# This file is a part of Julia. License is MIT: https://julialang.org/license ## Basic functions ## """ AbstractArray{T, N} Abstract array supertype which arrays inherit from. """ AbstractArray """ size(A::AbstractArray, [dim...]) Returns a tuple containing the dimensions of `A`. Optionally you can specify the dimension(s) you want the length of, and get the length of that dimension, or a tuple of the lengths of dimensions you asked for. ```jldoctest julia> A = ones(2,3,4); julia> size(A, 2) 3 julia> size(A,3,2) (4, 3) ``` """ size(t::AbstractArray{T,N}, d) where {T,N} = d <= N ? size(t)[d] : 1 size(x, d1::Integer, d2::Integer, dx::Vararg{Integer, N}) where {N} = (size(x, d1), size(x, d2), ntuple(k->size(x, dx[k]), Val{N})...) """ indices(A, d) Returns the valid range of indices for array `A` along dimension `d`. ```jldoctest julia> A = ones(5,6,7); julia> indices(A,2) Base.OneTo(6) ``` """ function indices(A::AbstractArray{T,N}, d) where {T,N} @_inline_meta d <= N ? indices(A)[d] : OneTo(1) end """ indices(A) Returns the tuple of valid indices for array `A`. ```jldoctest julia> A = ones(5,6,7); julia> indices(A) (Base.OneTo(5), Base.OneTo(6), Base.OneTo(7)) ``` """ function indices(A) @_inline_meta map(OneTo, size(A)) end # Performance optimization: get rid of a branch on `d` in `indices(A, # d)` for d=1. 1d arrays are heavily used, and the first dimension # comes up in other applications. indices1(A::AbstractArray{<:Any,0}) = OneTo(1) indices1(A::AbstractArray) = (@_inline_meta; indices(A)[1]) indices1(iter) = OneTo(length(iter)) unsafe_indices(A) = indices(A) unsafe_indices(r::Range) = (OneTo(unsafe_length(r)),) # Ranges use checked_sub for size """ linearindices(A) Returns a `UnitRange` specifying the valid range of indices for `A[i]` where `i` is an `Int`. For arrays with conventional indexing (indices start at 1), or any multidimensional array, this is `1:length(A)`; however, for one-dimensional arrays with unconventional indices, this is `indices(A, 1)`. Calling this function is the "safe" way to write algorithms that exploit linear indexing. ```jldoctest julia> A = ones(5,6,7); julia> b = linearindices(A); julia> extrema(b) (1, 210) ``` """ linearindices(A) = (@_inline_meta; OneTo(_length(A))) linearindices(A::AbstractVector) = (@_inline_meta; indices1(A)) eltype(::Type{<:AbstractArray{E}}) where {E} = E elsize(::AbstractArray{T}) where {T} = sizeof(T) """ ndims(A::AbstractArray) -> Integer Returns the number of dimensions of `A`. ```jldoctest julia> A = ones(3,4,5); julia> ndims(A) 3 ``` """ ndims(::AbstractArray{T,N}) where {T,N} = N ndims(::Type{AbstractArray{T,N}}) where {T,N} = N ndims(::Type{T}) where {T<:AbstractArray} = ndims(supertype(T)) """ length(A::AbstractArray) -> Integer Returns the number of elements in `A`. ```jldoctest julia> A = ones(3,4,5); julia> length(A) 60 ``` """ length(t::AbstractArray) = (@_inline_meta; prod(size(t))) _length(A::AbstractArray) = (@_inline_meta; prod(map(unsafe_length, indices(A)))) # circumvent missing size _length(A) = (@_inline_meta; length(A)) endof(a::AbstractArray) = (@_inline_meta; last(linearindices(a))) first(a::AbstractArray) = a[first(eachindex(a))] """ first(coll) Get the first element of an iterable collection. Returns the start point of a `Range` even if it is empty. ```jldoctest julia> first(2:2:10) 2 julia> first([1; 2; 3; 4]) 1 ``` """ function first(itr) state = start(itr) done(itr, state) && throw(ArgumentError("collection must be non-empty")) next(itr, state)[1] end """ last(coll) Get the last element of an ordered collection, if it can be computed in O(1) time. This is accomplished by calling [`endof`](@ref) to get the last index. Returns the end point of a `Range` even if it is empty. ```jldoctest julia> last(1:2:10) 9 julia> last([1; 2; 3; 4]) 4 ``` """ last(a) = a[end] """ stride(A, k::Integer) Returns the distance in memory (in number of elements) between adjacent elements in dimension `k`. ```jldoctest julia> A = ones(3,4,5); julia> stride(A,2) 3 julia> stride(A,3) 12 ``` """ function stride(a::AbstractArray, i::Integer) if i > ndims(a) return length(a) end s = 1 for n = 1:(i-1) s *= size(a, n) end return s end """ strides(A) Returns a tuple of the memory strides in each dimension. ```jldoctest julia> A = ones(3,4,5); julia> strides(A) (1, 3, 12) ``` """ strides(A::AbstractArray) = _strides((1,), A) _strides(out::Tuple{Int}, A::AbstractArray{<:Any,0}) = () _strides(out::NTuple{N,Int}, A::AbstractArray{<:Any,N}) where {N} = out function _strides(out::NTuple{M,Int}, A::AbstractArray) where M @_inline_meta _strides((out..., out[M]*size(A, M)), A) end function isassigned(a::AbstractArray, i::Int...) try a[i...] true catch e if isa(e, BoundsError) || isa(e, UndefRefError) return false else rethrow(e) end end end # used to compute "end" for last index function trailingsize(A, n) s = 1 for i=n:ndims(A) s *= size(A,i) end return s end function trailingsize(inds::Indices, n) s = 1 for i=n:length(inds) s *= unsafe_length(inds[i]) end return s end # This version is type-stable even if inds is heterogeneous function trailingsize(inds::Indices) @_inline_meta prod(map(unsafe_length, inds)) end ## Traits for array types ## abstract type IndexStyle end struct IndexLinear <: IndexStyle end struct IndexCartesian <: IndexStyle end """ IndexStyle(A) IndexStyle(typeof(A)) `IndexStyle` specifies the "native indexing style" for array `A`. When you define a new `AbstractArray` type, you can choose to implement either linear indexing or cartesian indexing. If you decide to implement linear indexing, then you must set this trait for your array type: Base.IndexStyle(::Type{<:MyArray}) = IndexLinear() The default is `IndexCartesian()`. Julia's internal indexing machinery will automatically (and invisibly) convert all indexing operations into the preferred style using [`sub2ind`](@ref) or [`ind2sub`](@ref). This allows users to access elements of your array using any indexing style, even when explicit methods have not been provided. If you define both styles of indexing for your `AbstractArray`, this trait can be used to select the most performant indexing style. Some methods check this trait on their inputs, and dispatch to different algorithms depending on the most efficient access pattern. In particular, [`eachindex`](@ref) creates an iterator whose type depends on the setting of this trait. """ IndexStyle(A::AbstractArray) = IndexStyle(typeof(A)) IndexStyle(::Type{Union{}}) = IndexLinear() IndexStyle(::Type{<:AbstractArray}) = IndexCartesian() IndexStyle(::Type{<:Array}) = IndexLinear() IndexStyle(::Type{<:Range}) = IndexLinear() IndexStyle(A::AbstractArray, B::AbstractArray) = IndexStyle(IndexStyle(A), IndexStyle(B)) IndexStyle(A::AbstractArray, B::AbstractArray...) = IndexStyle(IndexStyle(A), IndexStyle(B...)) IndexStyle(::IndexLinear, ::IndexLinear) = IndexLinear() IndexStyle(::IndexStyle, ::IndexStyle) = IndexCartesian() ## Bounds checking ## # The overall hierarchy is # `checkbounds(A, I...)