# Copyright 2016 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.from __future__ import print_function import unittest import tensorflow as tf import GPflow import numpy as np import pickle class TestPickleEmpty(unittest.TestCase): def setUp(self): tf.reset_default_graph() self.m = GPflow.model.Model() def test(self): s = pickle.dumps(self.m) pickle.loads(s) class TestPickleSimple(unittest.TestCase): def setUp(self): tf.reset_default_graph() self.m = GPflow.model.Model() self.m.p1 = GPflow.param.Param(np.random.randn(3, 2)) self.m.p2 = GPflow.param.Param(np.random.randn(10)) def test(self): s = pickle.dumps(self.m) m2 = pickle.loads(s) self.assertTrue(m2.p1._parent is m2) self.assertTrue(m2.p2._parent is m2) class TestActiveDims(unittest.TestCase): def test(self): k = GPflow.kernels.RBF(2, active_dims=[0, 1]) X = np.random.randn(10, 2) K = k.compute_K_symm(X) k = pickle.loads(pickle.dumps(k)) K2 = k.compute_K_symm(X) self.assertTrue(np.allclose(K, K2)) class TestPickleGPR(unittest.TestCase): def setUp(self): tf.reset_default_graph() rng = np.random.RandomState(0) X = rng.randn(10, 1) Y = rng.randn(10, 1) self.m = GPflow.gpr.GPR(X, Y, kern=GPflow.kernels.RBF(1)) def test(self): s1 = pickle.dumps(self.m) # the model without running _compile self.m._compile() s2 = pickle.dumps(self.m) # the model after _compile # reload the model m1 = pickle.loads(s1) m2 = pickle.loads(s2) m3 = pickle.loads(pickle.dumps(m1)) # make sure the log likelihoods still match l1 = self.m.compute_log_likelihood() l2 = m1.compute_log_likelihood() l3 = m2.compute_log_likelihood() l4 = m3.compute_log_likelihood() self.assertTrue(l1 == l2 == l3 == l4) # make sure predictions still match (this tests AutoFlow) pX = np.linspace(-3, 3, 10)[:, None] p1, _ = self.m.predict_y(pX) p2, _ = m1.predict_y(pX) p3, _ = m2.predict_y(pX) p4, _ = m3.predict_y(pX) self.assertTrue(np.all(p1 == p2)) self.assertTrue(np.all(p1 == p3)) self.assertTrue(np.all(p1 == p4)) class TestPickleFix(unittest.TestCase): """ Make sure a kernel with a fixed parameter can be computed after pickling """ def test(self): k = GPflow.kernels.PeriodicKernel(1) k.period.fixed = True k = pickle.loads(pickle.dumps(k)) x = np.linspace(0,1,100).reshape([-1,1]) k.compute_K(x, x) class TestPickleSVGP(unittest.TestCase): """ Like the TestPickleGPR test, but with svgp (since it has extra tf variables for minibatching) """ def setUp(self): tf.reset_default_graph() rng = np.random.RandomState(0) X = rng.randn(10, 1) Y = rng.randn(10, 1) Z = rng.randn(5, 1) self.m = GPflow.svgp.SVGP(X, Y, Z=Z, likelihood=GPflow.likelihoods.Gaussian(), kern=GPflow.kernels.RBF(1)) def test(self): s1 = pickle.dumps(self.m) # the model without running _compile self.m._compile() s2 = pickle.dumps(self.m) # the model after _compile # reload the model m1 = pickle.loads(s1) m2 = pickle.loads(s2) m3 = pickle.loads(pickle.dumps(m2)) # make sure the log likelihoods still match l1 = self.m.compute_log_likelihood() l2 = m1.compute_log_likelihood() l3 = m2.compute_log_likelihood() l4 = m3.compute_log_likelihood() self.assertTrue(l1 == l2 == l3 == l4) # make sure predictions still match (this tests AutoFlow) pX = np.linspace(-3, 3, 10)[:, None] p1, _ = self.m.predict_y(pX) p2, _ = m1.predict_y(pX) p3, _ = m2.predict_y(pX) p4, _ = m3.predict_y(pX) self.assertTrue(np.all(p1 == p2)) self.assertTrue(np.all(p1 == p3)) self.assertTrue(np.all(p1 == p4)) class TestTransforms(unittest.TestCase): def setUp(self): self.transforms = GPflow.transforms.Transform.__subclasses__() self.models = [] for T in self.transforms: m = GPflow.model.Model() m.x = GPflow.param.Param(1.0) m.x.transform = T() self.models.append(m) def test_pickle(self): strings = [pickle.dumps(m) for m in self.models] [pickle.loads(s) for s in strings] if __name__ == "__main__": unittest.main()