\name{F3est} \Rdversion{1.1} \alias{F3est} \title{ Empty Space Function of a Three-Dimensional Point Pattern } \description{ Estimates the empty space function \eqn{F_3(r)}{F3(r)} from a three-dimensional point pattern. } \usage{ F3est(X, ..., rmax = NULL, nrval = 128, vside = NULL, correction = c("rs", "km", "cs")) } \arguments{ \item{X}{ Three-dimensional point pattern (object of class \code{"pp3"}). } \item{\dots}{ Ignored. } \item{rmax}{ Optional. Maximum value of argument \eqn{r} for which \eqn{F_3(r)}{F3(r)} will be estimated. } \item{nrval}{ Optional. Number of values of \eqn{r} for which \eqn{F_3(r)}{F3(r)} will be estimated. A large value of \code{nrval} is required to avoid discretisation effects. } \item{vside}{ Optional. Side length of the voxels in the discrete approximation. } \item{correction}{ Optional. Character vector specifying the edge correction(s) to be applied. See Details. } } \details{ For a stationary point process \eqn{\Phi}{Phi} in three-dimensional space, the empty space function is \deqn{ F_3(r) = P(d(0,\Phi) \le r) }{ F3(r) = P(d(0,Phi) <= r) } where \eqn{d(0,\Phi)}{d(0,Phi)} denotes the distance from a fixed origin \eqn{0} to the nearest point of \eqn{\Phi}{Phi}. The three-dimensional point pattern \code{X} is assumed to be a partial realisation of a stationary point process \eqn{\Phi}{Phi}. The empty space function of \eqn{\Phi}{Phi} can then be estimated using techniques described in the References. The box containing the point pattern is discretised into cubic voxels of side length \code{vside}. The distance function \eqn{d(u,\Phi)}{d(u,Phi)} is computed for every voxel centre point \eqn{u} using a three-dimensional version of the distance transform algorithm (Borgefors, 1986). The empirical cumulative distribution function of these values, with appropriate edge corrections, is the estimate of \eqn{F_3(r)}{F3(r)}. The available edge corrections are: \describe{ \item{\code{"rs"}:}{ the reduced sample (aka minus sampling, border correction) estimator (Baddeley et al, 1993) } \item{\code{"km"}:}{ the three-dimensional version of the Kaplan-Meier estimator (Baddeley and Gill, 1997) } \item{\code{"cs"}:}{ the three-dimensional generalisation of the Chiu-Stoyan or Hanisch estimator (Chiu and Stoyan, 1998). } } } \value{ A function value table (object of class \code{"fv"}) that can be plotted, printed or coerced to a data frame containing the function values. } \references{ Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. Analysis of a three-dimensional point pattern with replication. \emph{Applied Statistics} \bold{42} (1993) 641--668. Baddeley, A.J. and Gill, R.D. (1997) Kaplan-Meier estimators of interpoint distance distributions for spatial point processes. \emph{Annals of Statistics} \bold{25}, 263--292. Borgefors, G. (1986) Distance transformations in digital images. \emph{Computer Vision, Graphics and Image Processing} \bold{34}, 344--371. Chiu, S.N. and Stoyan, D. (1998) Estimators of distance distributions for spatial patterns. \emph{Statistica Neerlandica} \bold{52}, 239--246. } \author{ Adrian Baddeley \email{adrian@maths.uwa.edu.au} \url{http://www.maths.uwa.edu.au/~adrian/} and Rana Moyeed. } \section{Warnings}{ A large value of \code{nrval} is required in order to avoid discretisation effects (due to the use of histograms in the calculation). } \seealso{ \code{\link{G3est}}, \code{\link{K3est}}. } \examples{ X <- rpoispp3(42) Z <- F3est(X) if(interactive()) plot(Z) } \keyword{spatial} \keyword{nonparametric}