` -> # `checkbounds(Bool, A, I...)` -> # `checkbounds_indices(Bool, IA, I)`, which recursively calls # `checkindex` for each dimension # # See the "boundscheck" devdocs for more information. # # Note this hierarchy has been designed to reduce the likelihood of # method ambiguities. We try to make `checkbounds` the place to # specialize on array type, and try to avoid specializations on index # types; conversely, `checkindex` is intended to be specialized only # on index type (especially, its last argument). """ checkbounds(Bool, A, I...) Return `true` if the specified indices `I` are in bounds for the given array `A`. Subtypes of `AbstractArray` should specialize this method if they need to provide custom bounds checking behaviors; however, in many cases one can rely on `A`'s indices and [`checkindex`](@ref). See also [`checkindex`](@ref). ```jldoctest julia> A = rand(3, 3); julia> checkbounds(Bool, A, 2) true julia> checkbounds(Bool, A, 3, 4) false julia> checkbounds(Bool, A, 1:3) true julia> checkbounds(Bool, A, 1:3, 2:4) false ``` """ function checkbounds(::Type{Bool}, A::AbstractArray, I...) @_inline_meta checkbounds_indices(Bool, indices(A), I) end # Linear indexing is explicitly allowed when there is only one (non-cartesian) index function checkbounds(::Type{Bool}, A::AbstractArray, i) @_inline_meta checkindex(Bool, linearindices(A), i) end # As a special extension, allow using logical arrays that match the source array exactly function checkbounds(::Type{Bool}, A::AbstractArray{<:Any,N}, I::AbstractArray{Bool,N}) where N @_inline_meta indices(A) == indices(I) end """ checkbounds(A, I...) Throw an error if the specified indices `I` are not in bounds for the given array `A`. """ function checkbounds(A::AbstractArray, I...) @_inline_meta checkbounds(Bool, A, I...) || throw_boundserror(A, I) nothing end checkbounds(A::AbstractArray) = checkbounds(A, 1) # 0-d case """ checkbounds_indices(Bool, IA, I) Return `true` if the "requested" indices in the tuple `I` fall within the bounds of the "permitted" indices specified by the tuple `IA`. This function recursively consumes elements of these tuples, usually in a 1-for-1 fashion, checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) & checkbounds_indices(Bool, IA, I) Note that [`checkindex`](@ref) is being used to perform the actual bounds-check for a single dimension of the array. There are two important exceptions to the 1-1 rule: linear indexing and CartesianIndex{N}, both of which may "consume" more than one element of `IA`. See also [`checkbounds`](@ref). """ function checkbounds_indices(::Type{Bool}, IA::Tuple, I::Tuple) @_inline_meta checkindex(Bool, IA[1], I[1]) & checkbounds_indices(Bool, tail(IA), tail(I)) end checkbounds_indices(::Type{Bool}, ::Tuple{}, ::Tuple{}) = true function checkbounds_indices(::Type{Bool}, ::Tuple{}, I::Tuple{Any}) @_inline_meta checkindex(Bool, 1:1, I[1]) end function checkbounds_indices(::Type{Bool}, ::Tuple{}, I::Tuple) @_inline_meta checkindex(Bool, 1:1, I[1]) & checkbounds_indices(Bool, (), tail(I)) end function checkbounds_indices(::Type{Bool}, IA::Tuple{Any}, I::Tuple{Any}) @_inline_meta checkindex(Bool, IA[1], I[1]) end function checkbounds_indices(::Type{Bool}, IA::Tuple, I::Tuple{Any}) @_inline_meta checkbounds_linear_indices(Bool, IA, I[1]) end function checkbounds_linear_indices(::Type{Bool}, IA::Tuple{Vararg{OneTo}}, i) @_inline_meta ts = trailingsize(IA) if checkindex(Bool, IA[1], i) && ts > 0 return true elseif checkindex(Bool, OneTo(ts), i) # partial linear indexing partial_linear_indexing_warning_lookup(length(IA)) return true # TODO: Return false after the above function is removed in deprecated.jl end return false end function checkbounds_linear_indices(::Type{Bool}, IA::Tuple{AbstractUnitRange,Vararg{AbstractUnitRange}}, i) @_inline_meta checkindex(Bool, IA[1], i) end function checkbounds_linear_indices(::Type{Bool}, IA::Tuple{Vararg{OneTo}}, i::Union{Slice,Colon}) partial_linear_indexing_warning_lookup(length(IA)) true end function checkbounds_linear_indices(::Type{Bool}, IA::Tuple{AbstractUnitRange,Vararg{AbstractUnitRange}}, i::Union{Slice,Colon}) partial_linear_indexing_warning_lookup(length(IA)) true end checkbounds_indices(::Type{Bool}, ::Tuple, ::Tuple{}) = true throw_boundserror(A, I) = (@_noinline_meta; throw(BoundsError(A, I))) # check along a single dimension """ checkindex(Bool, inds::AbstractUnitRange, index) Return `true` if the given `index` is within the bounds of `inds`. Custom types that would like to behave as indices for all arrays can extend this method in order to provide a specialized bounds checking implementation. ```jldoctest julia> checkindex(Bool,1:20,8) true julia> checkindex(Bool,1:20,21) false ``` """ checkindex(::Type{Bool}, inds::AbstractUnitRange, i) = throw(ArgumentError("unable to check bounds for indices of type $(typeof(i))")) checkindex(::Type{Bool}, inds::AbstractUnitRange, i::Real) = (first(inds) <= i) & (i <= last(inds)) checkindex(::Type{Bool}, inds::AbstractUnitRange, ::Colon) = true checkindex(::Type{Bool}, inds::AbstractUnitRange, ::Slice) = true function checkindex(::Type{Bool}, inds::AbstractUnitRange, r::Range) @_propagate_inbounds_meta isempty(r) | (checkindex(Bool, inds, first(r)) & checkindex(Bool, inds, last(r))) end checkindex(::Type{Bool}, indx::AbstractUnitRange, I::AbstractVector{Bool}) = indx == indices1(I) checkindex(::Type{Bool}, indx::AbstractUnitRange, I::AbstractArray{Bool}) = false function checkindex(::Type{Bool}, inds::AbstractUnitRange, I::AbstractArray) @_inline_meta b = true for i in I b &= checkindex(Bool, inds, i) end b end # See also specializations in multidimensional ## Constructors ## # default arguments to similar() """ similar(array, [element_type=eltype(array)], [dims=size(array)]) Create an uninitialized mutable array with the given element type and size, based upon the given source array. The second and third arguments are both optional, defaulting to the given array's `eltype` and `size`. The dimensions may be specified either as a single tuple argument or as a series of integer arguments. Custom AbstractArray subtypes may choose which specific array type is best-suited to return for the given element type and dimensionality. If they do not specialize this method, the default is an `Array{element_type}(dims...)