# Copyright 2017 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import namedtuple import tensorflow as tf import numpy as np from numpy.testing import assert_almost_equal import pytest import gpflow from gpflow import settings from gpflow.conditionals import conditional from gpflow.conditionals import uncertain_conditional from gpflow.quadrature import mvnquad from gpflow.test_util import session_context class MomentMatchingSVGP(gpflow.models.SVGP): @gpflow.params_as_tensors def uncertain_predict_f_moment_matching(self, Xmu, Xcov): return uncertain_conditional( Xmu, Xcov, self.feature, self.kern, self.q_mu, self.q_sqrt, mean_function=self.mean_function, white=self.whiten, full_output_cov=self.full_output_cov) def uncertain_predict_f_monte_carlo(self, Xmu, Xchol, mc_iter=int(1e6)): rng = np.random.RandomState(0) D_in = Xchol.shape[0] X_samples = Xmu + np.reshape( Xchol[None, :, :] @ rng.randn(mc_iter, D_in)[:, :, None], [mc_iter, D_in]) F_mu, F_var = self.predict_f(X_samples) F_samples = F_mu + rng.randn(*F_var.shape) * (F_var ** 0.5) mean = np.mean(F_samples, axis=0) covar = np.cov(F_samples.T) return mean, covar def gen_L(rng, n, *shape): return np.array([np.tril(rng.randn(*shape)) for _ in range(n)]) def gen_q_sqrt(rng, D_out, *shape): return np.array([np.tril(rng.randn(*shape)) for _ in range(D_out)]) def mean_function_factory(rng, mean_function_name, D_in, D_out): if mean_function_name == "Zero": return gpflow.mean_functions.Zero(output_dim=D_out) elif mean_function_name == "Constant": return gpflow.mean_functions.Constant(c=rng.rand(D_out)) elif mean_function_name == "Linear": return gpflow.mean_functions.Linear( A=rng.rand(D_in, D_out), b=rng.rand(D_out)) else: return None class Data: N = 7 N_new = 2 D_out = 3 D_in = 1 rng = np.random.RandomState(1) X = np.linspace(-5, 5, N)[:, None] + rng.randn(N, 1) Y = np.hstack([np.sin(X), np.cos(X), X**2]) Xnew_mu = rng.randn(N_new, 1) Xnew_covar = np.zeros((N_new, 1, 1)) class DataMC1(Data): Y = np.hstack([np.sin(Data.X), np.sin(Data.X) * 2, Data.X ** 2]) class DataMC2(Data): N = 7 N_new = 5 D_out = 4 D_in = 2 X = Data.rng.randn(N, D_in) Y = np.hstack([np.sin(X), np.sin(X)]) Xnew_mu = Data.rng.randn(N_new, D_in) L = gen_L(Data.rng, N_new, D_in, D_in) Xnew_covar = np.array([l @ l.T for l in L]) class DataQuadrature: num_data = 10 num_ind = 10 D_in = 2 D_out = 3 H = 150 rng = np.random.RandomState(1) Xmu = rng.randn(num_data, D_in) L = gen_L(rng, num_data, D_in, D_in) Xvar = np.array([l @ l.T for l in L]) Z = rng.randn(num_ind, D_in) q_mu = rng.randn(num_ind, D_out) q_sqrt = gen_q_sqrt(rng, D_out, num_ind, num_ind) @classmethod def tensors(cls, white, mean_name): float_type = settings.float_type Xmu = tf.placeholder(float_type, [cls.num_data, cls.D_in]) Xvar = tf.placeholder(float_type, [cls.num_data, cls.D_in, cls.D_in]) q_mu = tf.placeholder(float_type, [cls.num_ind, cls.D_out]) q_sqrt = tf.placeholder(float_type, [cls.D_out, cls.num_ind, cls.num_ind]) kern = gpflow.kernels.RBF(cls.D_in) feat = gpflow.features.InducingPoints(cls.Z) mean_function = mean_function_factory(cls.rng, mean_name, cls.D_in, cls.D_out) effective_mean = mean_function or (lambda X: 0.0) feed_dict = { Xmu: cls.Xmu, Xvar: cls.Xvar, q_mu: cls.q_mu, q_sqrt: cls.q_sqrt } def mean_fn(X): mean, _ = conditional(X, feat, kern, q_mu, q_sqrt=q_sqrt, white=white) return mean + effective_mean(X) def var_fn(X): _, var = conditional(X, feat, kern, q_mu, q_sqrt=q_sqrt, white=white) return var def mean_sq_fn(X): mean, _ = conditional(X, feat, kern, q_mu, q_sqrt=q_sqrt, white=white) return (mean + effective_mean(X)) ** 2 Collection = namedtuple('QuadratureCollection', 'Xmu,Xvar,q_mu,q_sqrt,' 'kern,feat,mean_function,' 'feed_dict,mean_fn,' 'var_fn,mean_sq_fn') return