################################################################################################################## # author: Jona Cederbaum ################################################################################################################## ################################################################################################################## # description: function to estimate smooth auto-covariance operators using the triangle only and without symmetry # constraint. Gives out auto-covariances evaluated on a pre-specified grid. ################################################################################################################## estimate_cov_tri_constr_fun <- function(index_upperTri, use_RI = FALSE, use_simple = FALSE, bf, method = "REML", d_grid = 100, grid_row, grid_col, same_subject_grid, same_word_grid, same_curve_grid, same_point_grid, bs, m, use_bam, t, mp = TRUE, para_estim = FALSE, para_estim_nc, weights = NULL, np = TRUE, use_discrete = TRUE){ if(use_bam == TRUE){ ####################### # covariance estimation # using bam ####################### ################ # set cluster # for estimation # if specified ################ if(para_estim & !use_discrete){ if(detectCores() > 1){ nc_use <- min(detectCores(), para_estim_nc) if(.Platform$OS.type=="unix"){ cl_estim <- makeForkCluster(nnodes = nc_use) # only runs on linux }else{ cl_estim <- makeCluster(nc_use) # also runs on windows } }else{ cl_estim <- NULL } }else{ cl_estim <- NULL } if(!use_RI){ ################## # for crossed fRIs if(use_discrete){ time_cov_estim <- system.time(gam1 <- try(bam(cross_vec_bivariate ~ - 1 + s(row_t_bivariate, col_t_bivariate, by = same_subject, k = bf[1], bs = "symm", m = m[[1]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + s(row_t_bivariate, col_t_bivariate, by = same_word, k = bf[2], bs = "symm", m = m[[2]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + s(row_t_bivariate, col_t_bivariate, by = same_curve, k = bf[3], bs = "symm", m = m[[3]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + same_point, method = method, data = index_upperTri, discrete = TRUE, nthreads = para_estim_nc, weights = weights))) }else{ time_cov_estim <- system.time(gam1 <- try(bam(cross_vec_bivariate ~ - 1 + s(row_t_bivariate, col_t_bivariate, by = same_subject, k = bf[1], bs = "symm", m = m[[1]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + s(row_t_bivariate, col_t_bivariate, by = same_word, k = bf[2], bs = "symm", m = m[[2]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + s(row_t_bivariate, col_t_bivariate, by = same_curve, k = bf[3], bs = "symm", m = m[[3]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + same_point, method = method, data = index_upperTri, cluster = cl_estim, weights = weights))) } }else{ if(!use_simple){ ############# # for one fRI if(use_discrete){ time_cov_estim <- system.time(gam1 <- try(bam(cross_vec_bivariate ~ 1 + s(row_t_bivariate, col_t_bivariate, k = bf[1], bs = "symm", m = m[[1]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + s(row_t_bivariate, col_t_bivariate, by = same_curve, k = bf[2], bs = "symm", m = m[[2]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + same_point, method = method, data = index_upperTri, discrete = TRUE, nthreads = para_estim_nc, weights = weights))) }else{ time_cov_estim <- system.time(gam1 <- try(bam(cross_vec_bivariate ~ 1 + s(row_t_bivariate, col_t_bivariate, k = bf[1], bs = "symm", m = m[[1]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + s(row_t_bivariate, col_t_bivariate, by = same_curve, k = bf[2], bs = "symm", m = m[[2]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + same_point, method = method, data = index_upperTri, cluster = cl_estim, weights = weights))) } }else{ ######################## # for independent curves if(use_discrete){ time_cov_estim <- system.time(gam1 <- try(bam(cross_vec_bivariate ~ 1 + s(row_t_bivariate, col_t_bivariate, k = bf[1], bs = "symm", m = m[[1]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + same_point, method = method, data = index_upperTri, discrete = TRUE, nthreads = para_estim_nc, weights = weights))) }else{ time_cov_estim <- system.time(gam1 <- try(bam(cross_vec_bivariate ~ 1 + s(row_t_bivariate, col_t_bivariate, k = bf[1], bs = "symm", m = m[[1]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + same_point, method = method, data = index_upperTri, cluster = cl_estim, weights = weights))) } } } ########################## # stop cluster if existing ########################## if (!is.null(cl_estim)) stopCluster(cl_estim) }else{ ####################### # covariance estimation # using gam ####################### if(!use_RI){ ################## # for crossed fRIs time_cov_estim <- system.time(gam1 <- try(gam(cross_vec_bivariate ~ - 1 + s(row_t_bivariate, col_t_bivariate, by = same_subject, k = bf[1], bs = "symm", m = m[[1]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + s(row_t_bivariate, col_t_bivariate, by = same_word, k = bf[2], bs = "symm", m = m[[2]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + s(row_t_bivariate, col_t_bivariate, by = same_curve, k = bf[3], bs = "symm", m = m[[3]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + same_point, method = method, data = index_upperTri, weights = weights))) }else{ if(!use_simple){ ############# # for one fRI time_cov_estim <- system.time(gam1 <- try(gam(cross_vec_bivariate ~ 1 + s(row_t_bivariate, col_t_bivariate, k = bf[1], bs = "symm", m = m[[1]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + s(row_t_bivariate, col_t_bivariate, by = same_curve, k = bf[2], bs = "symm", m = m[[2]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + same_point, method = method, data = index_upperTri, weights = weights))) }else{ ######################## # for independent curves time_cov_estim <- system.time(gam1 <- try(gam(cross_vec_bivariate ~ 1 + s(row_t_bivariate, col_t_bivariate, k = bf[1], bs = "symm", m = m[[1]], xt = list(bsmargin = "ps", kroneckersum = mp, np = np)) + same_point, method = method, data = index_upperTri, weights = weights))) } } } if(class(gam1)[1] != "try-error"){ ############################## # extract smoothing parameters ############################## sp <- gam1$sp if(use_RI){ ################### # extract intercept ################### intercept <- as.numeric(coefficients(gam1)[1]) } ################# # extract sigmasq # and truncate ################# sigmasq <- as.numeric(max(coefficients(gam1)["same_point"], 0)) ################################# # compute the integral of sigmasq ################################# sigmasq_int <- (max(unlist(t))-min(unlist(t))) * sigmasq ########################## # construct data frame for # evaluation on grid ########################## if(!use_RI){ ################## # for crossed fRIs grid_data <- data.table(row_t_bivariate = grid_row, col_t_bivariate = grid_col, same_subject = same_subject_grid, same_word = same_word_grid, same_curve = same_curve_grid, same_point = same_point_grid) ########################## # remove unnecessary stuff ########################## grid_row <- NULL grid_col <- NULL same_subject_grid <- NULL same_word_grid <- NULL same_curve_grid <- NULL same_point_grid <- NULL }else{ ################################### # for one fRI or independent curves grid_data <- data.table(row_t_bivariate = grid_row, col_t_bivariate = grid_col, same_subject = same_subject_grid, same_curve = same_curve_grid, same_point = same_point_grid) ########################## # remove unnecessary stuff ########################## grid_row <- NULL grid_col <- NULL same_subject_grid <- NULL same_curve_grid <- NULL same_point_grid <- NULL } #################### # evaluation on grid #################### time_cov_pred_grid <- system.time(grid_smooth <- predict(gam1, newdata = grid_data[row_t_bivariate <= col_t_bivariate, ], na.omit = TRUE, type = "terms")) ##################### # extract covariances ##################### if(!use_RI){ ################## # for crossed fRIs grid_mat_B <- matrix(NA, nrow = d_grid, ncol = d_grid) grid_mat_B[lower.tri(grid_mat_B, diag = TRUE)] <- grid_smooth[, 2] grid_mat_B <- t(grid_mat_B) grid_mat_B[lower.tri(grid_mat_B, diag = TRUE)] <- grid_smooth[, 2] grid_mat_C <- matrix(NA, nrow = d_grid, ncol = d_grid) grid_mat_C[lower.tri(grid_mat_C, diag = TRUE)] <- grid_smooth[, 3] grid_mat_C <- t(grid_mat_C) grid_mat_C[lower.tri(grid_mat_C, diag = TRUE)] <- grid_smooth[, 3] grid_mat_E <- matrix(NA, nrow = d_grid, ncol = d_grid) grid_mat_E[lower.tri(grid_mat_E, diag = TRUE)] <- grid_smooth[, 4] grid_mat_E <- t(grid_mat_E) grid_mat_E[lower.tri(grid_mat_E, diag = TRUE)] <- grid_smooth[, 4] }else{ ################################### # for one fRI or independent curves grid_mat_B <- matrix(NA, nrow = d_grid, ncol = d_grid) grid_mat_B[lower.tri(grid_mat_B, diag = TRUE)] <- grid_smooth[, 2] + intercept grid_mat_B <- t(grid_mat_B) grid_mat_B[lower.tri(grid_mat_B, diag = TRUE)] <- grid_smooth[, 2] + intercept grid_mat_C <- matrix(rep(0, length = d_grid^2), ncol = d_grid, nrow = d_grid, byrow = TRUE) if(!use_simple){ ############# # for one fRI grid_mat_E <- matrix(NA, nrow = d_grid, ncol = d_grid) grid_mat_E[lower.tri(grid_mat_E, diag = TRUE)] <- grid_smooth[, 3] grid_mat_E <- t(grid_mat_E) grid_mat_E[lower.tri(grid_mat_E, diag = TRUE)] <- grid_smooth[, 3] }else{ grid_mat_E <- matrix(rep(0, length = d_grid^2), ncol = d_grid, nrow = d_grid, byrow = TRUE) } } grid_smooth <- NULL grid_data <- NULL }else{ sigmasq <- NA sigmasq_int <- NA grid_mat_B <- NA grid_mat_C <- NA grid_mat_E <- NA smooth_cov_y <- NA sp <- NA time_cov_pred_grid <- NA time_cov_estim <- NA warning("covariance estimation did not succeed") } gam1 <- NULL ############### # return output ############### out <- list(sigmasq = sigmasq, sigmasq_int = sigmasq_int, grid_mat_B = grid_mat_B, grid_mat_C = grid_mat_C, grid_mat_E = grid_mat_E, sp = sp, time_cov_estim = time_cov_estim, time_cov_pred_grid = time_cov_pred_grid) return(out) } ####################################################################################