`. For example, `similar(1:10, 1, 4)` returns an uninitialized `Array{Int,2}` since ranges are neither mutable nor support 2 dimensions: ```julia-repl julia> similar(1:10, 1, 4) 1×4 Array{Int64,2}: 4419743872 4374413872 4419743888 0 ``` Conversely, `similar(trues(10,10), 2)` returns an uninitialized `BitVector` with two elements since `BitArray`s are both mutable and can support 1-dimensional arrays: ```julia-repl julia> similar(trues(10,10), 2) 2-element BitArray{1}: false false ``` Since `BitArray`s can only store elements of type [`Bool`](@ref), however, if you request a different element type it will create a regular `Array` instead: ```julia-repl julia> similar(falses(10), Float64, 2, 4) 2×4 Array{Float64,2}: 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 ``` """ similar(a::AbstractArray{T}) where {T} = similar(a, T) similar(a::AbstractArray, ::Type{T}) where {T} = similar(a, T, to_shape(indices(a))) similar(a::AbstractArray{T}, dims::Tuple) where {T} = similar(a, T, to_shape(dims)) similar(a::AbstractArray{T}, dims::DimOrInd...) where {T} = similar(a, T, to_shape(dims)) similar(a::AbstractArray, ::Type{T}, dims::DimOrInd...) where {T} = similar(a, T, to_shape(dims)) similar(a::AbstractArray, ::Type{T}, dims::NeedsShaping) where {T} = similar(a, T, to_shape(dims)) # similar creates an Array by default similar(a::AbstractArray, ::Type{T}, dims::Dims{N}) where {T,N} = Array{T,N}(dims) to_shape(::Tuple{}) = () to_shape(dims::Dims) = dims to_shape(dims::DimsOrInds) = map(to_shape, dims) # each dimension to_shape(i::Int) = i to_shape(i::Integer) = Int(i) to_shape(r::OneTo) = Int(last(r)) to_shape(r::AbstractUnitRange) = r """ similar(storagetype, indices) Create an uninitialized mutable array analogous to that specified by `storagetype`, but with `indices` specified by the last argument. `storagetype` might be a type or a function. **Examples**: similar(Array{Int}, indices(A)) creates an array that "acts like" an `Array{Int}` (and might indeed be backed by one), but which is indexed identically to `A`. If `A` has conventional indexing, this will be identical to `Array{Int}(size(A))`, but if `A` has unconventional indexing then the indices of the result will match `A`. similar(BitArray, (indices(A, 2),)) would create a 1-dimensional logical array whose indices match those of the columns of `A`. similar(dims->zeros(Int, dims), indices(A)) would create an array of `Int`, initialized to zero, matching the indices of `A`. """ similar(f, shape::Tuple) = f(to_shape(shape)) similar(f, dims::DimOrInd...) = similar(f, dims) ## from general iterable to any array function copy!(dest::AbstractArray, src) destiter = eachindex(dest) state = start(destiter) for x in src i, state = next(destiter, state) dest[i] = x end return dest end function copy!(dest::AbstractArray, dstart::Integer, src) i = Int(dstart) for x in src dest[i] = x i += 1 end return dest end # copy from an some iterable object into an AbstractArray function copy!(dest::AbstractArray, dstart::Integer, src, sstart::Integer) if (sstart < 1) throw(ArgumentError(string("source start offset (",sstart,") is < 1"))) end st = start(src) for j = 1:(sstart-1) if done(src, st) throw(ArgumentError(string("source has fewer elements than required, ", "expected at least ",sstart,", got ",j-1))) end _, st = next(src, st) end dn = done(src, st) if dn throw(ArgumentError(string("source has fewer elements than required, ", "expected at least ",sstart,", got ",sstart-1))) end i = Int(dstart) while !dn val, st = next(src, st) dest[i] = val i += 1 dn = done(src, st) end return dest end # this method must be separate from the above since src might not have a length function copy!(dest::AbstractArray, dstart::Integer, src, sstart::Integer, n::Integer) n < 0 && throw(ArgumentError(string("tried to copy n=", n, " elements, but n should be nonnegative"))) n == 0 && return dest dmax = dstart + n - 1 inds = linearindices(dest) if (dstart ∉ inds || dmax ∉ inds) | (sstart < 1) sstart < 1 && throw(ArgumentError(string("source start offset (",sstart,") is < 1"))) throw(BoundsError(dest, dstart:dmax)) end st = start(src) for j = 1:(sstart-1) if done(src, st) throw(ArgumentError(string("source has fewer elements than required, ", "expected at least ",sstart,", got ",j-1))) end _, st = next(src, st) end i = Int(dstart) while i <= dmax && !done(src, st) val, st = next(src, st) @inbounds dest[i] = val i += 1 end i <= dmax && throw(BoundsError(dest, i)) return dest end ## copy between abstract arrays - generally more efficient ## since a single index variable can be used. copy!(dest::AbstractArray, src::AbstractArray) = copy!(IndexStyle(dest), dest, IndexStyle(src), src) function copy!(::IndexStyle, dest::AbstractArray, ::IndexStyle, src::AbstractArray) destinds, srcinds = linearindices(dest), linearindices(src) isempty(srcinds) || (first(srcinds) ∈ destinds && last(srcinds) ∈ destinds) || throw(BoundsError(dest, srcinds)) @inbounds for i in srcinds dest[i] = src[i] end return dest end function copy!(::IndexStyle, dest::AbstractArray, ::IndexCartesian, src::AbstractArray) destinds, srcinds = linearindices(dest), linearindices(src) isempty(srcinds) || (first(srcinds) ∈ destinds && last(srcinds) ∈ destinds) || throw(BoundsError(dest, srcinds)) i = 0 @inbounds for a in src dest[i+=1] = a end return dest end function copy!(dest::AbstractArray, dstart::Integer, src::AbstractArray) copy!(dest, dstart, src, first(linearindices(src)), _length(src)) end function copy!(dest::AbstractArray, dstart::Integer, src::AbstractArray, sstart::Integer) srcinds = linearindices(src) sstart ∈ srcinds || throw(BoundsError(src, sstart)) copy!(dest, dstart, src, sstart, last(srcinds)-sstart+1) end function copy!(dest::AbstractArray, dstart::Integer, src::AbstractArray, sstart::Integer, n::Integer) n == 0 && return dest n < 0 && throw(ArgumentError(string("tried to copy n=", n, " elements, but n should be nonnegative"))) destinds, srcinds = linearindices(dest), linearindices(src) (dstart ∈ destinds && dstart+n-1 ∈ destinds) || throw(BoundsError(dest, dstart:dstart+n-1)) (sstart ∈ srcinds && sstart+n-1 ∈ srcinds) || throw(BoundsError(src, sstart:sstart+n-1)) @inbounds for i = 0:(n-1) dest[dstart+i] = src[sstart+i] end return dest end function copy(a::AbstractArray) @_propagate_inbounds_meta copymutable(a) end function copy!(B::AbstractVecOrMat{R}, ir_dest::Range{Int}, jr_dest::Range{Int}, A::AbstractVecOrMat{S}, ir_src::Range{Int}, jr_src::Range{Int}) where {R,S} if length(ir_dest) != length(ir_src) throw(ArgumentError(string("source and destination must have same size (got ", length(ir_src)," and ",length(ir_dest),")"))) end if length(jr_dest) != length(jr_src) throw(ArgumentError(string("source and destination must have same size (got ", length(jr_src)," and ",length(jr_dest),")"))) end @boundscheck checkbounds(B, ir_dest, jr_dest) @boundscheck checkbounds(A, ir_src, jr_src) jdest = first(jr_dest) for jsrc in jr_src idest = first(ir_dest) for isrc in ir_src B[idest,jdest] = A[isrc,jsrc] idest += step(ir_dest) end jdest += step(jr_dest) end return B end """ copymutable(a) Make a mutable copy of an array or iterable `a`. For `a::Array`, this is equivalent to `copy(a)`, but for other array types it may differ depending on the type of `similar(a)`. For generic iterables this is equivalent to `collect(a)`. ```jldoctest julia> tup = (1, 2, 3) (1, 2, 3) julia> Base.copymutable(tup) 3-element Array{Int64,1}: 1 2 3 ``` """ function copymutable(a::AbstractArray) @_propagate_inbounds_meta copy!