https://github.com/ruqihuang/AdjointFmaps
Tip revision: d41efaa1636fb8cc0da8f09d89f4a1cae0172320 authored by ruqihuang on 24 August 2017, 07:39:27 UTC
Update readme
Update readme
Tip revision: d41efaa
minConf_TMP.m
function [x,f,funEvals] = minConf_TMP(funObj,x,LB,UB,options)
% function [x,f] = minConf_TMP(funObj,x,LB,UB,options)
%
% Function for using Two-Metric Projection to solve problems of the form:
% min funObj(x)
% s.t. LB_i <= x_i <= UB_i
%
% @funObj(x): function to minimize (returns gradient as second argument)
%
% options:
% verbose: level of verbosity (0: no output, 1: final, 2: iter (default), 3:
% debug)
% optTol: tolerance used to check for progress (default: 1e-7)
% maxIter: maximum number of calls to funObj (default: 250)
% numDiff: compute derivatives numerically (0: use user-supplied
% derivatives (default), 1: use finite differences, 2: use complex
% differentials)
% method: 'sd', 'lbfgs', 'newton'
nVars = length(x);
% Set Parameters
if nargin < 5
options = [];
end
[verbose,numDiff,optTol,progTol,maxIter,suffDec,interp,method,corrections,damped,cgSolve] = ...
myProcessOptions(...
options,'verbose',3,'numDiff',0,'optTol',1e-5,'progTol',1e-9,'maxIter',500,'suffDec',1e-4,...
'interp',1,'method','lbfgs','corrections',100,'damped',0,'cgSolve',0);
% Output Log
if verbose >= 3
fprintf('%10s %10s %15s %15s %15s\n','Iteration','FunEvals','Step Length','Function Val','Opt Cond');
end
% Make objective function (if using numerical derivatives)
funEvalMultiplier = 1;
if numDiff
if numDiff == 2
useComplex = 1;
else
useComplex = 0;
end
funObj = @(x)autoGrad(x,useComplex,funObj);
funEvalMultiplier = nVars+1-useComplex;
end
% Evaluate Initial Point
x = projectBounds(x,LB,UB);
if strcmp(method,'newton')
[f,g,H] = funObj(x);
secondOrder = 1;
else
[f,g] = funObj(x);
secondOrder = 0;
end
funEvals = 1;
% Compute Working Set
working = ones(nVars,1);
working((x < LB+progTol*2) & g >= 0) = 0;
working((x > UB-progTol*2) & g <= 0) = 0;
working = find(working);
% Check Optimality
if isempty(working)
if verbose >= 1
fprintf('All variables are at their bound and no further progress is possible at initial point\n');
end
return;
elseif max(abs(g(working))) <= optTol
if verbose >=1
fprintf('First-order optimality below optTol at initial point\n');
end
return;
end
if verbose >= 3
switch method
case 'sd'
fprintf('Steepest Descent\n');
case 'bb'
fprintf('Barzilai-Borwein\n');
case 'lbfgs'
fprintf('L-BFGS\n');
case 'bfgs'
fprintf('BFGS\n');
case 'newton0'
fprintf('Hessian-Free Newton\n');
case 'newton'
fprintf('Newton\n');
end
end
i = 1;
while funEvals <= maxIter
% Compute Step Direction
d = zeros(nVars,1);
switch(method)
case 'sd'
d(working) = -g(working);
case 'bb'
if i == 1
alpha = 1;
else
y = g(working)-g_old(working);
s = x(working)-x_old(working);
alpha = (s'*s)/(s'*y);
if alpha <= 1e-10 || alpha > 1e10
alpha = 1;
end
end
d(working) = -alpha*g(working);
g_old = g;
x_old = x;
case 'lbfgs'
if i == 1
d(working) = -g(working);
old_dirs = zeros(nVars,0);
old_stps = zeros(nVars,0);
Hdiag = 1;
else
if damped
[old_dirs,old_stps,Hdiag] = dampedUpdate(g-g_old,x-x_old,corrections,verbose==3,old_dirs,old_stps,Hdiag);
else
[old_dirs,old_stps,Hdiag] = lbfgsUpdate(g-g_old,x-x_old,corrections,verbose==3,old_dirs,old_stps,Hdiag);
end
curvSat = sum(old_dirs(working,:).*old_stps(working,:)) > 1e-10;
d(working) = lbfgs(-g(working),old_dirs(working,curvSat),old_stps(working,curvSat),Hdiag);
end
g_old = g;
x_old = x;
case 'bfgs'
if i == 1
d(working) = -g(working);
B = eye(nVars);
else
y = g-g_old;
s = x-x_old;
ys = y'*s;
if i == 2
if ys > 1e-10
B = ((y'*y)/(y'*s))*eye(nVars);
end
end
if ys > 1e-10
B = B + (y*y')/(y'*s) - (B*s*s'*B)/(s'*B*s);
else
if verbose == 2
fprintf('Skipping Update\n');
end
end
d(working) = -B(working,working)\g(working);
end
g_old = g;
x_old = x;
case 'newton0'
cgMaxIter = min(nVars,maxIter-funEvals);
