Raw File
Grid_qpx.h
/*******************************************************************************
 
 Grid physics library, www.github.com/paboyle/Grid
 
 Source file: ./lib/simd/Grid_qpx.h
 
 Copyright (C) 2016
 Copyright (C) 2017
 
 Author: Antonin Portelli <antonin.portelli@me.com>
         Andrew Lawson    <andrew.lawson1991@gmail.com>
 
 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.
 
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.
 
 You should have received a copy of the GNU General Public License along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 
 See the full license in the file "LICENSE" in the top level distribution directory
 ******************************************************************************/

#ifndef GEN_SIMD_WIDTH
#define GEN_SIMD_WIDTH 32u
#endif
#include "Grid_generic_types.h" // Definitions for simulated integer SIMD.

namespace Grid {

#ifdef QPX
#include <spi/include/kernel/location.h>
#include <spi/include/l1p/types.h>
#include <hwi/include/bqc/l1p_mmio.h>
#include <hwi/include/bqc/A2_inlines.h>
#endif

namespace Optimization {
  typedef struct 
  {
    float v0,v1,v2,v3;
  } vector4float;

  inline std::ostream & operator<<(std::ostream& stream, const vector4double a)
  {
    stream << "{"<<vec_extract(a,0)<<","<<vec_extract(a,1)<<","<<vec_extract(a,2)<<","<<vec_extract(a,3)<<"}";
    return stream;
  };

  inline std::ostream & operator<<(std::ostream& stream, const vector4float a)
  {
    stream << "{"<< a.v0 <<","<< a.v1 <<","<< a.v2 <<","<< a.v3 <<"}";
    return stream;
  };
  
  struct Vsplat{
    //Complex float
    inline vector4float operator()(float a, float b){
      return (vector4float){a, b, a, b};
    }
    // Real float
    inline vector4float operator()(float a){
      return (vector4float){a, a, a, a};
    }
    //Complex double
    inline vector4double operator()(double a, double b){
      return (vector4double){a, b, a, b};
    }
    //Real double
    inline vector4double operator()(double a){
      return (vector4double){a, a, a, a};
    }
    //Integer
    inline veci operator()(Integer a){
      veci out;
      
      VECTOR_FOR(i, W<Integer>::r, 1)
      {
        out.v[i] = a;
      }
      
      return out;
    }
  };
  
  struct Vstore{
    //Float
    inline void operator()(vector4double a, float *f){
      vec_st(a, 0, f);
    }

    inline void operator()(vector4double a, vector4float &f){
      vec_st(a, 0, (float *)(&f));
    }

    inline void operator()(vector4float a, float *f){
      f[0] = a.v0;
      f[1] = a.v1;
      f[2] = a.v2;
      f[3] = a.v3;
    }

    //Double
    inline void operator()(vector4double a, double *d){
      vec_st(a, 0, d);
    }

    //Integer
    inline void operator()(veci a, Integer *i){
      *((veci *)i) = a;
    }
  };
  
  struct Vstream{
    //Float
    inline void operator()(float *f, vector4double a){
      vec_st(a, 0, f);
    }

    inline void operator()(vector4float f, vector4double a){
      vec_st(a, 0, (float *)(&f));
    }

    inline void operator()(float *f, vector4float a){
      f[0] = a.v0;
      f[1] = a.v1;
      f[2] = a.v2;
      f[3] = a.v3;
    }
    //Double
    inline void operator()(double *d, vector4double a){
      vec_st(a, 0, d);
    }

  };
  
  struct Vset{
    // Complex float
    inline vector4float operator()(Grid::ComplexF *a){
      return (vector4float){a[0].real(), a[0].imag(), a[1].real(), a[1].imag()};
    }
    // Complex double
    inline vector4double operator()(Grid::ComplexD *a){
      return vec_ld(0, (double *)a);
    }

    // Real float
    inline vector4float operator()(float *a){
      return (vector4float){a[0], a[1], a[2], a[3]};
    }

    inline vector4double operator()(vector4float a){
      return vec_ld(0, (float *)(&a));
    }

    // Real double
    inline vector4double operator()(double *a){
      return vec_ld(0, a);
    }
    // Integer
    inline veci operator()(Integer *a){
      veci out;
      
      out = *((veci *)a);
      
      return out;
    }    
  };
  
  template <typename Out_type, typename In_type>
  struct Reduce{
    //Need templated class to overload output type
    //General form must generate error if compiled
    inline Out_type operator()(In_type in){
      printf("Error, using wrong Reduce function\n");
      exit(1);
      return 0;
    }
  };
  