(similar(a), a) end copymutable(itr) = collect(itr) zero(x::AbstractArray{T}) where {T} = fill!(similar(x), zero(T)) ## iteration support for arrays by iterating over `eachindex` in the array ## # Allows fast iteration by default for both IndexLinear and IndexCartesian arrays # While the definitions for IndexLinear are all simple enough to inline on their # own, IndexCartesian's CartesianRange is more complicated and requires explicit # inlining. start(A::AbstractArray) = (@_inline_meta; itr = eachindex(A); (itr, start(itr))) next(A::AbstractArray, i) = (@_propagate_inbounds_meta; (idx, s) = next(i[1], i[2]); (A[idx], (i[1], s))) done(A::AbstractArray, i) = (@_propagate_inbounds_meta; done(i[1], i[2])) # eachindex iterates over all indices. IndexCartesian definitions are later. eachindex(A::AbstractVector) = (@_inline_meta(); indices1(A)) """ eachindex(A...) Creates an iterable object for visiting each index of an AbstractArray `A` in an efficient manner. For array types that have opted into fast linear indexing (like `Array`), this is simply the range `1:length(A)`. For other array types, this returns a specialized Cartesian range to efficiently index into the array with indices specified for every dimension. For other iterables, including strings and dictionaries, this returns an iterator object supporting arbitrary index types (e.g. unevenly spaced or non-integer indices). Example for a sparse 2-d array: ```jldoctest julia> A = sparse([1, 1, 2], [1, 3, 1], [1, 2, -5]) 2×3 SparseMatrixCSC{Int64,Int64} with 3 stored entries: [1, 1] = 1 [2, 1] = -5 [1, 3] = 2 julia> for iter in eachindex(A) @show iter.I[1], iter.I[2] @show A[iter] end (iter.I[1], iter.I[2]) = (1, 1) A[iter] = 1 (iter.I[1], iter.I[2]) = (2, 1) A[iter] = -5 (iter.I[1], iter.I[2]) = (1, 2) A[iter] = 0 (iter.I[1], iter.I[2]) = (2, 2) A[iter] = 0 (iter.I[1], iter.I[2]) = (1, 3) A[iter] = 2 (iter.I[1], iter.I[2]) = (2, 3) A[iter] = 0 ``` If you supply more than one `AbstractArray` argument, `eachindex` will create an iterable object that is fast for all arguments (a `UnitRange` if all inputs have fast linear indexing, a [`CartesianRange`](@ref) otherwise). If the arrays have different sizes and/or dimensionalities, `eachindex` returns an iterable that spans the largest range along each dimension. """ eachindex(A::AbstractArray) = (@_inline_meta(); eachindex(IndexStyle(A), A)) function eachindex(A::AbstractArray, B::AbstractArray) @_inline_meta eachindex(IndexStyle(A,B), A, B) end function eachindex(A::AbstractArray, B::AbstractArray...) @_inline_meta eachindex(IndexStyle(A,B...), A, B...) end eachindex(::IndexLinear, A::AbstractArray) = linearindices(A) function eachindex(::IndexLinear, A::AbstractArray, B::AbstractArray...) @_inline_meta 1:_maxlength(A, B...) end _maxlength(A) = length(A) function _maxlength(A, B, C...) @_inline_meta max(length(A), _maxlength(B, C...)) end isempty(a::AbstractArray) = (_length(a) == 0) ## Conversions ## convert(::Type{AbstractArray{T,N}}, A::AbstractArray{T,N}) where {T,N } = A convert(::Type{AbstractArray{T,N}}, A::AbstractArray{S,N}) where {T,S,N} = copy!(similar(A,T), A) convert(::Type{AbstractArray{T}}, A::AbstractArray{S,N}) where {T,S,N} = convert(AbstractArray{T,N}, A) convert(::Type{Array}, A::AbstractArray{T,N}) where {T,N} = convert(Array{T,N}, A) """ of_indices(x, y) Represents the array `y` as an array having the same indices type as `x`. """ of_indices(x, y) = similar(dims->y, oftype(indices(x), indices(y))) full(x::AbstractArray) = x ## range conversions ## map(::Type{T}, r::StepRange) where {T<:Real} = T(r.start):T(r.step):T(last(r)) map(::Type{T}, r::UnitRange) where {T<:Real} = T(r.start):T(last(r)) map(::Type{T}, r::StepRangeLen) where {T<:AbstractFloat} = convert(StepRangeLen{T}, r) function map(::Type{T}, r::LinSpace) where T<:AbstractFloat LinSpace(T(r.start), T(r.stop), length(r)) end ## unsafe/pointer conversions ## # note: the following type definitions don't mean any AbstractArray is convertible to # a data Ref. they just map the array element type to the pointer type for # convenience in cases that work. pointer(x::AbstractArray{T}) where {T} = unsafe_convert(Ptr{T}, x) function pointer(x::AbstractArray{T}, i::Integer) where T @_inline_meta unsafe_convert(Ptr{T}, x) + (i - first(linearindices(x)))*elsize(x) end ## Approach: # We only define one fallback method on getindex for all argument types. # That dispatches to an (inlined) internal _getindex function, where the goal is # to transform the indices such that we can call the only getindex method that # we require the type A{T,N} <: AbstractArray{T,N} to define; either: # getindex(::A, ::Int) # if IndexStyle(A) == IndexLinear() OR # getindex{T,N}(::A{T,N}, ::Vararg{Int, N}) # if IndexCartesian() # If the subtype hasn't defined the required method, it falls back to the # _getindex function again where an error is thrown to prevent stack overflows. function getindex(A::AbstractArray, I...) @_propagate_inbounds_meta error_if_canonical_indexing(IndexStyle(A), A, I...) _getindex(IndexStyle(A), A, to_indices(A, I)...) end function unsafe_getindex(A::AbstractArray, I...) @_inline_meta @inbounds r = getindex(A, I...) r end error_if_canonical_indexing(::IndexLinear, A::AbstractArray, ::Int) = error("indexing not defined for ", typeof(A)) error_if_canonical_indexing(::IndexCartesian, A::AbstractArray{T,N}, ::Vararg{Int,N}) where {T,N} = error("indexing not defined for ", typeof(A)) error_if_canonical_indexing(::IndexStyle, ::AbstractArray, ::Any...) = nothing ## Internal definitions _getindex(::IndexStyle, A::AbstractArray, I...) = error("indexing $(typeof(A)) with types $(typeof(I)) is not supported") ## IndexLinear Scalar indexing: canonical method is one Int _getindex(::IndexLinear, A::AbstractArray, i::Int) = (@_propagate_inbounds_meta; getindex(A, i)) _getindex(::IndexLinear, A::AbstractArray) = (@_propagate_inbounds_meta; getindex(A, _to_linear_index(A))) function _getindex(::IndexLinear, A::AbstractArray, I::Int...) @_inline_meta @boundscheck checkbounds(A, I...) # generally _to_linear_index requires bounds checking @inbounds r = getindex(A, _to_linear_index(A, I...)) r end _to_linear_index(A::AbstractArray, i::Int) = i _to_linear_index(A::AbstractVector, i::Int, I::Int...) = i # TODO: DEPRECATE FOR #14770 _to_linear_index(A::AbstractArray{T,N}, I::Vararg{Int,N}) where {T,N} = (@_inline_meta; sub2ind(A, I...)) _to_linear_index(A::AbstractArray) = 1 # TODO: DEPRECATE FOR #14770 _to_linear_index(A::AbstractArray, I::Int...) = (@_inline_meta; sub2ind(A, I...)) # TODO: DEPRECATE FOR #14770 ## IndexCartesian Scalar indexing: Canonical method is full dimensionality of Ints function _getindex(::IndexCartesian, A::AbstractArray) @_propagate_inbounds_meta getindex(A, _to_subscript_indices(A)...) end function _getindex(::IndexCartesian, A::AbstractArray, I::Int...) @_inline_meta @boundscheck checkbounds(A, I...) # generally _to_subscript_indices requires bounds checking @inbounds r = getindex(A, _to_subscript_indices(A, I...)