##### https://github.com/cran/scModels

Tip revision:

**ba14d424c697de7a21f22f10407afbab9c5aaf7d**authored by**Lisa Amrhein**on**24 January 2023, 07:20:02 UTC****version 1.0.4** Tip revision:

**ba14d42** chf_1F1.Rd

```
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/RcppExports.R
\name{chf_1F1}
\alias{chf_1F1}
\title{Kummer's (confluent hypergeometric) function in log-scale}
\usage{
chf_1F1(x, a, b)
}
\arguments{
\item{x}{numeric value or vector}
\item{a, b}{numeric parameters of the Kummer function}
}
\description{
Kummer's function (also: confluent hypergeometric function of the first kind)
for numeric (non-complex) values and input parameters in log-scale.
}
\details{
Note that the output is in log-scale. So the evaluated function is:
\deqn{\log \left[\sum_{n=0}^\infty \frac{a^{(n)} x^n}{ b^(n) n!}\right]}{log [ \sum from n to \infty (a^(n) x^n)/ (b^(n) n!)]}
where \eqn{a^{(n)}}{a^(n)} and \eqn{b^{(n)}}{b^(n)} describe the rising factorial.
}
\examples{
x <- chf_1F1(-100:100, 5, 7)
plot(-100:100, x, type='l')
}
```