cgForce = min(0.5,sqrt(norm(g(working))))*norm(g(working));
HvFun = @fullMatrixVect;
HvArgs = {nVars,working,@autoHv,{x,g,0,funObj}};
[d(working),cgIter,cgRes] = conjGrad([],-g(working),cgForce,cgMaxIter,verbose==2,[],[],HvFun,HvArgs);
funEvals = funEvals+cgIter;
if verbose == 3
fprintf('newtonCG stopped on iteration %d w/ residual %.5e\n',cgIter,cgRes);
end
case 'newton'
if cgSolve
cgMaxIter = nVars;
cgForce = min(0.5,sqrt(norm(g(working))))*norm(g(working));
[d(working),cgIter,cgRes] = conjGrad(H(working,working),-g(working),cgForce,cgMaxIter,verbose == 3);
if verbose == 3
fprintf('CG stopped after %d iterations w/ residual %.5e\n',cgIter,cgRes);
end
else
[R,posDef] = chol(H(working,working));
if posDef == 0
d(working) = -R\(R'\g(working));
else
if verbose == 3
fprintf('Adjusting Hessian\n');
end
H(working,working) = H(working,working) + eye(length(working)) * max(0,1e-12 - min(real(eig(H(working,working)))));
d(working) = -H(working,working)\g(working);
end
end
otherwise
fprintf('Unrecognized Method: %s\n',method);
break;
end
% Check that Progress can be made along the direction
f_old = f;
gtd = g'*d;
if gtd > -progTol
if verbose >= 2
fprintf('Directional Derivative below progTol\n');
end
break;
end
% Select Initial Guess to step length
if i == 1 && ~secondOrder
t = min(1,1/sum(abs(g(working))));
else
t = 1;
end
% Evaluate the Objective and Projected Gradient at the Initial Step
x_new = projectBounds(x+t*d,LB,UB);
if secondOrder
[f_new,g_new,H] = funObj(x_new);
else
[f_new,g_new] = funObj(x_new);
end
funEvals = funEvals+1;
% Backtracking Line Search
lineSearchIters = 1;
while f_new > f + suffDec*g'*(x_new-x) || ~isLegal(f_new)
temp = t;
if interp == 0 || ~isLegal(f_new) || ~isLegal(g_new)
if verbose == 3
fprintf('Halving Step Size\n');
end
t = .5*t;
else
if verbose == 3
fprintf('Cubic Backtracking\n');
end
t = polyinterp([0 f gtd; t f_new g_new'*d]);
end
% Adjust if change is too small
if t < temp*1e-3
if verbose == 3
fprintf('Interpolated value too small, Adjusting\n');
end
t = temp*1e-3;
elseif t > temp*0.6
if verbose == 3
fprintf('Interpolated value too large, Adjusting\n');
end
t = temp*0.6;
end
% Check whether step has become too small
if max(abs(t*d)) < progTol
if verbose == 3
fprintf('Line Search failed\n');
end
t = 0;
f_new = f;
g_new = g;
break;
end
% Evaluate New Point
x_new = projectBounds(x+t*d,LB,UB);
[f_new,g_new] = funObj(x_new);
funEvals = funEvals+1;
lineSearchIters = lineSearchIters+1;
end
% Take Step
x = x_new;
f = f_new;
g = g_new;
% Compute Working Set
working = ones(nVars,1);
working((x < LB+optTol*2) & g >= 0) = 0;
working((x > UB-optTol*2) & g <= 0) = 0;
working = find(working);
% Output Log
if verbose >= 2
fprintf('%10d %10d %15.5e %15.5e %15.5e\n',i,funEvals*funEvalMultiplier,t,f,sum(abs(g(working))));
end
% Check Optimality
if isempty(working)
if verbose >= 1
fprintf('All variables are at their bound and no further progress is possible\n');
end
break;
elseif max(abs(g(working))) <= optTol
if verbose >=1
fprintf('Optimality condition below optTol\n');
end
break;
end
% Check for lack of progress
if sum(abs(t*d)) < progTol
if verbose >= 1
fprintf('Step size below progTol\n');
end
break;
end
if abs(f-f_old) < progTol
if verbose >= 1
fprintf('Function value changing by less than progTol\n');
end
break;
end
if funEvals*funEvalMultiplier > maxIter
if verbose >= 1
fprintf('Function Evaluations exceeds maxIter\n');
end
break;
end
% If necessary, compute Hessian
if secondOrder && lineSearchIters > 1
[f_new,g_new,H] = funObj(x);
end
i = i + 1;
end
end
function [x] = projectBounds(x,LB,UB)
x(x < LB) = LB(x < LB);
x(x > UB) = UB(x > UB);
end
function [Ap] = fullMatrixVect(p,nVars,working,matrixVectFunc,matrixVectArgs)
pFull = zeros(nVars,1);
pFull(working) = p;
ApFull = matrixVectFunc(pFull,matrixVectArgs{:});
Ap = ApFull(working);
end