...) r end function _getindex(::IndexCartesian, A::AbstractArray{T,N}, I::Vararg{Int, N}) where {T,N} @_propagate_inbounds_meta getindex(A, I...) end _to_subscript_indices(A::AbstractArray, i::Int) = (@_inline_meta; _unsafe_ind2sub(A, i)) _to_subscript_indices(A::AbstractArray{T,N}) where {T,N} = (@_inline_meta; fill_to_length((), 1, Val{N})) # TODO: DEPRECATE FOR #14770 _to_subscript_indices(A::AbstractArray{T,0}) where {T} = () # TODO: REMOVE FOR #14770 _to_subscript_indices(A::AbstractArray{T,0}, i::Int) where {T} = () # TODO: REMOVE FOR #14770 _to_subscript_indices(A::AbstractArray{T,0}, I::Int...) where {T} = () # TODO: DEPRECATE FOR #14770 function _to_subscript_indices(A::AbstractArray{T,N}, I::Int...) where {T,N} # TODO: DEPRECATE FOR #14770 @_inline_meta J, Jrem = IteratorsMD.split(I, Val{N}) _to_subscript_indices(A, J, Jrem) end _to_subscript_indices(A::AbstractArray, J::Tuple, Jrem::Tuple{}) = __to_subscript_indices(A, indices(A), J, Jrem) # We allow partial linear indexing deprecation for OneTo arrays function __to_subscript_indices(A::AbstractArray, ::Tuple{Vararg{OneTo}}, J::Tuple, Jrem::Tuple{}) @_inline_meta sz = _remaining_size(J, indices(A)) # compute trailing size (overlapping the final index) (front(J)..., _unsafe_ind2sub(sz, last(J))...) # (maybe) extend the last index end # After the partial linear indexing deprecation is removed, this next method can # become the new normal. For now, it's limited to non-OneTo arrays. function __to_subscript_indices(A::AbstractArray, ::Tuple{AbstractUnitRange,Vararg{AbstractUnitRange}}, J::Tuple, Jrem::Tuple{}) @_inline_meta (J..., map(first, tail(_remaining_size(J, indices(A))))...) end _to_subscript_indices(A, J::Tuple, Jrem::Tuple) = J # already bounds-checked, safe to drop _to_subscript_indices(A::AbstractArray{T,N}, I::Vararg{Int,N}) where {T,N} = I _remaining_size(::Tuple{Any}, t::Tuple) = t _remaining_size(h::Tuple, t::Tuple) = (@_inline_meta; _remaining_size(tail(h), tail(t))) _unsafe_ind2sub(::Tuple{}, i) = () # ind2sub may throw(BoundsError()) in this case _unsafe_ind2sub(sz, i) = (@_inline_meta; ind2sub(sz, i)) ## Setindex! is defined similarly. We first dispatch to an internal _setindex! # function that allows dispatch on array storage function setindex!(A::AbstractArray, v, I...) @_propagate_inbounds_meta error_if_canonical_indexing(IndexStyle(A), A, I...) _setindex!(IndexStyle(A), A, v, to_indices(A, I)...) end function unsafe_setindex!(A::AbstractArray, v, I...) @_inline_meta @inbounds r = setindex!(A, v, I...) r end ## Internal defitions _setindex!(::IndexStyle, A::AbstractArray, v, I...) = error("indexing $(typeof(A)) with types $(typeof(I)) is not supported") ## IndexLinear Scalar indexing _setindex!(::IndexLinear, A::AbstractArray, v, i::Int) = (@_propagate_inbounds_meta; setindex!(A, v, i)) _setindex!(::IndexLinear, A::AbstractArray, v) = (@_propagate_inbounds_meta; setindex!(A, v, _to_linear_index(A))) function _setindex!(::IndexLinear, A::AbstractArray, v, I::Int...) @_inline_meta @boundscheck checkbounds(A, I...) @inbounds r = setindex!(A, v, _to_linear_index(A, I...)) r end # IndexCartesian Scalar indexing function _setindex!(::IndexCartesian, A::AbstractArray{T,N}, v, I::Vararg{Int, N}) where {T,N} @_propagate_inbounds_meta setindex!(A, v, I...) end function _setindex!(::IndexCartesian, A::AbstractArray, v) @_propagate_inbounds_meta setindex!(A, v, _to_subscript_indices(A)...) end function _setindex!(::IndexCartesian, A::AbstractArray, v, I::Int...) @_inline_meta @boundscheck checkbounds(A, I...) @inbounds r = setindex!(A, v, _to_subscript_indices(A, I...)...) r end ## get (getindex with a default value) ## RangeVecIntList{A<:AbstractVector{Int}} = Union{Tuple{Vararg{Union{Range, AbstractVector{Int}}}}, AbstractVector{UnitRange{Int}}, AbstractVector{Range{Int}}, AbstractVector{A}} get(A::AbstractArray, i::Integer, default) = checkbounds(Bool, A, i) ? A[i] : default get(A::AbstractArray, I::Tuple{}, default) = similar(A, typeof(default), 0) get(A::AbstractArray, I::Dims, default) = checkbounds(Bool, A, I...) ? A[I...] : default function get!(X::AbstractVector{T}, A::AbstractVector, I::Union{Range,AbstractVector{Int}}, default::T) where T # 1d is not linear indexing ind = findin(I, indices1(A)) X[ind] = A[I[ind]] Xind = indices1(X) X[first(Xind):first(ind)-1] = default X[last(ind)+1:last(Xind)] = default X end function get!(X::AbstractArray{T}, A::AbstractArray, I::Union{Range,AbstractVector{Int}}, default::T) where T # Linear indexing ind = findin(I, 1:length(A)) X[ind] = A[I[ind]] X[1:first(ind)-1] = default X[last(ind)+1:length(X)] = default X end get(A::AbstractArray, I::Range, default) = get!(similar(A, typeof(default), index_shape(I)), A, I, default) # TODO: DEPRECATE FOR #14770 (just the partial linear indexing part) function get!(X::AbstractArray{T}, A::AbstractArray, I::RangeVecIntList, default::T) where T fill!(X, default) dst, src = indcopy(size(A), I) X[dst...] = A[src...] X end get(A::AbstractArray, I::RangeVecIntList, default) = get!(similar(A, typeof(default), index_shape(I...)), A, I, default) ## structured matrix methods ## replace_in_print_matrix(A::AbstractMatrix,i::Integer,j::Integer,s::AbstractString) = s replace_in_print_matrix(A::AbstractVector,i::Integer,j::Integer,s::AbstractString) = s ## Concatenation ## eltypeof(x) = typeof(x) eltypeof(x::AbstractArray) = eltype(x) promote_eltypeof() = Bottom promote_eltypeof(v1, vs...) = promote_type(eltypeof(v1), promote_eltypeof(vs...)) promote_eltype() = Bottom promote_eltype(v1, vs...) = promote_type(eltype(v1), promote_eltype(vs...)) #TODO: ERROR CHECK cat(catdim::Integer) = Array{Any,1}(0) typed_vcat(::Type{T}) where {T} = Array{T,1}(0) typed_hcat(::Type{T}) where {T} = Array{T,1}(0) ## cat: special cases vcat(X::T...) where {T} = T[ X[i] for i=1:length(X) ] vcat(X::T...) where {T<:Number} = T[ X[i] for i=1:length(X) ] hcat(X::T...) where {T} = T[ X[j] for i=1:1, j=1:length(X) ] hcat(X::T...) where {T<:Number} = T[ X[j] for i=1:1, j=1:length(X) ] vcat(X::Number...) = hvcat_fill(Array{promote_typeof(X...)}(length(X)), X) hcat(X::Number...) = hvcat_fill(Array{promote_typeof(X...)