Collection(Xmu=Xmu, Xvar=Xvar, q_mu=q_mu, q_sqrt=q_sqrt, kern=kern, feat=feat, mean_function=mean_function, feed_dict=feed_dict, mean_fn=mean_fn, var_fn=var_fn, mean_sq_fn=mean_sq_fn) MEANS = ["Constant", "Linear", "Zero", None] @pytest.mark.parametrize('white', [True, False]) @pytest.mark.parametrize('mean', MEANS) def test_no_uncertainty(white, mean): with session_context() as sess: m = mean_function_factory(Data.rng, mean, Data.D_in, Data.D_out) k = gpflow.kernels.RBF(1, variance=Data.rng.rand()) model = MomentMatchingSVGP( Data.X, Data.Y, k, gpflow.likelihoods.Gaussian(), mean_function=m, Z=Data.X.copy(), whiten=white) model.full_output_cov = False gpflow.train.AdamOptimizer().minimize(model, maxiter=50) mean1, var1 = model.predict_f(Data.Xnew_mu) pred_mm = model.uncertain_predict_f_moment_matching( tf.constant(Data.Xnew_mu), tf.constant(Data.Xnew_covar)) mean2, var2 = sess.run(pred_mm) assert_almost_equal(mean1, mean2) for n in range(Data.N_new): assert_almost_equal(var1[n, :], var2[n, ...]) @pytest.mark.parametrize('white', [True, False]) @pytest.mark.parametrize('mean', MEANS) def test_monte_carlo_1_din(white, mean): with session_context() as sess: k = gpflow.kernels.RBF(1, variance=DataMC1.rng.rand()) m = mean_function_factory(DataMC1.rng, mean, DataMC1.D_in, DataMC1.D_out) model = MomentMatchingSVGP( DataMC1.X, DataMC1.Y, k, gpflow.likelihoods.Gaussian(), Z=DataMC1.X.copy(), whiten=white) model.full_output_cov = True gpflow.train.AdamOptimizer().minimize(model, maxiter=50) pred_mm = model.uncertain_predict_f_moment_matching( tf.constant(DataMC1.Xnew_mu), tf.constant(DataMC1.Xnew_covar)) mean1, var1 = sess.run(pred_mm) for n in range(DataMC1.N_new): mean2, var2 = model.uncertain_predict_f_monte_carlo( DataMC1.Xnew_mu[n, ...], DataMC1.Xnew_covar[n, ...] ** 0.5) assert_almost_equal(mean1[n, ...], mean2, decimal=3) assert_almost_equal(var1[n, ...], var2, decimal=2) @pytest.mark.parametrize('white', [True, False]) @pytest.mark.parametrize('mean', MEANS) def test_monte_carlo_2_din(white, mean): with session_context() as sess: k = gpflow.kernels.RBF(DataMC2.D_in, variance=DataMC2.rng.rand()) m = mean_function_factory(DataMC2.rng, mean, DataMC2.D_in, DataMC2.D_out) model = MomentMatchingSVGP( DataMC2.X, DataMC2.Y, k, gpflow.likelihoods.Gaussian(), mean_function=m, Z=DataMC2.X.copy(), whiten=white) model.full_output_cov = True gpflow.train.AdamOptimizer().minimize(model) pred_mm = model.uncertain_predict_f_moment_matching( tf.constant(DataMC2.Xnew_mu), tf.constant(DataMC2.Xnew_covar)) mean1, var1 = sess.run(pred_mm) for n in range(DataMC2.N_new): mean2, var2 = model.uncertain_predict_f_monte_carlo( DataMC2.Xnew_mu[n, ...], DataMC2.L[n, ...]) assert_almost_equal(mean1[n, ...], mean2, decimal=2) assert_almost_equal(var1[n, ...], var2, decimal=2) @pytest.mark.parametrize('mean', MEANS) @pytest.mark.parametrize('white', [True, False]) def test_quadrature(white, mean): with session_context() as session: c = DataQuadrature d = c.tensors(white, mean) quad_args = d.Xmu, d.Xvar, c.H, c.D_in, (c.D_out,) mean_quad = mvnquad(d.mean_fn, *quad_args) var_quad = mvnquad(d.var_fn, *quad_args) mean_sq_quad = mvnquad(d.mean_sq_fn, *quad_args) mean_analytic, var_analytic = uncertain_conditional( d.Xmu, d.Xvar, d.feat, d.kern, d.q_mu, d.q_sqrt, mean_function=d.mean_function, full_output_cov=False, white=white) mean_quad, var_quad, mean_sq_quad = session.run( [mean_quad, var_quad, mean_sq_quad], feed_dict=d.feed_dict) var_quad = var_quad + (mean_sq_quad - mean_quad**2) mean_analytic, var_analytic = session.run( [mean_analytic, var_analytic], feed_dict=d.feed_dict) assert_almost_equal(mean_quad, mean_analytic, decimal=6) assert_almost_equal(var_quad, var_analytic, decimal=6) if __name__ == "__main__": tf.test.main()