Raw File
Tip revision: ba14d424c697de7a21f22f10407afbab9c5aaf7d authored by Lisa Amrhein on 24 January 2023, 07:20:02 UTC
version 1.0.4
Tip revision: ba14d42
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/RcppExports.R
\title{Kummer's (confluent hypergeometric) function in log-scale}
chf_1F1(x, a, b)
\item{x}{numeric value or vector}

\item{a, b}{numeric parameters of the Kummer function}
Kummer's function (also: confluent hypergeometric function of the first kind)
for numeric (non-complex) values and input parameters in log-scale.
Note that the output is in log-scale. So the evaluated function is:
\deqn{\log \left[\sum_{n=0}^\infty \frac{a^{(n)} x^n}{ b^(n) n!}\right]}{log [ \sum from n to \infty (a^(n) x^n)/ (b^(n) n!)]}
where \eqn{a^{(n)}}{a^(n)} and \eqn{b^{(n)}}{b^(n)} describe the rising factorial.
x <- chf_1F1(-100:100, 5, 7)
plot(-100:100, x, type='l')
back to top