}(1,length(X)), X) typed_vcat(::Type{T}, X::Number...) where {T} = hvcat_fill(Array{T,1}(length(X)), X) typed_hcat(::Type{T}, X::Number...) where {T} = hvcat_fill(Array{T,2}(1,length(X)), X) vcat(V::AbstractVector...) = typed_vcat(promote_eltype(V...), V...) vcat(V::AbstractVector{T}...) where {T} = typed_vcat(T, V...) function typed_vcat(::Type{T}, V::AbstractVector...) where T n::Int = 0 for Vk in V n += length(Vk) end a = similar(V[1], T, n) pos = 1 for k=1:length(V) Vk = V[k] p1 = pos+length(Vk)-1 a[pos:p1] = Vk pos = p1+1 end a end hcat(A::AbstractVecOrMat...) = typed_hcat(promote_eltype(A...), A...) hcat(A::AbstractVecOrMat{T}...) where {T} = typed_hcat(T, A...) function typed_hcat(::Type{T}, A::AbstractVecOrMat...) where T nargs = length(A) nrows = size(A[1], 1) ncols = 0 dense = true for j = 1:nargs Aj = A[j] if size(Aj, 1) != nrows throw(ArgumentError("number of rows of each array must match (got $(map(x->size(x,1), A)))")) end dense &= isa(Aj,Array) nd = ndims(Aj) ncols += (nd==2 ? size(Aj,2) : 1) end B = similar(A[1], T, nrows, ncols) pos = 1 if dense for k=1:nargs Ak = A[k] n = length(Ak) copy!(B, pos, Ak, 1, n) pos += n end else for k=1:nargs Ak = A[k] p1 = pos+(isa(Ak,AbstractMatrix) ? size(Ak, 2) : 1)-1 B[:, pos:p1] = Ak pos = p1+1 end end return B end vcat(A::AbstractMatrix...) = typed_vcat(promote_eltype(A...), A...) vcat(A::AbstractMatrix{T}...) where {T} = typed_vcat(T, A...) function typed_vcat(::Type{T}, A::AbstractMatrix...) where T nargs = length(A) nrows = sum(a->size(a, 1), A)::Int ncols = size(A[1], 2) for j = 2:nargs if size(A[j], 2) != ncols throw(ArgumentError("number of columns of each array must match (got $(map(x->size(x,2), A)))")) end end B = similar(A[1], T, nrows, ncols) pos = 1 for k=1:nargs Ak = A[k] p1 = pos+size(Ak,1)-1 B[pos:p1, :] = Ak pos = p1+1 end return B end ## cat: general case # helper functions cat_size(A) = (1,) cat_size(A::AbstractArray) = size(A) cat_size(A, d) = 1 cat_size(A::AbstractArray, d) = size(A, d) cat_indices(A, d) = OneTo(1) cat_indices(A::AbstractArray, d) = indices(A, d) cat_similar(A, T, shape) = Array{T}(shape) cat_similar(A::AbstractArray, T, shape) = similar(A, T, shape) cat_shape(dims, shape::Tuple) = shape @inline cat_shape(dims, shape::Tuple, nshape::Tuple, shapes::Tuple...) = cat_shape(dims, _cshp(dims, (), shape, nshape), shapes...) _cshp(::Tuple{}, out, ::Tuple{}, ::Tuple{}) = out _cshp(::Tuple{}, out, ::Tuple{}, nshape) = (out..., nshape...) _cshp(dims, out, ::Tuple{}, ::Tuple{}) = (out..., map(b -> 1, dims)...) @inline _cshp(dims, out, shape, ::Tuple{}) = _cshp(tail(dims), (out..., shape[1] + dims[1]), tail(shape), ()) @inline _cshp(dims, out, ::Tuple{}, nshape) = _cshp(tail(dims), (out..., nshape[1]), (), tail(nshape)) @inline function _cshp(::Tuple{}, out, shape, ::Tuple{}) _cs(length(out) + 1, false, shape[1], 1) _cshp((), (out..., 1), tail(shape), ()) end @inline function _cshp(::Tuple{}, out, shape, nshape) next = _cs(length(out) + 1, false, shape[1], nshape[1]) _cshp((), (out..., next), tail(shape), tail(nshape)) end @inline function _cshp(dims, out, shape, nshape) next = _cs(length(out) + 1, dims[1], shape[1], nshape[1]) _cshp(tail(dims), (out..., next), tail(shape), tail(nshape)) end _cs(d, concat, a, b) = concat ? (a + b) : (a == b ? a : throw(DimensionMismatch(string( "mismatch in dimension ", d, " (expected ", a, " got ", b, ")")))) dims2cat{n}(::Type{Val{n}}) = ntuple(i -> (i == n), Val{n}) dims2cat(dims) = ntuple(i -> (i in dims), maximum(dims)) cat(dims, X...) = cat_t(dims, promote_eltypeof(X...), X...) function cat_t(dims, T::Type, X...) catdims = dims2cat(dims) shape = cat_shape(catdims, (), map(cat_size, X)...) A = cat_similar(X[1], T, shape) if T <: Number && countnz(catdims) > 1 fill!(A, zero(T)) end return _cat(A, shape, catdims, X...) end function _cat(A, shape::NTuple{N}, catdims, X...) where N offsets = zeros(Int, N) inds = Vector{UnitRange{Int}}(N) concat = copy!(zeros(Bool, N), catdims) for x in X for i = 1:N if concat[i] inds[i] = offsets[i] + cat_indices(x, i) offsets[i] += cat_size(x, i) else inds[i] = 1:shape[i] end end I::NTuple{N, UnitRange{Int}} = (inds...,) A[I...] = x end return A end """ vcat(A...) Concatenate along dimension 1. ```jldoctest julia> a = [1 2 3 4 5] 1×5 Array{Int64,2}: 1 2 3 4 5 julia> b = [6 7 8 9 10; 11 12 13 14 15] 2×5 Array{Int64,2}: 6 7 8 9 10 11 12 13 14 15 julia> vcat(a,b) 3×5 Array{Int64,2}: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 julia> c = ([1 2 3], [4 5 6]) ([1 2 3], [4 5 6]) julia> vcat(c...) 2×3 Array{Int64,2}: 1 2 3 4 5 6 ``` """ vcat(X...) = cat(Val{1}, X...) """ hcat(A...) Concatenate along dimension 2. ```jldoctest julia> a = [1; 2; 3; 4; 5] 5-element Array{Int64,1}: 1 2 3 4 5 julia> b = [6 7; 8 9; 10 11; 12 13; 14 15] 5×2 Array{Int64,2}: 6 7 8 9 10 11 12 13 14 15 julia> hcat(a,b) 5×3 Array{Int64,2}: 1 6 7 2 8 9 3 10 11 4 12 13 5 14 15 julia> c = ([1; 2; 3], [4; 5; 6]) ([1, 2, 3], [4, 5, 6]) julia> hcat(c...) 3×2 Array{Int64,2}: 1 4 2 5 3 6 ``` """ hcat(X...) = cat(Val{2}, X...) typed_vcat(T::Type, X...) = cat_t(Val{1}, T, X...) typed_hcat(T::Type, X...) = cat_t(Val{2}, T, X...) cat(catdims, A::AbstractArray{T}...) where {T} = cat_t(catdims, T, A...) # The specializations for 1 and 2 inputs are important # especially when running with --inline=no, see #11158 vcat(A::AbstractArray) = cat(Val{1}, A) vcat(A::AbstractArray, B::AbstractArray) = cat(Val{1}, A, B) vcat(A::AbstractArray...) = cat(Val{1}, A...) hcat(A::AbstractArray) = cat(Val{2}, A) hcat(A::AbstractArray, B::AbstractArray) = cat(Val{2}, A, B) hcat(A::AbstractArray...) = cat(Val{2}, A...) typed_vcat(T::Type, A::AbstractArray) = cat_t(Val{1}, T, A) typed_vcat(T::Type, A::AbstractArray, B::AbstractArray) = cat_t(Val{1}, T, A, B) typed_vcat(T::Type, A::AbstractArray...) = cat_t(Val{1}, T, A...) typed_hcat(T::Type, A::AbstractArray) = cat_t(Val{2}, T, A) typed_hcat(T::Type, A::AbstractArray, B::AbstractArray) = cat_t(Val{2}, T, A, B) typed_hcat(T::Type, A::AbstractArray...) = cat_t(Val{2}, T, A...) # 2d horizontal and vertical concatenation function hvcat(nbc::Integer, as...) # nbc = # of block columns n = length(as) mod(n,nbc) != 0 && throw(ArgumentError("number of arrays $n is not a multiple of the requested number of block columns $nbc")) nbr = div(n,nbc) hvcat(ntuple(i->nbc, nbr), as...) end """ hvcat(rows::Tuple{Vararg{Int}}, values...) Horizontal and vertical concatenation in one call. This function is called for block matrix syntax. The first argument specifies the number of arguments to concatenate in each block row. ```jldoctest julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6 (1, 2, 3, 4, 5, 6) julia> [a b c; d e f] 2×3 Array{Int64,2}: 1 2 3 4 5 6 julia> hvcat((3,3), a,b,c,d,e,f) 2×3 Array{Int64,2}: 1 2 3 4 5 6 julia> [a b;c d; e f] 3×2 Array{Int64,2}: 1 2 3 4 5 6 julia> hvcat((2,2,2), a,b,c,d,e,f) 3×2 Array{Int64,2}: 1 2 3 4 5 6 ``` If the first argument is a single integer `n`, then all block rows are assumed to have `n` block columns. """ hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractVecOrMat...) = typed_hvcat(promote_eltype(xs...), rows, xs...) hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractVecOrMat{T}...) where {T} = typed_hvcat(T, rows, xs...) function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as::AbstractVecOrMat...) where T nbr = length(rows) # number of block rows nc = 0 for i=1:rows[1] nc += size(as[i],2) end nr = 0 a = 1 for i = 1:nbr nr += size(as[a],1) a += rows[i] end out = similar(as[1], T, nr, nc) a = 1 r = 1 for i = 1:nbr c = 1 szi = size(as[a],1) for j = 1:rows[i] Aj = as[a+j-1] szj = size(Aj,2) if size(Aj,1) != szi throw(ArgumentError("mismatched height in block row $(i) (expected $szi, got $(size(Aj,1)))")) end if c-1+szj > nc throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1+szj))")) end out[r:r-1+szi, c:c-1+szj] = Aj c += szj end if c != nc+1 throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1))")) end r += szi a += rows[i] end out end hvcat(rows::Tuple{Vararg{Int}}) = [] typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}) where {T} = Array{T,1}(0) function hvcat(rows::Tuple{Vararg{Int}}, xs::T...) where T<:Number nr = length(rows) nc = rows[1] a = Array{T,2}(nr, nc) if length(a) != length(xs) throw(ArgumentError("argument count does not match specified shape (expected $(length(a)), got $(length(xs)))")) end k = 1 @inbounds for i=1:nr if nc != rows[i] throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))")) end for j=1:nc a[i,j] = xs[k] k += 1 end end a end function hvcat_fill(a::Array, xs::Tuple) k = 1 nr, nc = size(a,1), size(a,2) for i=1:nr @inbounds for j=1:nc a[i,j] = xs[k] k += 1 end end a end hvcat(rows::Tuple{Vararg{Int}}, xs::Number...) = typed_hvcat(promote_typeof(xs...), rows, xs...) function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, xs::Number...) where T nr = length(rows) nc = rows[1] for i = 2:nr if nc != rows[i] throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))")) end end len = length(xs) if nr*nc != len throw(ArgumentError("argument count $(len) does not match specified shape $((nr,nc))")) end hvcat_fill(Array{T,2}(nr, nc), xs) end # fallback definition of hvcat in terms of hcat and vcat function hvcat(rows::Tuple{Vararg{Int}}, as...) nbr = length(rows) # number of block rows rs = Array{Any,1}(nbr) a = 1 for i = 1:nbr rs[i] = hcat(as[a:a-1+rows[i]]...) a += rows[i] end vcat(rs...) end function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as...) where T nbr = length(rows) # number of block rows rs = Array{Any,1}(nbr) a = 1 for i = 1:nbr rs[i] = typed_hcat(T, as[a:a-1+rows[i]]...) a += rows[i] end T[rs...;] end ## Reductions and accumulates ## function isequal(A::AbstractArray, B::AbstractArray) if A === B return true end if indices(A) != indices(B) return false end if isa(A,Range) != isa(B,Range) return false end for (a, b) in zip(A, B) if !isequal(a, b) return false end end return true end function lexcmp(A::AbstractArray, B::AbstractArray) for (a, b) in zip(A, B) res = lexcmp(a, b) res == 0 || return res end return cmp(length(A), length(B)) end function (==)(A::AbstractArray, B::AbstractArray) if indices(A) != indices(B) return false end if isa(A,Range) != isa(B,Range) return false end for (a, b) in zip(A, B) if !(a == b) return false end end return true end # sub2ind and ind2sub # fallbacks function sub2ind(A::AbstractArray, I...) @_inline_meta sub2ind(indices(A), I...) end """ ind2sub(a, index) -> subscripts Returns a tuple of subscripts into array `a` corresponding to the linear index `index`. ```jldoctest julia> A = ones(5,6,7); julia> ind2sub(A,35) (5, 1, 2) julia> ind2sub(A,70) (5, 2, 3) ``` """ function ind2sub(A::AbstractArray, ind) @_inline_meta ind2sub(indices(A), ind) end # 0-dimensional arrays and indexing with [] sub2ind(::Tuple{}) = 1 sub2ind(::DimsInteger) = 1 sub2ind(::Indices) = 1 sub2ind(::Tuple{}, I::Integer...) = (@_inline_meta; _sub2ind((), 1, 1, I...)) # Generic cases """ sub2ind(dims, i, j, k...) -> index The inverse of [`ind2sub`](@ref), returns the linear index corresponding to the provided subscripts. ```jldoctest julia> sub2ind((5,6,7),1,2,3) 66 julia> sub2ind((5,6,7),1,6,3) 86 ``` """ sub2ind(dims::DimsInteger, I::Integer...) = (@_inline_meta; _sub2ind(dims, 1, 1, I...)) sub2ind(inds::Indices, I::Integer...) = (@_inline_meta; _sub2ind(inds, 1, 1, I...)) # In 1d, there's a question of whether we're doing cartesian indexing # or linear indexing. Support only the former. sub2ind(inds::Indices{1}, I::Integer...) = throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays")) sub2ind(inds::Tuple{OneTo}, I::Integer...) = (@_inline_meta; _sub2ind(inds, 1, 1, I...)) # only OneTo is safe sub2ind(inds::Tuple{OneTo}, i::Integer) = i _sub2ind(::Any, L, ind) = ind function _sub2ind(::Tuple{}, L, ind, i::Integer, I::Integer...) @_inline_meta _sub2ind((), L, ind+(i-1)*L, I...) end function _sub2ind(inds, L, ind, i::Integer, I::Integer...) @_inline_meta r1 = inds[1] _sub2ind(tail(inds), nextL(L, r1), ind+offsetin(i, r1)*L, I...) end nextL(L, l::Integer) = L*l nextL(L, r::AbstractUnitRange) = L*unsafe_length(r) offsetin(i, l::Integer) = i-1 offsetin(i, r::AbstractUnitRange) = i-first(r) ind2sub(::Tuple{}, ind::Integer) = (@_inline_meta; ind == 1 ? () : throw(BoundsError())) """ ind2sub(dims, index) -> subscripts Returns a tuple of subscripts into an array with dimensions `dims`, corresponding to the linear index `index`. **Example**: ``` i, j, ... = ind2sub(size(A), indmax(A)) ``` provides the indices of the maximum element. ```jldoctest julia> ind2sub((3,4),2) (2, 1) julia> ind2sub((3,4),3) (3, 1) julia> ind2sub((3,4),4) (1, 2) ``` """ ind2sub(dims::DimsInteger, ind::Integer) = (@_inline_meta; _ind2sub(dims, ind-1)) ind2sub(inds::Indices, ind::Integer) = (@_inline_meta; _ind2sub(inds, ind-1)) ind2sub(inds::Indices{1}, ind::Integer) = throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays")) ind2sub(inds::Tuple{OneTo}, ind::Integer) = (ind,) _ind2sub(::Tuple{}, ind) = (ind+1,) function _ind2sub(indslast::NTuple{1}, ind) @_inline_meta (_lookup(ind, indslast[1]),) end function _ind2sub(inds, ind) @_inline_meta r1 = inds[1] indnext, f, l = _div(ind, r1) (ind-l*indnext+f, _ind2sub(tail(inds), indnext)...) end _lookup(ind, d::Integer) = ind+1 _lookup(ind, r::AbstractUnitRange) = ind+first(r) _div(ind, d::Integer) = div(ind, d), 1, d _div(ind, r::AbstractUnitRange) = (d = unsafe_length(r); (div(ind, d), first(r), d)) # Vectorized forms function sub2ind(inds::Indices{1}, I1::AbstractVector{T}, I::AbstractVector{T}...) where T<:Integer throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays")) end sub2ind(inds::Tuple{OneTo}, I1::AbstractVector{T}, I::AbstractVector{T}...) where {T<:Integer} = _sub2ind_vecs(inds, I1, I...) sub2ind(inds::Union{DimsInteger,Indices}, I1::AbstractVector{T}, I::AbstractVector{T}...) where {T<:Integer} = _sub2ind_vecs(inds, I1, I...) function _sub2ind_vecs(inds, I::AbstractVector...) I1 = I[1] Iinds = indices1(I1) for j = 2:length(I) indices1(I[j]) == Iinds || throw(DimensionMismatch("indices of I[1] ($(Iinds)) does not match indices of I[$j] ($(indices1(I[j])))")) end Iout = similar(I1) _sub2ind!(Iout, inds, Iinds, I) Iout end function _sub2ind!