% Generated by roxygen2: do not edit by hand % Please edit documentation in R/point_estimate.R \name{point_estimate} \alias{point_estimate} \alias{point_estimate.stanreg} \alias{point_estimate.brmsfit} \alias{point_estimate.BFBayesFactor} \title{Point-estimates of posterior distributions} \usage{ point_estimate(x, centrality = "all", dispersion = FALSE, ...) \method{point_estimate}{stanreg}( x, centrality = "all", dispersion = FALSE, effects = c("fixed", "random", "all"), parameters = NULL, ... ) \method{point_estimate}{brmsfit}( x, centrality = "all", dispersion = FALSE, effects = c("fixed", "random", "all"), component = c("conditional", "zi", "zero_inflated", "all"), parameters = NULL, ... ) \method{point_estimate}{BFBayesFactor}(x, centrality = "all", dispersion = FALSE, ...) } \arguments{ \item{x}{Vector representing a posterior distribution, or a data frame of such vectors. Can also be a Bayesian model (\code{stanreg}, \code{brmsfit}, \code{MCMCglmm}, \code{mcmc} or \code{bcplm}) or a \code{BayesFactor} model.} \item{centrality}{The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: \code{"median"}, \code{"mean"}, \code{"MAP"} or \code{"all"}.} \item{dispersion}{Logical, if \code{TRUE}, computes indices of dispersion related to the estimate(s) (\code{SD} and \code{MAD} for \code{mean} and \code{median}, respectively).} \item{...}{Additional arguments to be passed to or from methods.} \item{effects}{Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.} \item{parameters}{Regular expression pattern that describes the parameters that should be returned. Meta-parameters (like \code{lp__} or \code{prior_}) are filtered by default, so only parameters that typically appear in the \code{summary()} are returned. Use \code{parameters} to select specific parameters for the output.} \item{component}{Should results for all parameters, parameters for the conditional model or the zero-inflated part of the model be returned? May be abbreviated. Only applies to \pkg{brms}-models.} } \description{ Compute various point-estimates, such as the mean, the median or the MAP, to describe posterior distributions. } \examples{ library(bayestestR) point_estimate(rnorm(1000)) point_estimate(rnorm(1000), centrality = "all", dispersion = TRUE) point_estimate(rnorm(1000), centrality = c("median", "MAP")) df <- data.frame(replicate(4, rnorm(100))) point_estimate(df, centrality = "all", dispersion = TRUE) point_estimate(df, centrality = c("median", "MAP")) \dontrun{ # rstanarm models # ----------------------------------------------- library(rstanarm) model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars) point_estimate(model, centrality = "all", dispersion = TRUE) point_estimate(model, centrality = c("median", "MAP")) # emmeans estimates # ----------------------------------------------- library(emmeans) point_estimate(emtrends(model, ~1, "wt"), centrality = c("median", "MAP")) # brms models # ----------------------------------------------- library(brms) model <- brms::brm(mpg ~ wt + cyl, data = mtcars) point_estimate(model, centrality = "all", dispersion = TRUE) point_estimate(model, centrality = c("median", "MAP")) # BayesFactor objects # ----------------------------------------------- library(BayesFactor) bf <- ttestBF(x = rnorm(100, 1, 1)) point_estimate(bf, centrality = "all", dispersion = TRUE) point_estimate(bf, centrality = c("median", "MAP")) } } \references{ \href{https://easystats.github.io/bayestestR/articles/indicesEstimationComparison.html}{Vignette In-Depth 1: Comparison of Point-Estimates} }