        )
        tokens_lens = torch.IntTensor(seq_lens)

        return tokens, tokens_lens

    def __call__(self, text):
        tokens_seq = [p for p in text]
        seq = (
            ([self.bos_symbol] if self.add_bos else [])
            + tokens_seq
            + ([self.eos_symbol] if self.add_eos else [])
        )

        token_ids = [self.token2idx[token] for token in seq]
        token_lens = len(tokens_seq) + self.add_eos + self.add_bos

        return token_ids, token_lens


def get_text_token_collater(text_tokens_file: str) -> TextTokenCollator:
    text_tokens_path = Path(text_tokens_file)
    unique_tokens = SymbolTable.from_file(text_tokens_path)
    collater = TextTokenCollator(unique_tokens.symbols, add_bos=True, add_eos=True)
    token2idx = collater.token2idx
    return collater, token2idx


class phoneIDCollation:
    def __init__(self, cfg, dataset=None, symbols_dict_file=None) -> None:
        if cfg.preprocess.phone_extractor != "lexicon":
            ### get text token collator
            if symbols_dict_file is None:
                assert dataset is not None
                symbols_dict_file = os.path.join(
                    cfg.preprocess.processed_dir, dataset, cfg.preprocess.symbols_dict
                )
            self.text_token_colloator, token2idx = get_text_token_collater(
                symbols_dict_file
            )
            # # unique_tokens = SymbolTable.from_file(symbols_dict_path)
            # # text_tokenizer = TextToken(unique_tokens.symbols, add_bos=True, add_eos=True)

            # # update phone symbols dict file with pad_symbol or optional tokens (add_bos and add_eos) in TextTokenCollator
            # phone_symbol_dict = SymbolTable()
            # for s in sorted(list(set(token2idx.keys()))):
            #     phone_symbol_dict.add(s)
            # phone_symbol_dict.to_file(symbols_dict_file)

    def get_phone_id_sequence(self, cfg, phones_seq):
        if cfg.preprocess.phone_extractor == "lexicon":
            phones_seq = " ".join(phones_seq)
            sequence = text_to_sequence(phones_seq, cfg.preprocess.text_cleaners)
        else:
            sequence, seq_len = self.text_token_colloator(phones_seq)
        return sequence

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API