Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • c790f1e
  • /
  • studySim.rd
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:8ebc1fb35f476db2f5e51070febd00edea0969cc
directory badge Iframe embedding
swh:1:dir:c790f1e33a5232044be137009743a5c8e7692d25
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
studySim.rd
\name{studySim}
\alias{studySim}
\title{ Simulation Study from Given Factor Structure Matrices and Conditions}

\description{
 The \code{structureSim} function returns statistical results from simulations
 from predefined congeneric factor structures. The main ideas come from the
 methodology applied by Zwick and Velicer (1986).
 }

\usage{
 studySim(var, nFactors, pmjc, loadings, unique, N, repsim, reppar,
          stats=1, quantile=0.5, model="components", r2limen=0.75,
          all=FALSE, dir=NA, trace=TRUE)
 }

\arguments{
  \item{var}{       numeric:   vector of the number of variables}
  \item{nFactors}{  numeric:   vector of the number of components/factors}
  \item{pmjc}{      numeric:   vector of the number of major loadings on each component/factor}
  \item{loadings}{  numeric:   vector of the major loadings on each component/factor}
  \item{unique}{    numeric:   vector of the unique loadings on each component/factor}
  \item{N}{         numeric:   vector of the number of subjects/observations}
  \item{repsim}{    numeric:   number of replication of the matrix correlation
                    simulation}
  \item{reppar}{    numeric:   number of replication for the parallel and permutation analysis}
  \item{stats}{     numeric:   vector of the statistics to return: mean(1),
                    median(2), sd(3), quantile(4), min(5), max(6)}
  \item{quantile}{  numeric:   quantile for the parallel and permutation analysis}
  \item{model}{     character: \code{"components"} or \code{"factors"} }
  \item{r2limen}{   numeric:   R2 limen value for the R2 index of Nelson}
  \item{all}{       logical:   if \code{TRUE} computes athe Bentler and Yuan
                    index (very long computating time to consider)}
  \item{dir}{       character:  Directory where to save output. Default to NA}
  \item{trace}{     logical:   if \code{TRUE} output details of the status of the simulations}
 }

\value{
  \item{values}{ Returns selected statistics about the number of components/factors
                 to retain: mean, median, quantile,
                 standard deviation, minimum and maximum.}
 }

\seealso{
 \code{\link{generateStructure}},
 \code{\link{structureSim}}
 }

\references{
  Zwick, W. R. and Velicer, W. F. (1986). Comparison of five rules for
   determining the number of components to retain. \emph{Psychological bulletin, 99}, 432-442.
 }

\author{ 
    Gilles Raiche \cr
    Centre sur les Applications des Modeles de Reponses aux Items (CAMRI) \cr
    Universite du Quebec a Montreal\cr
    \email{raiche.gilles@uqam.ca}, \url{http://www.er.uqam.ca/nobel/r17165/}
 }

\examples{
# ....................................................................
# Example inspired from Zwick and Velicer (1986)
# Very long computimg time
# ...................................................................

# 1. Initialisation
# reppar    <- 30
# repsim    <- 5
# quantile  <- 0.50

# 2. Simulations
# X         <- studySim(var=36,nFactors=3, pmjc=c(6,12), loadings=c(0.5,0.8),
#                       unique=c(0,0.2), quantile=quantile,
#                       N=c(72,180), repsim=repsim, reppar=reppar,
#                       stats=c(1:6))

# 3. Results (first 10 results)
# print(X[1:10,1:14],2)
# names(X)

# 4. Study of the error done in the determination of the number
#    of components/factors. A positive value is associated to over
#    determination.
# results   <- X[X$stats=="mean",]
# residuals <- results[,c(11:25)] - X$nfactors
# BY        <- c("nsubjects","var","loadings")
# round(aggregate(residuals, by=results[BY], mean),0)
 }

\keyword{ multivariate }

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top