  /////////////////////////////////////////////////////
  // Arithmetic operations
  /////////////////////////////////////////////////////

  #define FLOAT_WRAP_3(fn, pref)\
  pref vector4float fn(vector4float a, vector4float b, vector4float c)	\
  {\
    vector4double ad, bd, rd, cd;			\
    vector4float  r;\
    \
    ad = Vset()(a);\
    bd = Vset()(b);\
    cd = Vset()(c);\
    rd = fn(ad, bd, cd);				\
    Vstore()(rd, r);\
    \
    return r;\
  }

  #define FLOAT_WRAP_2(fn, pref)\
  pref vector4float fn(vector4float a, vector4float b)\
  {\
    vector4double ad, bd, rd;\
    vector4float  r;\
    \
    ad = Vset()(a);\
    bd = Vset()(b);\
    rd = fn(ad, bd);\
    Vstore()(rd, r);\
    \
    return r;\
  }

  #define FLOAT_WRAP_1(fn, pref)\
  pref vector4float fn(vector4float a)\
  {\
    vector4double ad, rd;\
    vector4float  r;\
    \
    ad = Vset()(a);\
    rd = fn(ad);\
    Vstore()(rd, r);\
    \
    return r;\
  }

  struct Sum{
    //Complex/Real double
    inline vector4double operator()(vector4double a, vector4double b){
      return vec_add(a, b);
    }

    //Complex/Real float
    FLOAT_WRAP_2(operator(), inline)

    //Integer
    inline veci operator()(veci a, veci b){
      veci out;
      
      VECTOR_FOR(i, W<Integer>::r, 1)
      {
        out.v[i] = a.v[i] + b.v[i];
      }
      
      return out;
    }
  };
  
  struct Sub{
    //Complex/Real double
    inline vector4double operator()(vector4double a, vector4double b){
      return vec_sub(a, b);
    }

    //Complex/Real float
    FLOAT_WRAP_2(operator(), inline)

    //Integer
    inline veci operator()(veci a, veci b){
      veci out;
      
      VECTOR_FOR(i, W<Integer>::r, 1)
      {
        out.v[i] = a.v[i] - b.v[i];
      }
      
      return out;
    }
  };
  
  struct MultRealPart{
    // Complex double
    inline vector4double operator()(vector4double a, vector4double b){
  //      return vec_xmul(b, a);
        return vec_xmul(a, b);
    }
    FLOAT_WRAP_2(operator(), inline)
  };
  struct MaddRealPart{
    // Complex double
    inline vector4double operator()(vector4double a, vector4double b,vector4double c){
      return vec_xmadd(a, b, c);
    }
    FLOAT_WRAP_3(operator(), inline)
  };
  struct MultComplex{
    // Complex double
    inline vector4double operator()(vector4double a, vector4double b){
      return vec_xxnpmadd(a, b, vec_xmul(b, a));
    }

    // Complex float
    FLOAT_WRAP_2(operator(), inline)
  };
  
  struct Mult{
    // Real double
    inline vector4double operator()(vector4double a, vector4double b){
      return vec_mul(a, b);
    }

    // Real float
    FLOAT_WRAP_2(operator(), inline)

    // Integer
    inline veci operator()(veci a, veci b){
      veci out;
      
      VECTOR_FOR(i, W<Integer>::r, 1)
      {
        out.v[i] = a.v[i]*b.v[i];
      }
      
      return out;
    }
  };

  struct Div{
    // Real double
    inline vector4double operator()(vector4double a, vector4double b){
      return vec_swdiv(a, b);
    }

    // Real float
    FLOAT_WRAP_2(operator(), inline)

    // Integer
    inline veci operator()(veci a, veci b){
      veci out;
      
      VECTOR_FOR(i, W<Integer>::r, 1)
      {
        out.v[i] = a.v[i]/b.v[i];
      }
      
      return out;
    }
  };

  struct Conj{
    // Complex double
    inline vector4double operator()(vector4double v){
      return vec_mul(v, (vector4double){1., -1., 1., -1.});
    }