(Iout, inds, Iinds, I) @_noinline_meta for i in Iinds # Iout[i] = sub2ind(inds, map(Ij->Ij[i], I)...) Iout[i] = sub2ind_vec(inds, i, I) end Iout end sub2ind_vec(inds, i, I) = (@_inline_meta; _sub2ind_vec(inds, (), i, I...)) _sub2ind_vec(inds, out, i, I1, I...) = (@_inline_meta; _sub2ind_vec(inds, (out..., I1[i]), i, I...)) _sub2ind_vec(inds, out, i) = (@_inline_meta; sub2ind(inds, out...)) function ind2sub(inds::Union{DimsInteger{N},Indices{N}}, ind::AbstractVector{<:Integer}) where N M = length(ind) t = ntuple(n->similar(ind),Val{N}) for (i,idx) in enumerate(IndexLinear(), ind) sub = ind2sub(inds, idx) for j = 1:N t[j][i] = sub[j] end end t end function ind2sub!(sub::Array{T}, dims::Tuple{Vararg{T}}, ind::T) where T<:Integer ndims = length(dims) for i=1:ndims-1 ind2 = div(ind-1,dims[i])+1 sub[i] = ind - dims[i]*(ind2-1) ind = ind2 end sub[ndims] = ind return sub end ## iteration utilities ## """ foreach(f, c...) -> Void Call function `f` on each element of iterable `c`. For multiple iterable arguments, `f` is called elementwise. `foreach` should be used instead of `map` when the results of `f` are not needed, for example in `foreach(println, array)`. # Example ```jldoctest julia> a = 1:3:7; julia> foreach(x -> println(x^2), a) 1 16 49 ``` """ foreach(f) = (f(); nothing) foreach(f, itr) = (for x in itr; f(x); end; nothing) foreach(f, itrs...) = (for z in zip(itrs...); f(z...); end; nothing) ## map over arrays ## ## transform any set of dimensions ## dims specifies which dimensions will be transformed. for example ## dims==1:2 will call f on all slices A[:,:,...] """ mapslices(f, A, dims) Transform the given dimensions of array `A` using function `f`. `f` is called on each slice of `A` of the form `A[...,:,...,:,...]`. `dims` is an integer vector specifying where the colons go in this expression. The results are concatenated along the remaining dimensions. For example, if `dims` is `[1,2]` and `A` is 4-dimensional, `f` is called on `A[:,:,i,j]` for all `i` and `j`. # Examples ```jldoctest julia> a = reshape(collect(1:16),(2,2,2,2)) 2×2×2×2 Array{Int64,4}: [:, :, 1, 1] = 1 3 2 4 [:, :, 2, 1] = 5 7 6 8 [:, :, 1, 2] = 9 11 10 12 [:, :, 2, 2] = 13 15 14 16 julia> mapslices(sum, a, [1,2]) 1×1×2×2 Array{Int64,4}: [:, :, 1, 1] = 10 [:, :, 2, 1] = 26 [:, :, 1, 2] = 42 [:, :, 2, 2] = 58 ``` """ mapslices(f, A::AbstractArray, dims) = mapslices(f, A, [dims...]) function mapslices(f, A::AbstractArray, dims::AbstractVector) if isempty(dims) return map(f,A) end dimsA = [indices(A)...] ndimsA = ndims(A) alldims = [1:ndimsA;] otherdims = setdiff(alldims, dims) idx = Any[first(ind) for ind in indices(A)] itershape = tuple(dimsA[otherdims]...) for d in dims idx[d] = Slice(indices(A, d)) end # Apply the function to the first slice in order to determine the next steps Aslice = A[idx...] r1 = f(Aslice) # In some cases, we can re-use the first slice for a dramatic performance # increase. The slice itself must be mutable and the result cannot contain # any mutable containers. The following errs on the side of being overly # strict (#18570 & #21123). safe_for_reuse = isa(Aslice, StridedArray) && (isa(r1, Number) || (isa(r1, AbstractArray) && eltype(r1) <: Number)) # determine result size and allocate Rsize = copy(dimsA) # TODO: maybe support removing dimensions if !isa(r1, AbstractArray) || ndims(r1) == 0 r1 = [r1] end nextra = max(0, length(dims)-ndims(r1)) if eltype(Rsize) == Int Rsize[dims] = [size(r1)..., ntuple(d->1, nextra)...] else Rsize[dims] = [indices(r1)..., ntuple(d->OneTo(1), nextra)...] end R = similar(r1, tuple(Rsize...,)) ridx = Any[map(first, indices(R))...] for d in dims ridx[d] = indices(R,d) end R[ridx...] = r1 nidx = length(otherdims) if safe_for_reuse # when f returns an array, R[ridx...] = f(Aslice) line copies elements, # so we can reuse Aslice for I in Iterators.drop(CartesianRange(itershape), 1) # skip the first element, we already handled it for i in 1:nidx idx[otherdims[i]] = ridx[otherdims[i]] = I.I[i] end _unsafe_getindex!(Aslice, A, idx...) R[ridx...] = f(Aslice) end else # we can't guarantee safety (#18524), so allocate new storage for each slice for I in Iterators.drop(CartesianRange(itershape), 1) for i in 1:nidx idx[otherdims[i]] = ridx[otherdims[i]] = I.I[i] end R[ridx...] = f(A[idx...]) end end return R end ## 1 argument function map!(f::F, dest::AbstractArray, A::AbstractArray) where F for (i,j) in zip(eachindex(dest),eachindex(A)) dest[i] = f(A[j]) end return dest end # map on collections map(f, A::Union{AbstractArray,AbstractSet,Associative}) = collect_similar(A, Generator(f,A)) # default to returning an Array for `map` on general iterators """ map(f, c...) -> collection Transform collection `c` by applying `f` to each element. For multiple collection arguments, apply `f` elementwise. # Examples ```jldoctest julia> map(x -> x * 2, [1, 2, 3]) 3-element Array{Int64,1}: 2 4 6 julia> map(+, [1, 2, 3], [10, 20, 30]) 3-element Array{Int64,1}: 11 22 33 ``` """ map(f, A) = collect(Generator(f,A)) ## 2 argument function map!(f::F, dest::AbstractArray, A::AbstractArray, B::AbstractArray) where F for (i, j, k) in zip(eachindex(dest), eachindex(A), eachindex(B)) dest[i] = f(A[j], B[k]) end return dest end ## N argument @inline ith_all(i, ::Tuple{}) = () @inline ith_all(i, as) = (as[1][i], ith_all(i, tail(as))...) function map_n!(f::F, dest::AbstractArray, As) where F for i = linearindices(As[1]) dest[i] = f(ith_all(i, As)...) end return dest end """ map!(function, destination, collection...) Like [`map`](@ref), but stores the result in `destination` rather than a new collection. `destination` must be at least as large as the first collection. # Example ```jldoctest julia> x = zeros(3); julia> map!(x -> x * 2, x, [1, 2, 3]); julia> x 3-element Array{Float64,1}: 2.0 4.0 6.0 ``` """ map!(f::F, dest::AbstractArray, As::AbstractArray...) where {F} = map_n!(f, dest, As) map(f) = f() map(f, iters...) = collect(Generator(f, iters...)) # multi-item push!, unshift! (built on top of type-specific 1-item version) # (note: must not cause a dispatch loop when 1-item case is not defined) push!(A, a, b) = push!(push!(A, a), b) push!(A, a, b, c...) = push!(push!(A, a, b), c...) unshift!(A, a, b) = unshift!(unshift!(A, b), a) unshift!(A, a, b, c...) = unshift!(unshift!(A, c...), a, b) ## hashing collections ## const hashaa_seed = UInt === UInt64 ? 0x7f53e68ceb575e76 : 0xeb575e76 const hashrle_seed = UInt === UInt64 ? 0x2aab8909bfea414c : 0xbfea414c function hash(a::AbstractArray, h::UInt) h += hashaa_seed h += hash(size(a)) state = start(a) done(a, state) && return h x2, state = next(a, state) done(a, state) && return hash(x2, h) x1 = x2 while !done(a, state) x1 = x2 x2, state = next(a, state) if isequal(x2, x1) # For repeated elements, use run length encoding # This allows efficient hashing of sparse arrays runlength = 2 while !done(a, state) x2, state = next(a, state) isequal(x1, x2) || break runlength += 1 end h += hashrle_seed h = hash(runlength, h) end h = hash(x1, h) end !isequal(x2, x1) && (h = hash(x2, h)) return h end