Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:8e38bd5eb69af5e439e7493a9c8b8121dcac2ae6

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
# Copyright (c) 2023 Amphion.

# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""

This module aims to be an entrance that integrates all the functions for extracting features from raw audio.

The common audio features include:
1. Acoustic features such as Mel Spectrogram, F0, Energy, etc.
2. Content features such as phonetic posteriorgrams (PPG) and bottleneck features (BNF) from pretrained models

Note: 
All the features extraction are designed to utilize GPU to the maximum extent, which can ease the on-the-fly extraction for large-scale dataset.

"""

import torch
from torch.nn.utils.rnn import pad_sequence

from utils.mel import extract_mel_features
from utils.f0 import get_f0 as extract_f0_features
from processors.content_extractor import (
    WhisperExtractor,
    ContentvecExtractor,
    WenetExtractor,
)


class AudioFeaturesExtractor:
    def __init__(self, cfg):
        """
        Args:
            cfg: Amphion config that would be used to specify the processing parameters
        """
        self.cfg = cfg

    def get_mel_spectrogram(self, wavs):
        """Get Mel Spectrogram Features

        Args:
            wavs: Tensor whose shape is (B, T)

        Returns:
            Tensor whose shape is (B, n_mels, n_frames)
        """
        return extract_mel_features(y=wavs, cfg=self.cfg.preprocess)

    def get_f0(self, wavs, wav_lens=None, use_interpolate=False, return_uv=False):
        """Get F0 Features

        Args:
            wavs: Tensor whose shape is (B, T)

        Returns:
            Tensor whose shape is (B, n_frames)
        """
        device = wavs.device

        f0s = []
        uvs = []
        for i, w in enumerate(wavs):
            if wav_lens is not None:
                w = w[: wav_lens[i]]

            f0, uv = extract_f0_features(
                # Use numpy to extract
                w.cpu().numpy(),
                self.cfg.preprocess,
                use_interpolate=use_interpolate,
                return_uv=True,
            )
            f0s.append(torch.as_tensor(f0, device=device))
            uvs.append(torch.as_tensor(uv, device=device, dtype=torch.long))

        # (B, n_frames)
        f0s = pad_sequence(f0s, batch_first=True, padding_value=0)
        uvs = pad_sequence(uvs, batch_first=True, padding_value=0)

        if return_uv:
            return f0s, uvs

        return f0s

    def get_energy(self, wavs, mel_spec=None):
        """Get Energy Features

        Args:
            wavs: Tensor whose shape is (B, T)
            mel_spec: Tensor whose shape is (B, n_mels, n_frames)

        Returns:
            Tensor whose shape is (B, n_frames)
        """
        if mel_spec is None:
            mel_spec = self.get_mel_spectrogram(wavs)

        energies = (mel_spec.exp() ** 2).sum(dim=1).sqrt()
        return energies

    def get_whisper_features(self, wavs, target_frame_len):
        """Get Whisper Features

        Args:
            wavs: Tensor whose shape is (B, T)
            target_frame_len: int

        Returns:
            Tensor whose shape is (B, target_frame_len, D)
        """
        if not hasattr(self, "whisper_extractor"):
            self.whisper_extractor = WhisperExtractor(self.cfg)
            self.whisper_extractor.load_model()

        whisper_feats = self.whisper_extractor.extract_content_features(wavs)
        whisper_feats = self.whisper_extractor.ReTrans(whisper_feats, target_frame_len)
        return whisper_feats

    def get_contentvec_features(self, wavs, target_frame_len):
        """Get ContentVec Features

        Args:
            wavs: Tensor whose shape is (B, T)
            target_frame_len: int

        Returns:
            Tensor whose shape is (B, target_frame_len, D)
        """
        if not hasattr(self, "contentvec_extractor"):
            self.contentvec_extractor = ContentvecExtractor(self.cfg)
            self.contentvec_extractor.load_model()

        contentvec_feats = self.contentvec_extractor.extract_content_features(wavs)
        contentvec_feats = self.contentvec_extractor.ReTrans(
            contentvec_feats, target_frame_len
        )
        return contentvec_feats

    def get_wenet_features(self, wavs, target_frame_len, wav_lens=None):
        """Get WeNet Features

        Args:
            wavs: Tensor whose shape is (B, T)
            target_frame_len: int
            wav_lens: Tensor whose shape is (B)

        Returns:
            Tensor whose shape is (B, target_frame_len, D)
        """
        if not hasattr(self, "wenet_extractor"):
            self.wenet_extractor = WenetExtractor(self.cfg)
            self.wenet_extractor.load_model()

        wenet_feats = self.wenet_extractor.extract_content_features(wavs, lens=wav_lens)
        wenet_feats = self.wenet_extractor.ReTrans(wenet_feats, target_frame_len)
        return wenet_feats

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API