    // Complex float
    FLOAT_WRAP_1(operator(), inline)
  };
  
  struct TimesMinusI{
    //Complex double
    inline vector4double operator()(vector4double v, vector4double ret){
      return vec_xxcpnmadd(v, (vector4double){1., 1., 1., 1.},
                               (vector4double){0., 0., 0., 0.});
    }

    // Complex float
    FLOAT_WRAP_2(operator(), inline)
  };
  
  struct TimesI{
    //Complex double
    inline vector4double operator()(vector4double v, vector4double ret){
      return vec_xxcpnmadd(v, (vector4double){-1., -1., -1., -1.},
                              (vector4double){0., 0., 0., 0.});
    }

    // Complex float
    FLOAT_WRAP_2(operator(), inline)
  };
#define USE_FP16
  struct PrecisionChange {
    static inline vech StoH (const vector4float &a, const vector4float &b) {
      vech ret;
      std::cout << GridLogError << "QPX single to half precision conversion not yet supported." << std::endl;
      assert(0);
      return ret;
    }
    static inline void  HtoS (vech h, vector4float &sa, vector4float &sb) {
      std::cout << GridLogError << "QPX half to single precision conversion not yet supported." << std::endl;
      assert(0);
    }
    static inline vector4float DtoS (vector4double a, vector4double b) {
      vector4float ret;
      std::cout << GridLogError << "QPX double to single precision conversion not yet supported." << std::endl;
      assert(0);
      return ret;
    }
    static inline void StoD (vector4float s, vector4double &a, vector4double &b) {
      std::cout << GridLogError << "QPX single to double precision conversion not yet supported." << std::endl;
      assert(0);
    }
    static inline vech DtoH (vector4double a, vector4double b, 
                             vector4double c, vector4double d) {
      vech ret;
      std::cout << GridLogError << "QPX double to half precision conversion not yet supported." << std::endl;
      assert(0);
      return ret;
    }
    static inline void HtoD (vech h, vector4double &a, vector4double &b, 
                                     vector4double &c, vector4double &d) {
      std::cout << GridLogError << "QPX half to double precision conversion not yet supported." << std::endl;
      assert(0);
    }
  };

  //////////////////////////////////////////////
  // Exchange support
#define FLOAT_WRAP_EXCHANGE(fn) \
  static inline void fn(vector4float &out1, vector4float &out2, \
                        vector4float in1,  vector4float in2) \
  { \
    vector4double out1d, out2d, in1d, in2d; \
    in1d  = Vset()(in1);   \
    in2d  = Vset()(in2);   \
    fn(out1d, out2d, in1d, in2d); \
    Vstore()(out1d, out1); \
    Vstore()(out2d, out2); \
  }

  struct Exchange{

    // double precision
    static inline void Exchange0(vector4double &out1, vector4double &out2,
                                 vector4double in1,  vector4double in2) {
      out1 = vec_perm(in1, in2, vec_gpci(0145));
      out2 = vec_perm(in1, in2, vec_gpci(02367));
    }
    static inline void Exchange1(vector4double &out1, vector4double &out2,
                                 vector4double in1,  vector4double in2) {
      out1 = vec_perm(in1, in2, vec_gpci(0426));
      out2 = vec_perm(in1, in2, vec_gpci(01537));
    }
    static inline void Exchange2(vector4double &out1, vector4double &out2,
                                 vector4double in1,  vector4double in2) {
      assert(0);
    }
    static inline void Exchange3(vector4double &out1, vector4double &out2,
                                 vector4double in1,  vector4double in2) {
      assert(0);
    }

    // single precision
    FLOAT_WRAP_EXCHANGE(Exchange0);
    FLOAT_WRAP_EXCHANGE(Exchange1);
    FLOAT_WRAP_EXCHANGE(Exchange2);
    FLOAT_WRAP_EXCHANGE(Exchange3);
  };

  struct Permute{
    //Complex double
    static inline vector4double Permute0(vector4double v){ //0123 -> 2301
      return vec_perm(v, v, vec_gpci(02301));
    };
    static inline vector4double Permute1(vector4double v){ //0123 -> 1032
      return vec_perm(v, v, vec_gpci(01032));
    };
    static inline vector4double Permute2(vector4double v){
      return v;
    };
    static inline vector4double Permute3(vector4double v){
      return v;
    };

    // Complex float
    FLOAT_WRAP_1(Permute0, static inline)
    FLOAT_WRAP_1(Permute1, static inline)
    FLOAT_WRAP_1(Permute2, static inline)
    FLOAT_WRAP_1(Permute3, static inline)
  };
  
  struct Rotate{

    template<int n> static inline vector4double tRotate(vector4double v){ 
      if ( n==1 ) return vec_perm(v, v, vec_gpci(01230));
      if ( n==2 ) return vec_perm(v, v, vec_gpci(02301));
      if ( n==3 ) return vec_perm(v, v, vec_gpci(03012));
      return v;
    };
    template<int n> static inline vector4float tRotate(vector4float a)	
    {					       
      vector4double ad, rd;
      vector4float  r;
      ad = Vset()(a);
      rd = tRotate<n>(ad);
      Vstore()(rd, r);
      return r;
    };

    static inline vector4double rotate(vector4double v, int n){
      switch(n){
        case 0:
          return v;
          break;
        case 1:
          return tRotate<1>(v);
          break;
        case 2:
          return tRotate<2>(v);
          break;
        case 3:
          return tRotate<3>(v);
          break;
        default: assert(0);
      }
    }

    static inline vector4float rotate(vector4float v, int n){
      vector4double vd, rd;
      vector4float  r;
      vd = Vset()(v);
      rd = rotate(vd, n);
      Vstore()(rd, r);
      return r;
    }
  };
  
  //Complex float Reduce
  template<>
  inline Grid::ComplexF
  Reduce<Grid::ComplexF, vector4float>::operator()(vector4float v) { //2 complex
    vector4float v1,v2;
    
    v1 = Optimization::Permute::Permute0(v);
    v1 = Optimization::Sum()(v1, v);
    
    return Grid::ComplexF(v1.v0, v1.v1);
  }
  //Real float Reduce
  template<>
  inline Grid::RealF
  Reduce<Grid::RealF, vector4float>::operator()(vector4float v){ //4 floats
    vector4float v1,v2;
    
    v1 = Optimization::Permute::Permute0(v);
    v1 = Optimization::Sum()(v1, v);
    v2 = Optimization::Permute::Permute1(v1);
    v1 = Optimization::Sum()(v1, v2);
    
    return v1.v0;
  }
  
  
  //Complex double Reduce
  template<>
  inline Grid::ComplexD
  Reduce<Grid::ComplexD, vector4double>::operator()(vector4double v){ //2 complex
    vector4double v1;
    
    v1 = Optimization::Permute::Permute0(v);
    v1 = vec_add(v1, v);
    
    return Grid::ComplexD(vec_extract(v1, 0), vec_extract(v1, 1));
  }
  
  //Real double Reduce
  template<>
  inline Grid::RealD
  Reduce<Grid::RealD, vector4double>::operator()(vector4double v){ //4 doubles
    vector4double v1,v2;
    
    v1 = Optimization::Permute::Permute0(v);
    v1 = vec_add(v1, v);
    v2 = Optimization::Permute::Permute1(v1);
    v1 = vec_add(v1, v2);

    return vec_extract(v1, 0);
  }
  
  //Integer Reduce
  template<>
  inline Integer Reduce<Integer, veci>::operator()(veci in){
    Integer a = 0;
    for (unsigned int i = 0; i < W<Integer>::r; ++i)
    {
        a += in.v[i];
    }
    return a;
  }
}

////////////////////////////////////////////////////////////////////////////////
// Here assign types
typedef Optimization::vech         SIMD_Htype;  // Half precision type
typedef Optimization::vector4float SIMD_Ftype;  // Single precision type
typedef vector4double              SIMD_Dtype; // Double precision type
typedef Optimization::veci         SIMD_Itype; // Integer type

// prefetch utilities
inline void v_prefetch0(int size, const char *ptr){};
inline void prefetch_HINT_T0(const char *ptr){};


// Function name aliases
typedef Optimization::Vsplat   VsplatSIMD;
typedef Optimization::Vstore   VstoreSIMD;
typedef Optimization::Vset     VsetSIMD;
typedef Optimization::Vstream  VstreamSIMD;
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;

// Arithmetic operations
typedef Optimization::Sum         SumSIMD;
typedef Optimization::Sub         SubSIMD;
typedef Optimization::Mult        MultSIMD;
typedef Optimization::Div         DivSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj        ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI      TimesISIMD;
  
}
back to top